2 Commits

Author SHA1 Message Date
Xuwznln
e5b99ca134 Bump version: 0.1.4 → 0.1.5 2025-11-25 13:25:09 +08:00
Xuwznln
31c89ccc26 Add TypedDict Support (Experimental) 2025-11-25 13:24:59 +08:00
6 changed files with 382 additions and 4 deletions

View File

@@ -1,5 +1,5 @@
[bumpversion]
current_version = 0.1.4
current_version = 0.1.5
commit = True
tag = True
tag_name = v{new_version}

View File

@@ -5,7 +5,7 @@ A multi-format message conversion system supporting seamless conversion
between ROS2, Pydantic, Dataclass, JSON, Dict, YAML and JSON Schema.
"""
__version__ = "0.1.4"
__version__ = "0.1.5"
__license__ = "Apache-2.0"
from msgcenterpy.core.envelope import MessageEnvelope, create_envelope

View File

@@ -9,6 +9,8 @@ class Properties(TypedDict, total=False):
ros_msg_cls_path: str
ros_msg_cls_namespace: str
json_schema: Dict[str, Any]
typed_dict_class_module: str
typed_dict_class_name: str
class FormatMetadata(TypedDict, total=False):

View File

@@ -358,14 +358,14 @@ class TypeInfoProvider(ABC):
@abstractmethod
def get_field_type_info(
self, field_name: str, field_value: Any, field_accessor: "FieldAccessor"
self, field_name: str, field_value: Any, parent_field_accessor: "FieldAccessor"
) -> Optional[TypeInfo]:
"""获取指定字段的类型信息
Args:
field_name: 字段名,简单字段名如 'field'
field_value: 字段的当前值用于动态类型推断不能为None
field_accessor: 字段访问器提供额外的上下文信息不能为None
parent_field_accessor: 字段访问器提供额外的上下文信息不能为None
Returns:
字段的TypeInfo如果字段不存在则返回None

View File

@@ -11,6 +11,7 @@ class MessageType(Enum):
JSON_SCHEMA = "json_schema"
DICT = "dict"
YAML = "yaml"
TYPED_DICT = "typed_dict" # Experimental
class ConversionError(Exception):

View File

@@ -0,0 +1,375 @@
"""
TypedDict Message Instance - Experimental
This module provides support for TypedDict message instances with type information
extraction and field access capabilities.
WARNING: This implementation is EXPERIMENTAL and may change in future versions.
"""
import warnings
from typing import TYPE_CHECKING, Any, Dict, Optional, Type, get_type_hints
from msgcenterpy.core.envelope import MessageEnvelope, create_envelope
from msgcenterpy.core.message_instance import MessageInstance
from msgcenterpy.core.type_converter import TypeConverter
from msgcenterpy.core.type_info import ConstraintType, Consts, TypeInfo
from msgcenterpy.core.types import MessageType
if TYPE_CHECKING:
from msgcenterpy.core.field_accessor import FieldAccessor
class TypedDictMessageInstance(MessageInstance[Dict[str, Any]]):
"""TypedDict消息实例支持类型信息提取和字段访问器实验性
EXPERIMENTAL: This class is experimental and may change in future versions.
Attributes:
_typed_dict_class: TypedDict类型定义
_typed_dict_data: 实际的字典数据
_pydantic_model: 缓存的Pydantic模型懒加载
_json_schema: 缓存的JSON Schema懒加载
"""
_typed_dict_class: Type[Any]
_typed_dict_data: Dict[str, Any]
_pydantic_model: Optional[Any] = None
_json_schema: Optional[Dict[str, Any]] = None
def __init__(self, inner_data: Dict[str, Any], typed_dict: Type[Any], **kwargs: Any) -> None:
"""
初始化TypedDict消息实例
Args:
inner_data: 字典数据
typed_dict: TypedDict类型定义
**kwargs: 额外的关键字参数
"""
# 发出实验性警告
warnings.warn(
"TypedDictMessageInstance is experimental and may change in future versions",
FutureWarning,
stacklevel=2,
)
# 验证typed_dict是否为TypedDict类型
if not self._is_typed_dict(typed_dict):
raise TypeError(f"Expected a TypedDict class, got {type(typed_dict)}")
self._typed_dict_class = typed_dict
self._typed_dict_data = inner_data
self._pydantic_model = None
self._json_schema = None
super().__init__(inner_data, MessageType.TYPED_DICT)
@staticmethod
def _is_typed_dict(typed_dict_class: Type[Any]) -> bool:
"""检查给定的类是否为TypedDict"""
try:
# TypedDict类会有__annotations__和__total__等特殊属性
return (
hasattr(typed_dict_class, "__annotations__")
and hasattr(typed_dict_class, "__total__")
and hasattr(typed_dict_class, "__required_keys__")
and hasattr(typed_dict_class, "__optional_keys__")
)
except Exception:
return False
@property
def typed_dict_class(self) -> Type[Any]:
"""获取TypedDict类型定义"""
return self._typed_dict_class
@property
def typed_dict_class_module(self) -> str:
"""获取TypedDict类的模块路径"""
return self._typed_dict_class.__module__
@property
def typed_dict_class_name(self) -> str:
"""获取TypedDict类名"""
return self._typed_dict_class.__name__
@classmethod
def get_pydantic_model_from_typed_dict(cls, typed_dict: Type[Any]) -> Any:
"""从TypedDict类型创建Pydantic模型类方法版本
优先使用TypeAdapterPydantic V2如果不可用则使用create_model_from_typeddictPydantic V1
Args:
typed_dict: TypedDict类型定义
Returns:
Pydantic模型实例
Raises:
ImportError: 如果Pydantic未安装
RuntimeError: 如果无法创建Pydantic模型
"""
# 尝试使用Pydantic V2的TypeAdapter
try:
from pydantic import TypeAdapter
adapter = TypeAdapter(typed_dict)
return adapter
except ImportError:
pass # Pydantic V2不可用尝试V1
except Exception as e:
# TypeAdapter创建失败尝试V1方法
warnings.warn(f"Failed to create TypeAdapter: {e}, trying V1 approach", RuntimeWarning)
# 尝试使用Pydantic V1的create_model_from_typeddict
try:
from pydantic.main import create_model_from_typeddict
model = create_model_from_typeddict(typed_dict)
return model
except ImportError as e:
raise ImportError(
"Pydantic is required for get_pydantic_model_from_typed_dict(). "
"Please install it with: pip install pydantic"
) from e
except Exception as e:
raise RuntimeError(f"Failed to create Pydantic model from TypedDict: {e}") from e
def get_pydantic_model(self) -> Any:
"""获取或创建Pydantic模型实例方法版本
优先使用TypeAdapterPydantic V2如果不可用则使用create_model_from_typeddictPydantic V1
Returns:
Pydantic模型实例
Raises:
ImportError: 如果Pydantic未安装
RuntimeError: 如果无法创建Pydantic模型
"""
if self._pydantic_model is not None:
return self._pydantic_model
self._pydantic_model = self.get_pydantic_model_from_typed_dict(self._typed_dict_class)
return self._pydantic_model
@classmethod
def get_json_schema_from_typed_dict(cls, typed_dict: Type[Any]) -> Dict[str, Any]:
"""从TypedDict类型生成JSON Schema类方法版本
Args:
typed_dict: TypedDict类型定义
Returns:
JSON Schema字典
Raises:
ImportError: 如果Pydantic未安装
RuntimeError: 如果无法生成JSON Schema
"""
pydantic_model = cls.get_pydantic_model_from_typed_dict(typed_dict)
try:
schema: Dict[str, Any]
# Pydantic V2 API
if hasattr(pydantic_model, "json_schema"):
# TypeAdapter的情况
schema = pydantic_model.json_schema()
return schema
elif hasattr(pydantic_model, "model_json_schema"):
# BaseModel的情况V2
schema = pydantic_model.model_json_schema()
return schema
# Pydantic V1 API
elif hasattr(pydantic_model, "schema"):
schema = pydantic_model.schema()
return schema
else:
raise RuntimeError("Unable to extract JSON schema from Pydantic model")
except Exception as e:
raise RuntimeError(f"Failed to generate JSON schema: {e}") from e
def get_json_schema(self) -> Dict[str, Any]:
"""获取JSON Schema实例方法版本利用Pydantic转换
Returns:
JSON Schema字典
Raises:
ImportError: 如果Pydantic未安装
RuntimeError: 如果无法生成JSON Schema
"""
if self._json_schema is not None:
return self._json_schema
self._json_schema = self.get_json_schema_from_typed_dict(self._typed_dict_class)
return self._json_schema
def export_to_envelope(self, **kwargs: Any) -> MessageEnvelope:
"""导出为统一信封字典
将 typed_dict_class_module, typed_dict_class_name 和 json_schema 保存到 properties
确保 import_from_envelope 可以独立重建实例
"""
base_dict = self.get_python_dict()
# 尝试获取 json_schema如果 Pydantic 可用)
json_schema = None
try:
json_schema = self.get_json_schema()
except (ImportError, RuntimeError):
# Pydantic 不可用或生成失败,继续但不保存 schema
pass
envelope = create_envelope(
format_name=self.message_type.value,
content=base_dict,
metadata={
"current_format": self.message_type.value,
"source_cls_name": self.__class__.__name__,
"source_cls_module": self.__class__.__module__,
**self._metadata,
},
)
# 将 typed_dict_class_module, typed_dict_class_name 和 json_schema 保存到 properties
if "properties" not in envelope["metadata"]:
envelope["metadata"]["properties"] = {} # type: ignore[typeddict-item]
envelope["metadata"]["properties"]["typed_dict_class_module"] = self.typed_dict_class_module # type: ignore[typeddict-item]
envelope["metadata"]["properties"]["typed_dict_class_name"] = self.typed_dict_class_name # type: ignore[typeddict-item]
if json_schema is not None:
envelope["metadata"]["properties"]["json_schema"] = json_schema # type: ignore[typeddict-item]
return envelope
@classmethod
def import_from_envelope(cls, data: MessageEnvelope, **kwargs: Any) -> "TypedDictMessageInstance":
"""从规范信封创建TypedDict实例
优先从 envelope.metadata.properties 读取 json_schema
如果没有 json_schema则尝试从 typed_dict 参数或 typed_dict_class_path 恢复。
Args:
data: 消息信封
**kwargs: 可选的'typed_dict'参数
Returns:
TypedDict实例
Raises:
ValueError: 如果无法确定TypedDict类型
"""
content = data["content"]
properties = data.get("metadata", {}).get("properties", {})
# 优先从 kwargs 获取 typed_dict
typed_dict = kwargs.pop("typed_dict", None)
# 如果没有提供 typed_dict尝试从 properties 恢复
if typed_dict is None:
typed_dict_class_module = properties.get("typed_dict_class_module")
typed_dict_class_name = properties.get("typed_dict_class_name")
if typed_dict_class_module and typed_dict_class_name:
# 尝试从模块导入 TypedDict
try:
import importlib
module = importlib.import_module(typed_dict_class_module)
typed_dict = getattr(module, typed_dict_class_name)
except Exception as e:
raise ValueError(
f"Unable to import TypedDict '{typed_dict_class_name}' from module '{typed_dict_class_module}': {e}. "
"Please provide 'typed_dict' parameter explicitly."
) from e
if typed_dict is None:
raise ValueError(
"Unable to determine TypedDict type. "
"Please provide 'typed_dict' parameter or ensure envelope contains valid type information "
"(typed_dict_class_module and typed_dict_class_name)."
)
instance = cls(content, typed_dict, **kwargs)
return instance
def get_python_dict(self) -> Dict[str, Any]:
"""获取当前所有的字段名和对应的原始值"""
return self._typed_dict_data.copy()
def set_python_dict(self, value: Dict[str, Any], **kwargs: Any) -> bool:
"""设置所有字段的值,只做已有字段的更新"""
# 获取根访问器
root_accessor = self._field_accessor
if root_accessor is not None:
root_accessor.update_from_dict(source_data=value)
return True
# TypeInfoProvider 接口实现
def get_field_type_info(
self, field_name: str, field_value: Any, parent_field_accessor: "FieldAccessor"
) -> Optional[TypeInfo]:
"""从TypedDict定义中提取字段类型信息
Args:
field_name: 字段名
field_value: 字段值
parent_field_accessor: 父级字段访问器
Returns:
字段的类型信息
"""
# 构建完整路径
full_path = f"{parent_field_accessor.full_path_from_root}.{field_name}"
# 获取TypedDict的类型提示
try:
type_hints = get_type_hints(self._typed_dict_class)
except Exception:
type_hints = {}
# 获取字段的类型注解
field_type_annotation = type_hints.get(field_name)
# 确定类型信息
python_type = type(field_value)
if field_type_annotation is not None:
# 从类型注解推断标准类型
standard_type = TypeConverter.python_type_to_standard(field_type_annotation)
else:
# 如果没有类型注解,从值的类型推断
standard_type = TypeConverter.python_type_to_standard(python_type)
# 创建基础TypeInfo
type_info = TypeInfo(
field_name=field_name,
field_path=full_path,
standard_type=standard_type,
python_type=python_type,
original_type=field_type_annotation if field_type_annotation is not None else python_type,
current_value=field_value,
)
# 检查字段是否为必需字段
if hasattr(self._typed_dict_class, "__required_keys__"):
required_keys = getattr(self._typed_dict_class, "__required_keys__")
if field_name in required_keys:
type_info.add_constraint(
ConstraintType.REQUIRED,
True,
"Field is required by TypedDict definition",
)
# 处理列表/数组类型
if isinstance(field_value, list):
type_info.is_array = True
# 可以进一步提取元素类型信息,但这需要更复杂的类型解析
# 暂时留给后续版本实现
# 处理字典/对象类型
elif isinstance(field_value, dict):
type_info.is_object = True
# 可以进一步提取对象字段信息,但这需要递归解析
# 暂时留给后续版本实现
return type_info