Dev backward (#228)

* Workbench example, adjust log level, and ci check (#220)

* TestLatency Return Value Example & gitignore update

* Adjust log level & Add workbench virtual example & Add not action decorator & Add check_mode &

* Add CI Check

* CI Check Fix 1

* CI Check Fix 2

* CI Check Fix 3

* CI Check Fix 4

* CI Check Fix 5

* Upgrade to py 3.11.14; ros 0.7; unilabos 0.10.16

* Update to ROS2 Humble 0.7

* Fix Build 1

* Fix Build 2

* Fix Build 3

* Fix Build 4

* Fix Build 5

* Fix Build 6

* Fix Build 7

* ci(deps): bump actions/configure-pages from 4 to 5 (#222)

Bumps [actions/configure-pages](https://github.com/actions/configure-pages) from 4 to 5.
- [Release notes](https://github.com/actions/configure-pages/releases)
- [Commits](https://github.com/actions/configure-pages/compare/v4...v5)

---
updated-dependencies:
- dependency-name: actions/configure-pages
  dependency-version: '5'
  dependency-type: direct:production
  update-type: version-update:semver-major
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>

* ci(deps): bump actions/upload-artifact from 4 to 6 (#224)

Bumps [actions/upload-artifact](https://github.com/actions/upload-artifact) from 4 to 6.
- [Release notes](https://github.com/actions/upload-artifact/releases)
- [Commits](https://github.com/actions/upload-artifact/compare/v4...v6)

---
updated-dependencies:
- dependency-name: actions/upload-artifact
  dependency-version: '6'
  dependency-type: direct:production
  update-type: version-update:semver-major
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>

* ci(deps): bump actions/upload-pages-artifact from 3 to 4 (#225)

Bumps [actions/upload-pages-artifact](https://github.com/actions/upload-pages-artifact) from 3 to 4.
- [Release notes](https://github.com/actions/upload-pages-artifact/releases)
- [Commits](https://github.com/actions/upload-pages-artifact/compare/v3...v4)

---
updated-dependencies:
- dependency-name: actions/upload-pages-artifact
  dependency-version: '4'
  dependency-type: direct:production
  update-type: version-update:semver-major
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>

* ci(deps): bump actions/checkout from 4 to 6 (#223)

Bumps [actions/checkout](https://github.com/actions/checkout) from 4 to 6.
- [Release notes](https://github.com/actions/checkout/releases)
- [Changelog](https://github.com/actions/checkout/blob/main/CHANGELOG.md)
- [Commits](https://github.com/actions/checkout/compare/v4...v6)

---
updated-dependencies:
- dependency-name: actions/checkout
  dependency-version: '6'
  dependency-type: direct:production
  update-type: version-update:semver-major
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>

* Fix Build 8

* Fix Build 9

* Fix Build 10

* Fix Build 11

* Fix Build 12

* Fix Build 13

* v0.10.17

(cherry picked from commit 176de521b4)

* CI Check use production mode

* Fix OT2 & ReAdd Virtual Devices

* add msg goal

* transfer liquid handles

* gather query

* add unilabos_class

* Support root node change pos

* save class name when deserialize & protocol execute test

* fix upload workflow json

* workflow upload & set liquid fix & add set liquid with plate

* speed up registry load

---------

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: hanhua@dp.tech <2509856570@qq.com>
This commit is contained in:
Xuwznln
2026-02-02 23:57:13 +08:00
committed by GitHub
parent c4a3be1498
commit e30c01d54e
65 changed files with 4603 additions and 1655 deletions

View File

@@ -1,3 +1,89 @@
"""
工作流转换模块 - JSON 到 WorkflowGraph 的转换流程
==================== 输入格式 (JSON) ====================
{
"workflow": [
{"action": "transfer_liquid", "action_args": {"sources": "cell_lines", "targets": "Liquid_1", "asp_vol": 100.0, "dis_vol": 74.75, ...}},
...
],
"reagent": {
"cell_lines": {"slot": 4, "well": ["A1", "A3", "A5"], "labware": "DRUG + YOYO-MEDIA"},
"Liquid_1": {"slot": 1, "well": ["A4", "A7", "A10"], "labware": "rep 1"},
...
}
}
==================== 转换步骤 ====================
第一步: 按 slot 去重创建 create_resource 节点(创建板子)
--------------------------------------------------------------------------------
- 遍历所有 reagent按 slot 去重,为每个唯一的 slot 创建一个板子
- 生成参数:
res_id: plate_slot_{slot}
device_id: /PRCXI
class_name: PRCXI_BioER_96_wellplate
parent: /PRCXI/PRCXI_Deck/T{slot}
slot_on_deck: "{slot}"
- 输出端口: labware用于连接 set_liquid_from_plate
- 控制流: create_resource 之间通过 ready 端口串联
示例: slot=1, slot=4 -> 创建 2 个 create_resource 节点
第二步: 为每个 reagent 创建 set_liquid_from_plate 节点(设置液体)
--------------------------------------------------------------------------------
- 遍历所有 reagent为每个试剂创建 set_liquid_from_plate 节点
- 生成参数:
plate: [](通过连接传递,来自 create_resource 的 labware
well_names: ["A1", "A3", "A5"](来自 reagent 的 well 数组)
liquid_names: ["cell_lines", "cell_lines", "cell_lines"](与 well 数量一致)
volumes: [1e5, 1e5, 1e5](与 well 数量一致,默认体积)
- 输入连接: create_resource (labware) -> set_liquid_from_plate (input_plate)
- 输出端口: output_wells用于连接 transfer_liquid
- 控制流: set_liquid_from_plate 连接在所有 create_resource 之后,通过 ready 端口串联
第三步: 解析 workflow创建 transfer_liquid 等动作节点
--------------------------------------------------------------------------------
- 遍历 workflow 数组,为每个动作创建步骤节点
- 参数重命名: asp_vol -> asp_vols, dis_vol -> dis_vols, asp_flow_rate -> asp_flow_rates, dis_flow_rate -> dis_flow_rates
- 参数扩展: 根据 targets 的 wells 数量,将单值扩展为数组
例: asp_vol=100.0, targets 有 3 个 wells -> asp_vols=[100.0, 100.0, 100.0]
- 连接处理: 如果 sources/targets 已通过 set_liquid_from_plate 连接,参数值改为 []
- 输入连接: set_liquid_from_plate (output_wells) -> transfer_liquid (sources_identifier / targets_identifier)
- 输出端口: sources_out, targets_out用于连接下一个 transfer_liquid
==================== 连接关系图 ====================
控制流 (ready 端口串联):
create_resource_1 -> create_resource_2 -> ... -> set_liquid_1 -> set_liquid_2 -> ... -> transfer_liquid_1 -> transfer_liquid_2 -> ...
物料流:
[create_resource] --labware--> [set_liquid_from_plate] --output_wells--> [transfer_liquid] --sources_out/targets_out--> [下一个 transfer_liquid]
(slot=1) (cell_lines) (input_plate) (sources_identifier) (sources_identifier)
(slot=4) (Liquid_1) (targets_identifier) (targets_identifier)
==================== 端口映射 ====================
create_resource:
输出: labware
set_liquid_from_plate:
输入: input_plate
输出: output_plate, output_wells
transfer_liquid:
输入: sources -> sources_identifier, targets -> targets_identifier
输出: sources -> sources_out, targets -> targets_out
==================== 校验规则 ====================
- 检查 sources/targets 是否在 reagent 中定义
- 检查 sources 和 targets 的 wells 数量是否匹配
- 检查参数数组长度是否与 wells 数量一致
- 如有问题,在 footer 中添加 [WARN: ...] 标记
"""
import re
import uuid
@@ -8,6 +94,28 @@ from typing import Dict, List, Any, Tuple, Optional
Json = Dict[str, Any]
# ==================== 默认配置 ====================
# create_resource 节点默认参数
CREATE_RESOURCE_DEFAULTS = {
"device_id": "/PRCXI",
"parent_template": "/PRCXI/PRCXI_Deck/T{slot}", # {slot} 会被替换为实际的 slot 值
"class_name": "PRCXI_BioER_96_wellplate",
}
# 默认液体体积 (uL)
DEFAULT_LIQUID_VOLUME = 1e5
# 参数重命名映射:单数 -> 复数(用于 transfer_liquid 等动作)
PARAM_RENAME_MAPPING = {
"asp_vol": "asp_vols",
"dis_vol": "dis_vols",
"asp_flow_rate": "asp_flow_rates",
"dis_flow_rate": "dis_flow_rates",
}
# ---------------- Graph ----------------
@@ -228,7 +336,7 @@ def refactor_data(
def build_protocol_graph(
labware_info: List[Dict[str, Any]],
labware_info: Dict[str, Dict[str, Any]],
protocol_steps: List[Dict[str, Any]],
workstation_name: str,
action_resource_mapping: Optional[Dict[str, str]] = None,
@@ -236,112 +344,227 @@ def build_protocol_graph(
"""统一的协议图构建函数,根据设备类型自动选择构建逻辑
Args:
labware_info: labware 信息字典
labware_info: labware 信息字典,格式为 {name: {slot, well, labware, ...}, ...}
protocol_steps: 协议步骤列表
workstation_name: 工作站名称
action_resource_mapping: action 到 resource_name 的映射字典,可选
"""
G = WorkflowGraph()
resource_last_writer = {}
resource_last_writer = {} # reagent_name -> "node_id:port"
slot_to_create_resource = {} # slot -> create_resource node_id
protocol_steps = refactor_data(protocol_steps, action_resource_mapping)
# 有机化学&移液站协议图构建
WORKSTATION_ID = workstation_name
# 为所有labware创建资源节点
res_index = 0
# ==================== 第一步:按 slot 去重创建 create_resource 节点 ====================
# 收集所有唯一的 slot
slots_info = {} # slot -> {labware, res_id}
for labware_id, item in labware_info.items():
# item_id = item.get("id") or item.get("name", f"item_{uuid.uuid4()}")
node_id = str(uuid.uuid4())
slot = str(item.get("slot", ""))
if slot and slot not in slots_info:
res_id = f"plate_slot_{slot}"
slots_info[slot] = {
"labware": item.get("labware", ""),
"res_id": res_id,
}
# 判断节点类型
if "Rack" in str(labware_id) or "Tip" in str(labware_id):
lab_node_type = "Labware"
description = f"Prepare Labware: {labware_id}"
liquid_type = []
liquid_volume = []
elif item.get("type") == "hardware" or "reactor" in str(labware_id).lower():
if "reactor" not in str(labware_id).lower():
continue
lab_node_type = "Sample"
description = f"Prepare Reactor: {labware_id}"
liquid_type = []
liquid_volume = []
else:
lab_node_type = "Reagent"
description = f"Add Reagent to Flask: {labware_id}"
liquid_type = [labware_id]
liquid_volume = [1e5]
# 为每个唯一的 slot 创建 create_resource 节点
res_index = 0
last_create_resource_id = None
for slot, info in slots_info.items():
node_id = str(uuid.uuid4())
res_id = info["res_id"]
res_index += 1
G.add_node(
node_id,
template_name="create_resource",
resource_name="host_node",
name=f"Res {res_index}",
description=description,
lab_node_type=lab_node_type,
name=f"Plate {res_index}",
description=f"Create plate on slot {slot}",
lab_node_type="Labware",
footer="create_resource-host_node",
param={
"res_id": labware_id,
"device_id": WORKSTATION_ID,
"class_name": "container",
"parent": WORKSTATION_ID,
"res_id": res_id,
"device_id": CREATE_RESOURCE_DEFAULTS["device_id"],
"class_name": CREATE_RESOURCE_DEFAULTS["class_name"],
"parent": CREATE_RESOURCE_DEFAULTS["parent_template"].format(slot=slot),
"bind_locations": {"x": 0.0, "y": 0.0, "z": 0.0},
"liquid_input_slot": [-1],
"liquid_type": liquid_type,
"liquid_volume": liquid_volume,
"slot_on_deck": "",
"slot_on_deck": slot,
},
)
resource_last_writer[labware_id] = f"{node_id}:labware"
slot_to_create_resource[slot] = node_id
last_control_node_id = None
# create_resource 之间通过 ready 串联
if last_create_resource_id is not None:
G.add_edge(last_create_resource_id, node_id, source_port="ready", target_port="ready")
last_create_resource_id = node_id
# ==================== 第二步:为每个 reagent 创建 set_liquid_from_plate 节点 ====================
set_liquid_index = 0
last_set_liquid_id = last_create_resource_id # set_liquid_from_plate 连接在 create_resource 之后
for labware_id, item in labware_info.items():
# 跳过 Tip/Rack 类型
if "Rack" in str(labware_id) or "Tip" in str(labware_id):
continue
if item.get("type") == "hardware":
continue
slot = str(item.get("slot", ""))
wells = item.get("well", [])
if not wells or not slot:
continue
# res_id 不能有空格
res_id = str(labware_id).replace(" ", "_")
well_count = len(wells)
node_id = str(uuid.uuid4())
set_liquid_index += 1
G.add_node(
node_id,
template_name="set_liquid_from_plate",
resource_name="liquid_handler.prcxi",
name=f"SetLiquid {set_liquid_index}",
description=f"Set liquid: {labware_id}",
lab_node_type="Reagent",
footer="set_liquid_from_plate-liquid_handler.prcxi",
param={
"plate": [], # 通过连接传递
"well_names": wells, # 孔位名数组,如 ["A1", "A3", "A5"]
"liquid_names": [res_id] * well_count,
"volumes": [DEFAULT_LIQUID_VOLUME] * well_count,
},
)
# ready 连接:上一个节点 -> set_liquid_from_plate
if last_set_liquid_id is not None:
G.add_edge(last_set_liquid_id, node_id, source_port="ready", target_port="ready")
last_set_liquid_id = node_id
# 物料流create_resource 的 labware -> set_liquid_from_plate 的 input_plate
create_res_node_id = slot_to_create_resource.get(slot)
if create_res_node_id:
G.add_edge(create_res_node_id, node_id, source_port="labware", target_port="input_plate")
# set_liquid_from_plate 的输出 output_wells 用于连接 transfer_liquid
resource_last_writer[labware_id] = f"{node_id}:output_wells"
last_control_node_id = last_set_liquid_id
# 端口名称映射JSON 字段名 -> 实际 handle key
INPUT_PORT_MAPPING = {
"sources": "sources_identifier",
"targets": "targets_identifier",
"vessel": "vessel",
"to_vessel": "to_vessel",
"from_vessel": "from_vessel",
"reagent": "reagent",
"solvent": "solvent",
"compound": "compound",
}
OUTPUT_PORT_MAPPING = {
"sources": "sources_out", # 输出端口是 xxx_out
"targets": "targets_out", # 输出端口是 xxx_out
"vessel": "vessel_out",
"to_vessel": "to_vessel_out",
"from_vessel": "from_vessel_out",
"filtrate_vessel": "filtrate_out",
"reagent": "reagent",
"solvent": "solvent",
"compound": "compound",
}
# 需要根据 wells 数量扩展的参数列表(复数形式)
EXPAND_BY_WELLS_PARAMS = ["asp_vols", "dis_vols", "asp_flow_rates", "dis_flow_rates"]
# 处理协议步骤
for step in protocol_steps:
node_id = str(uuid.uuid4())
G.add_node(node_id, **step)
params = step.get("param", {}).copy() # 复制一份,避免修改原数据
connected_params = set() # 记录被连接的参数
warnings = [] # 收集警告信息
# 参数重命名:单数 -> 复数
for old_name, new_name in PARAM_RENAME_MAPPING.items():
if old_name in params:
params[new_name] = params.pop(old_name)
# 处理输入连接
for param_key, target_port in INPUT_PORT_MAPPING.items():
resource_name = params.get(param_key)
if resource_name and resource_name in resource_last_writer:
source_node, source_port = resource_last_writer[resource_name].split(":")
G.add_edge(source_node, node_id, source_port=source_port, target_port=target_port)
connected_params.add(param_key)
elif resource_name and resource_name not in resource_last_writer:
# 资源名在 labware_info 中不存在
warnings.append(f"{param_key}={resource_name} 未找到")
# 获取 targets 对应的 wells 数量,用于扩展参数
targets_name = params.get("targets")
sources_name = params.get("sources")
targets_wells_count = 1
sources_wells_count = 1
if targets_name and targets_name in labware_info:
target_wells = labware_info[targets_name].get("well", [])
targets_wells_count = len(target_wells) if target_wells else 1
elif targets_name:
warnings.append(f"targets={targets_name} 未在 reagent 中定义")
if sources_name and sources_name in labware_info:
source_wells = labware_info[sources_name].get("well", [])
sources_wells_count = len(source_wells) if source_wells else 1
elif sources_name:
warnings.append(f"sources={sources_name} 未在 reagent 中定义")
# 检查 sources 和 targets 的 wells 数量是否匹配
if targets_wells_count != sources_wells_count and targets_name and sources_name:
warnings.append(f"wells 数量不匹配: sources={sources_wells_count}, targets={targets_wells_count}")
# 使用 targets 的 wells 数量来扩展参数
wells_count = targets_wells_count
# 扩展单值参数为数组(根据 targets 的 wells 数量)
for expand_param in EXPAND_BY_WELLS_PARAMS:
if expand_param in params:
value = params[expand_param]
# 如果是单个值,扩展为数组
if not isinstance(value, list):
params[expand_param] = [value] * wells_count
# 如果已经是数组但长度不对,记录警告
elif len(value) != wells_count:
warnings.append(f"{expand_param} 数量({len(value)})与 wells({wells_count})不匹配")
# 如果 sources/targets 已通过连接传递,将参数值改为空数组
for param_key in connected_params:
if param_key in params:
params[param_key] = []
# 更新 step 的 param 和 footer
step_copy = step.copy()
step_copy["param"] = params
# 如果有警告,修改 footer 添加警告标记(警告放前面)
if warnings:
original_footer = step.get("footer", "")
step_copy["footer"] = f"[WARN: {'; '.join(warnings)}] {original_footer}"
G.add_node(node_id, **step_copy)
# 控制流
if last_control_node_id is not None:
G.add_edge(last_control_node_id, node_id, source_port="ready", target_port="ready")
last_control_node_id = node_id
# 物料流
params = step.get("param", {})
input_resources_possible_names = [
"vessel",
"to_vessel",
"from_vessel",
"reagent",
"solvent",
"compound",
"sources",
"targets",
]
for target_port in input_resources_possible_names:
resource_name = params.get(target_port)
if resource_name and resource_name in resource_last_writer:
source_node, source_port = resource_last_writer[resource_name].split(":")
G.add_edge(source_node, node_id, source_port=source_port, target_port=target_port)
output_resources = {
"vessel_out": params.get("vessel"),
"from_vessel_out": params.get("from_vessel"),
"to_vessel_out": params.get("to_vessel"),
"filtrate_out": params.get("filtrate_vessel"),
"reagent": params.get("reagent"),
"solvent": params.get("solvent"),
"compound": params.get("compound"),
"sources_out": params.get("sources"),
"targets_out": params.get("targets"),
}
for source_port, resource_name in output_resources.items():
# 处理输出:更新 resource_last_writer
for param_key, output_port in OUTPUT_PORT_MAPPING.items():
resource_name = step.get("param", {}).get(param_key) # 使用原始参数值
if resource_name:
resource_last_writer[resource_name] = f"{node_id}:{source_port}"
resource_last_writer[resource_name] = f"{node_id}:{output_port}"
return G

