fix performance calculation. fix floor error in approaching event. fix passenger board wrongly.

This commit is contained in:
Xuwznln
2025-10-06 15:16:35 +08:00
parent 692b853101
commit 1a8063e4fd
8 changed files with 102 additions and 111 deletions

View File

@@ -176,7 +176,7 @@ Dynamic proxy for ``PassengerInfo`` that provides access to passenger informatio
if passenger.status == PassengerStatus.IN_ELEVATOR:
print(f"In elevator {passenger.elevator_id}")
print(f"Waited {passenger.wait_time} ticks")
print(f"Waited {passenger.floor_wait_time} ticks")
Read-Only Protection
~~~~~~~~~~~~~~~~~~~~

View File

@@ -277,7 +277,7 @@ Events are generated during tick processing:
EventType.ELEVATOR_APPROACHING,
{
"elevator": elevator.id,
"floor": elevator.target_floor,
"floor": int(round(elevator.position.current_floor_float)),
"direction": elevator.target_floor_direction.value
}
)
@@ -487,28 +487,39 @@ Metrics are calculated from passenger data:
.. code-block:: python
def _calculate_metrics(self) -> MetricsResponse:
def _calculate_metrics(self) -> PerformanceMetrics:
"""Calculate performance metrics"""
completed = [p for p in self.state.passengers.values()
if p.status == PassengerStatus.COMPLETED]
wait_times = [float(p.wait_time) for p in completed]
system_times = [float(p.system_time) for p in completed]
floor_wait_times = [float(p.floor_wait_time) for p in completed]
arrival_wait_times = [float(p.arrival_wait_time) for p in completed]
return MetricsResponse(
done=len(completed),
total=len(self.state.passengers),
avg_wait=sum(wait_times) / len(wait_times) if wait_times else 0,
p95_wait=percentile(wait_times, 95),
avg_system=sum(system_times) / len(system_times) if system_times else 0,
p95_system=percentile(system_times, 95),
def average_excluding_top_percent(data: List[float], exclude_percent: int) -> float:
"""计算排除掉最长的指定百分比后的平均值"""
if not data:
return 0.0
sorted_data = sorted(data)
keep_count = int(len(sorted_data) * (100 - exclude_percent) / 100)
if keep_count == 0:
return 0.0
kept_data = sorted_data[:keep_count]
return sum(kept_data) / len(kept_data)
return PerformanceMetrics(
completed_passengers=len(completed),
total_passengers=len(self.state.passengers),
average_floor_wait_time=sum(floor_wait_times) / len(floor_wait_times) if floor_wait_times else 0,
p95_floor_wait_time=average_excluding_top_percent(floor_wait_times, 5),
average_arrival_wait_time=sum(arrival_wait_times) / len(arrival_wait_times) if arrival_wait_times else 0,
p95_arrival_wait_time=average_excluding_top_percent(arrival_wait_times, 5),
)
Key metrics:
- **Wait time**: ``pickup_tick - arrive_tick`` (how long passenger waited)
- **System time**: ``dropoff_tick - arrive_tick`` (total time in system)
- **P95**: 95th percentile (worst-case for most passengers)
- **Floor wait time**: ``pickup_tick - arrive_tick`` (在楼层等待的时间,从到达到上电梯)
- **Arrival wait time**: ``dropoff_tick - arrive_tick`` (总等待时间,从到达到下电梯)
- **P95 metrics**: 排除掉最长的5%时间后计算剩余95%的平均值
Summary
-------

View File

@@ -257,10 +257,10 @@ Tracks simulation performance:
class PerformanceMetrics(SerializableModel):
completed_passengers: int = 0
total_passengers: int = 0
average_wait_time: float = 0.0
p95_wait_time: float = 0.0 # 95th percentile
average_system_time: float = 0.0
p95_system_time: float = 0.0 # 95th percentile
average_floor_wait_time: float = 0.0
p95_floor_wait_time: float = 0.0 # 95th percentile
average_arrival_wait_time: float = 0.0
p95_arrival_wait_time: float = 0.0 # 95th percentile
Properties: