workflow upload & set liquid fix & add set liquid with plate

fix upload workflow json

save class name when deserialize & protocol execute test

Support root node change pos

add unilabos_class

gather query
This commit is contained in:
Xuwznln
2026-01-28 13:23:25 +08:00
parent 3a2d9e9603
commit 5179a7e48e
15 changed files with 2619 additions and 473 deletions

View File

@@ -0,0 +1,315 @@
"""
JSON 工作流转换模块
将 workflow/reagent 格式的 JSON 转换为统一工作流格式。
输入格式:
{
"workflow": [
{"action": "...", "action_args": {...}},
...
],
"reagent": {
"reagent_name": {"slot": int, "well": [...], "labware": "..."},
...
}
}
"""
import json
from os import PathLike
from pathlib import Path
from typing import Any, Dict, List, Optional, Tuple, Union
from unilabos.workflow.common import WorkflowGraph, build_protocol_graph
from unilabos.registry.registry import lab_registry
# ==================== 字段映射配置 ====================
# action 到 resource_name 的映射
ACTION_RESOURCE_MAPPING: Dict[str, str] = {
# 生物实验操作
"transfer_liquid": "liquid_handler.prcxi",
"transfer": "liquid_handler.prcxi",
"incubation": "incubator.prcxi",
"move_labware": "labware_mover.prcxi",
"oscillation": "shaker.prcxi",
# 有机化学操作
"HeatChillToTemp": "heatchill.chemputer",
"StopHeatChill": "heatchill.chemputer",
"StartHeatChill": "heatchill.chemputer",
"HeatChill": "heatchill.chemputer",
"Dissolve": "stirrer.chemputer",
"Transfer": "liquid_handler.chemputer",
"Evaporate": "rotavap.chemputer",
"Recrystallize": "reactor.chemputer",
"Filter": "filter.chemputer",
"Dry": "dryer.chemputer",
"Add": "liquid_handler.chemputer",
}
# action_args 字段到 parameters 字段的映射
# 格式: {"old_key": "new_key"}, 仅映射需要重命名的字段
ARGS_FIELD_MAPPING: Dict[str, str] = {
# 如果需要字段重命名,在这里配置
# "old_field_name": "new_field_name",
}
# 默认工作站名称
DEFAULT_WORKSTATION = "PRCXI"
# ==================== 核心转换函数 ====================
def get_action_handles(resource_name: str, template_name: str) -> Dict[str, List[str]]:
"""
从 registry 获取指定设备和动作的 handles 配置
Args:
resource_name: 设备资源名称,如 "liquid_handler.prcxi"
template_name: 动作模板名称,如 "transfer_liquid"
Returns:
包含 source 和 target handler_keys 的字典:
{"source": ["sources_out", "targets_out", ...], "target": ["sources", "targets", ...]}
"""
result = {"source": [], "target": []}
device_info = lab_registry.device_type_registry.get(resource_name, {})
if not device_info:
return result
action_mappings = device_info.get("class", {}).get("action_value_mappings", {})
action_config = action_mappings.get(template_name, {})
handles = action_config.get("handles", {})
if isinstance(handles, dict):
for handle in handles.get("input", []):
handler_key = handle.get("handler_key", "")
if handler_key:
result["source"].append(handler_key)
for handle in handles.get("output", []):
handler_key = handle.get("handler_key", "")
if handler_key:
result["target"].append(handler_key)
return result
def validate_workflow_handles(graph: WorkflowGraph) -> Tuple[bool, List[str]]:
"""
校验工作流图中所有边的句柄配置是否正确
Args:
graph: 工作流图对象
Returns:
(is_valid, errors): 是否有效,错误信息列表
"""
errors = []
nodes = graph.nodes
for edge in graph.edges:
left_uuid = edge.get("source")
right_uuid = edge.get("target")
right_source_conn_key = edge.get("target_handle_key", "")
left_target_conn_key = edge.get("source_handle_key", "")
left_node = nodes.get(left_uuid, {})
right_node = nodes.get(right_uuid, {})
left_res_name = left_node.get("resource_name", "")
left_template_name = left_node.get("template_name", "")
right_res_name = right_node.get("resource_name", "")
right_template_name = right_node.get("template_name", "")
left_node_handles = get_action_handles(left_res_name, left_template_name)
target_valid_keys = left_node_handles.get("target", [])
target_valid_keys.append("ready")
right_node_handles = get_action_handles(right_res_name, right_template_name)
source_valid_keys = right_node_handles.get("source", [])
source_valid_keys.append("ready")
# 验证目标节点right的输入端口
if not right_source_conn_key:
node_name = right_node.get("name", right_uuid[:8])
errors.append(f"目标节点 '{node_name}' 的输入端口 (target_handle_key) 为空,应设置为: {source_valid_keys}")
elif right_source_conn_key not in source_valid_keys:
node_name = right_node.get("name", right_uuid[:8])
errors.append(
f"目标节点 '{node_name}' 的输入端口 '{right_source_conn_key}' 不存在,支持的输入端口: {source_valid_keys}"
)
# 验证源节点left的输出端口
if not left_target_conn_key:
node_name = left_node.get("name", left_uuid[:8])
errors.append(f"源节点 '{node_name}' 的输出端口 (source_handle_key) 为空,应设置为: {target_valid_keys}")
elif left_target_conn_key not in target_valid_keys:
node_name = left_node.get("name", left_uuid[:8])
errors.append(
f"源节点 '{node_name}' 的输出端口 '{left_target_conn_key}' 不存在,支持的输出端口: {target_valid_keys}"
)
return len(errors) == 0, errors
def normalize_workflow_steps(workflow: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
"""
将 workflow 格式的步骤数据规范化
输入格式:
[{"action": "...", "action_args": {...}}, ...]
输出格式:
[{"action": "...", "parameters": {...}, "step_number": int}, ...]
Args:
workflow: workflow 数组
Returns:
规范化后的步骤列表
"""
normalized = []
for idx, step in enumerate(workflow):
action = step.get("action")
if not action:
continue
# 获取参数: action_args
raw_params = step.get("action_args", {})
params = {}
# 应用字段映射
for key, value in raw_params.items():
mapped_key = ARGS_FIELD_MAPPING.get(key, key)
params[mapped_key] = value
step_dict = {
"action": action,
"parameters": params,
"step_number": idx + 1,
}
# 保留描述字段
if "description" in step:
step_dict["description"] = step["description"]
normalized.append(step_dict)
return normalized
def convert_from_json(
data: Union[str, PathLike, Dict[str, Any]],
workstation_name: str = DEFAULT_WORKSTATION,
validate: bool = True,
) -> WorkflowGraph:
"""
从 JSON 数据或文件转换为 WorkflowGraph
JSON 格式:
{"workflow": [...], "reagent": {...}}
Args:
data: JSON 文件路径、字典数据、或 JSON 字符串
workstation_name: 工作站名称,默认 "PRCXi"
validate: 是否校验句柄配置,默认 True
Returns:
WorkflowGraph: 构建好的工作流图
Raises:
ValueError: 不支持的 JSON 格式
FileNotFoundError: 文件不存在
json.JSONDecodeError: JSON 解析失败
"""
# 处理输入数据
if isinstance(data, (str, PathLike)):
path = Path(data)
if path.exists():
with path.open("r", encoding="utf-8") as fp:
json_data = json.load(fp)
elif isinstance(data, str):
json_data = json.loads(data)
else:
raise FileNotFoundError(f"文件不存在: {data}")
elif isinstance(data, dict):
json_data = data
else:
raise TypeError(f"不支持的数据类型: {type(data)}")
# 校验格式
if "workflow" not in json_data or "reagent" not in json_data:
raise ValueError(
"不支持的 JSON 格式。请使用标准格式:\n"
'{"workflow": [{"action": "...", "action_args": {...}}, ...], '
'"reagent": {"name": {"slot": int, "well": [...], "labware": "..."}, ...}}'
)
# 提取数据
workflow = json_data["workflow"]
reagent = json_data["reagent"]
# 规范化步骤数据
protocol_steps = normalize_workflow_steps(workflow)
# reagent 已经是字典格式,直接使用
labware_info = reagent
# 构建工作流图
graph = build_protocol_graph(
labware_info=labware_info,
protocol_steps=protocol_steps,
workstation_name=workstation_name,
action_resource_mapping=ACTION_RESOURCE_MAPPING,
)
# 校验句柄配置
if validate:
is_valid, errors = validate_workflow_handles(graph)
if not is_valid:
import warnings
for error in errors:
warnings.warn(f"句柄校验警告: {error}")
return graph
def convert_json_to_node_link(
data: Union[str, PathLike, Dict[str, Any]],
workstation_name: str = DEFAULT_WORKSTATION,
) -> Dict[str, Any]:
"""
将 JSON 数据转换为 node-link 格式的字典
Args:
data: JSON 文件路径、字典数据、或 JSON 字符串
workstation_name: 工作站名称,默认 "PRCXi"
Returns:
Dict: node-link 格式的工作流数据
"""
graph = convert_from_json(data, workstation_name)
return graph.to_node_link_dict()
def convert_json_to_workflow_list(
data: Union[str, PathLike, Dict[str, Any]],
workstation_name: str = DEFAULT_WORKSTATION,
) -> List[Dict[str, Any]]:
"""
将 JSON 数据转换为工作流列表格式
Args:
data: JSON 文件路径、字典数据、或 JSON 字符串
workstation_name: 工作站名称,默认 "PRCXi"
Returns:
List: 工作流节点列表
"""
graph = convert_from_json(data, workstation_name)
return graph.to_dict()