添加Raman和xrd相关代码

This commit is contained in:
WenzheG
2025-11-05 19:58:51 +08:00
committed by Xuwznln
parent eed233fa76
commit 7953b3820e
9 changed files with 2486 additions and 0 deletions

View File

@@ -0,0 +1,180 @@
# raman_module.py
import os
import time as time_mod
import numpy as np
import pandas as pd
# clr / ATRWrapper 依赖:在真实环境中使用 Windows + .NET wrapper
# 本模块对缺少 clr 或 Wrapper 的情况提供“仿真”回退,方便离线/调试运行。
try:
import clr
has_clr = True
except Exception:
clr = None
has_clr = False
# 本函数返回 (success: bool, file_prefix: str|None, df: pandas.DataFrame|None)
def run_raman_test(integration_time=5000, laser_power=200,
save_csv=True, save_plot=True,
normalize=False, norm_max=None,
max_wavenum=1300):
"""
拉曼测试流程(更稳健的实现):
- 若能加载 ATRWrapper 则使用之
- 否则生成模拟光谱(方便调试)
返回 (success, file_prefix, df)
"""
timestamp = time_mod.strftime("%Y%m%d_%H%M%S")
file_prefix = f"raman_{timestamp}"
wrapper = None
used_real_device = False
try:
if has_clr:
try:
# 请根据你的 DLL 路径调整
dll_path = r"D:\Raman\Raman_RS\ATRWrapper\ATRWrapper.dll"
if os.path.exists(dll_path):
clr.AddReference(dll_path)
else:
# 试图直接 AddReference 名称(若已在 PATH
try:
clr.AddReference("ATRWrapper")
except Exception:
pass
from Optosky.Wrapper import ATRWrapper # May raise
wrapper = ATRWrapper()
used_real_device = True
except Exception as e:
# 无法加载真实 wrapper -> fallback
print("⚠️ 未能加载 ATRWrapper使用模拟数据。详细:", e)
wrapper = None
if wrapper is None:
# 生成模拟光谱(方便调试)
# 模拟波数轴 50..1300
WaveNum = np.linspace(50, max_wavenum, 1024)
# 合成几条高斯峰 + 噪声
def gauss(x, mu, sig, A):
return A * np.exp(-0.5 * ((x - mu) / sig) ** 2)
Spect_data = (gauss(WaveNum, 200, 8, 1000) +
gauss(WaveNum, 520, 12, 600) +
gauss(WaveNum, 810, 20, 400) +
50 * np.random.normal(scale=1.0, size=WaveNum.shape))
Spect_bLC = Spect_data - np.min(Spect_data) * 0.05 # 简单 baseline
Spect_smooth = np.convolve(Spect_bLC, np.ones(3) / 3, mode="same")
df = pd.DataFrame({
"WaveNum": WaveNum,
"Raw_Spect": Spect_data,
"BaseLineCorrected": Spect_bLC,
"Smooth_Spect": Spect_smooth
})
success = True
file_prefix = f"raman_sim_{timestamp}"
# 保存 CSV / 绘图 等同真实设备
else:
# 使用真实设备 API根据你提供的 wrapper 调用)
On_flag = wrapper.OpenDevice()
print("通讯连接状态:", On_flag)
if not On_flag:
wrapper.CloseDevice()
return False, None, None
wrapper.SetIntegrationTime(int(integration_time))
wrapper.SetLdPower(int(laser_power), 1)
# 可能的冷却设置(如果 wrapper 支持)
try:
wrapper.SetCool(-5)
except Exception:
pass
Spect = wrapper.AcquireSpectrum()
Spect_data = np.array(Spect.get_Data())
if not Spect.get_Success():
print("光谱采集失败")
try:
wrapper.CloseDevice()
except Exception:
pass
return False, None, None
WaveNum = np.array(wrapper.GetWaveNum())
Spect_bLC = np.array(wrapper.BaseLineCorrect(Spect_data))
Spect_smooth = np.array(wrapper.SmoothBoxcar(Spect_bLC, 3))
df = pd.DataFrame({
"WaveNum": WaveNum,
"Raw_Spect": Spect_data,
"BaseLineCorrected": Spect_bLC,
"Smooth_Spect": Spect_smooth
})
wrapper.CloseDevice()
success = True
# 如果需要限定波数范围
mask = df["WaveNum"] <= max_wavenum
df = df[mask].reset_index(drop=True)
# 可选归一化
if normalize:
arr = df["Smooth_Spect"].values
mn, mx = arr.min(), arr.max()
if mx == mn:
df["Smooth_Spect"] = 0.0
else:
scale = 1.0 if norm_max is None else float(norm_max)
df["Smooth_Spect"] = (arr - mn) / (mx - mn) * scale
# 同时处理其它列(可选)
arr_raw = df["Raw_Spect"].values
mn_r, mx_r = arr_raw.min(), arr_raw.max()
if mx_r == mn_r:
df["Raw_Spect"] = 0.0
else:
scale = 1.0 if norm_max is None else float(norm_max)
df["Raw_Spect"] = (arr_raw - mn_r) / (mx_r - mn_r) * scale
# 保存 CSV
if save_csv:
csv_filename = f"{file_prefix}.csv"
df.to_csv(csv_filename, index=False)
print("✅ CSV 文件已生成:", csv_filename)
# 绘图(使用 matplotlib注意不要启用 GUI 后台
if save_plot:
try:
import matplotlib
matplotlib.use("Agg")
import matplotlib.pyplot as plt
plt.figure(figsize=(8, 5))
plt.plot(df["WaveNum"], df["Raw_Spect"], linestyle='-', alpha=0.6, label="原始")
plt.plot(df["WaveNum"], df["BaseLineCorrected"], linestyle='--', alpha=0.8, label="基线校正")
plt.plot(df["WaveNum"], df["Smooth_Spect"], linewidth=1.2, label="平滑")
plt.xlabel("WaveNum (cm^-1)")
plt.ylabel("Intensity (a.u.)")
plt.title(f"Raman {file_prefix}")
plt.grid(True)
plt.legend()
plt.tight_layout()
plot_filename = f"{file_prefix}.png"
plt.savefig(plot_filename, dpi=300, bbox_inches="tight")
plt.close()
# 小短暂等待以确保文件系统刷新
time_mod.sleep(0.2)
print("✅ 图像已生成:", plot_filename)
except Exception as e:
print("⚠️ 绘图失败:", e)
return success, file_prefix, df
except Exception as e:
print("拉曼测试异常:", e)
try:
if wrapper is not None:
try:
wrapper.CloseDevice()
except Exception:
pass
except Exception:
pass
return False, None, None