View File

@@ -1,21 +1,68 @@
"""
JSON 工作流转换模块
提供从多种 JSON 格式转换为统一工作流格式的功能
支持的格式:
1. workflow/reagent 格式
2. steps_info/labware_info 格式
将 workflow/reagent 格式的 JSON 转换为统一工作流格式。
输入格式:
{
"workflow": [
{"action": "...", "action_args": {...}},
...
],
"reagent": {
"reagent_name": {"slot": int, "well": [...], "labware": "..."},
...
}
}
"""
import json
from os import PathLike
from pathlib import Path
from typing import Any, Dict, List, Optional, Set, Tuple, Union
from typing import Any, Dict, List, Optional, Tuple, Union
from unilabos.workflow.common import WorkflowGraph, build_protocol_graph
from unilabos.registry.registry import lab_registry
# ==================== 字段映射配置 ====================
# action 到 resource_name 的映射
ACTION_RESOURCE_MAPPING: Dict[str, str] = {
# 生物实验操作
"transfer_liquid": "liquid_handler.prcxi",
"transfer": "liquid_handler.prcxi",
"incubation": "incubator.prcxi",
"move_labware": "labware_mover.prcxi",
"oscillation": "shaker.prcxi",
# 有机化学操作
"HeatChillToTemp": "heatchill.chemputer",
"StopHeatChill": "heatchill.chemputer",
"StartHeatChill": "heatchill.chemputer",
"HeatChill": "heatchill.chemputer",
"Dissolve": "stirrer.chemputer",
"Transfer": "liquid_handler.chemputer",
"Evaporate": "rotavap.chemputer",
"Recrystallize": "reactor.chemputer",
"Filter": "filter.chemputer",
"Dry": "dryer.chemputer",
"Add": "liquid_handler.chemputer",
}
# action_args 字段到 parameters 字段的映射
# 格式: {"old_key": "new_key"}, 仅映射需要重命名的字段
ARGS_FIELD_MAPPING: Dict[str, str] = {
# 如果需要字段重命名,在这里配置
# "old_field_name": "new_field_name",
}
# 默认工作站名称
DEFAULT_WORKSTATION = "PRCXI"
# ==================== 核心转换函数 ====================
def get_action_handles(resource_name: str, template_name: str) -> Dict[str, List[str]]:
"""
从 registry 获取指定设备和动作的 handles 配置
@@ -39,12 +86,10 @@ def get_action_handles(resource_name: str, template_name: str) -> Dict[str, List
handles = action_config.get("handles", {})
if isinstance(handles, dict):
# 处理 input handles (作为 target)
for handle in handles.get("input", []):
handler_key = handle.get("handler_key", "")
if handler_key:
result["source"].append(handler_key)
# 处理 output handles (作为 source)
for handle in handles.get("output", []):
handler_key = handle.get("handler_key", "")
if handler_key:
@@ -69,12 +114,9 @@ def validate_workflow_handles(graph: WorkflowGraph) -> Tuple[bool, List[str]]:
for edge in graph.edges:
left_uuid = edge.get("source")
right_uuid = edge.get("target")
# target_handle_key是target, right的输入节点入节点
# source_handle_key是source, left的输出节点出节点
right_source_conn_key = edge.get("target_handle_key", "")
left_target_conn_key = edge.get("source_handle_key", "")
# 获取源节点和目标节点信息
left_node = nodes.get(left_uuid, {})
right_node = nodes.get(right_uuid, {})
@@ -83,164 +125,93 @@ def validate_workflow_handles(graph: WorkflowGraph) -> Tuple[bool, List[str]]:
right_res_name = right_node.get("resource_name", "")
right_template_name = right_node.get("template_name", "")
# 获取源节点的 output handles
left_node_handles = get_action_handles(left_res_name, left_template_name)
target_valid_keys = left_node_handles.get("target", [])
target_valid_keys.append("ready")
# 获取目标节点的 input handles
right_node_handles = get_action_handles(right_res_name, right_template_name)
source_valid_keys = right_node_handles.get("source", [])
source_valid_keys.append("ready")
# 如果节点配置了 output handles则 source_port 必须有效
# 验证目标节点right的输入端口
if not right_source_conn_key:
node_name = left_node.get("name", left_uuid[:8])
errors.append(f"节点 '{node_name}' source_handle_key 为空," f"应设置为: {source_valid_keys}")
node_name = right_node.get("name", right_uuid[:8])
errors.append(f"目标节点 '{node_name}'输入端口 (target_handle_key) 为空,应设置为: {source_valid_keys}")
elif right_source_conn_key not in source_valid_keys:
node_name = left_node.get("name", left_uuid[:8])
node_name = right_node.get("name", right_uuid[:8])
errors.append(
f"节点 '{node_name}' source 端点 '{right_source_conn_key}' 不存在," f"支持的端点: {source_valid_keys}"
f"目标节点 '{node_name}'输入端口 '{right_source_conn_key}' 不存在,支持的输入端口: {source_valid_keys}"
)
# 如果节点配置了 input handles则 target_port 必须有效
# 验证源节点left的输出端口
if not left_target_conn_key:
node_name = right_node.get("name", right_uuid[:8])
errors.append(f"目标节点 '{node_name}' target_handle_key 为空," f"应设置为: {target_valid_keys}")
node_name = left_node.get("name", left_uuid[:8])
errors.append(f"节点 '{node_name}'输出端口 (source_handle_key) 为空,应设置为: {target_valid_keys}")
elif left_target_conn_key not in target_valid_keys:
node_name = right_node.get("name", right_uuid[:8])
node_name = left_node.get("name", left_uuid[:8])
errors.append(
f"目标节点 '{node_name}' target 端点 '{left_target_conn_key}' 不存在,"
f"支持的端点: {target_valid_keys}"
f"节点 '{node_name}'输出端口 '{left_target_conn_key}' 不存在,支持的输出端口: {target_valid_keys}"
)
return len(errors) == 0, errors
# action 到 resource_name 的映射
ACTION_RESOURCE_MAPPING: Dict[str, str] = {
# 生物实验操作
"transfer_liquid": "liquid_handler.prcxi",
"transfer": "liquid_handler.prcxi",
"incubation": "incubator.prcxi",
"move_labware": "labware_mover.prcxi",
"oscillation": "shaker.prcxi",
# 有机化学操作
"HeatChillToTemp": "heatchill.chemputer",
"StopHeatChill": "heatchill.chemputer",
"StartHeatChill": "heatchill.chemputer",
"HeatChill": "heatchill.chemputer",
"Dissolve": "stirrer.chemputer",
"Transfer": "liquid_handler.chemputer",
"Evaporate": "rotavap.chemputer",
"Recrystallize": "reactor.chemputer",
"Filter": "filter.chemputer",
"Dry": "dryer.chemputer",
"Add": "liquid_handler.chemputer",
}
def normalize_steps(data: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
def normalize_workflow_steps(workflow: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
"""
不同格式的步骤数据规范化为统一格式
workflow 格式的步骤数据规范化
支持的输入格式
- action + parameters
- action + action_args
- operation + parameters
输入格式:
[{"action": "...", "action_args": {...}}, ...]
输出格式:
[{"action": "...", "parameters": {...}, "step_number": int}, ...]
Args:
data: 原始步骤数据列表
workflow: workflow 数组
Returns:
规范化后的步骤列表,格式为 [{"action": str, "parameters": dict, "description": str?, "step_number": int?}, ...]
规范化后的步骤列表
"""
normalized = []
for idx, step in enumerate(data):
# 获取动作名称(支持 action 或 operation 字段)
action = step.get("action") or step.get("operation")
for idx, step in enumerate(workflow):
action = step.get("action")
if not action:
continue
# 获取参数(支持 parameters 或 action_args 字段)
raw_params = step.get("parameters") or step.get("action_args") or {}
params = dict(raw_params)
# 获取参数: action_args
raw_params = step.get("action_args", {})
params = {}
# 规范化 source/target -> sources/targets
if "source" in raw_params and "sources" not in raw_params:
params["sources"] = raw_params["source"]
if "target" in raw_params and "targets" not in raw_params:
params["targets"] = raw_params["target"]
# 应用字段映射
for key, value in raw_params.items():
mapped_key = ARGS_FIELD_MAPPING.get(key, key)
params[mapped_key] = value
# 获取描述(支持 description 或 purpose 字段)
description = step.get("description") or step.get("purpose")
step_dict = {
"action": action,
"parameters": params,
"step_number": idx + 1,
}
# 获取步骤编号(优先使用原始数据中的 step_number否则使用索引+1
step_number = step.get("step_number", idx + 1)
step_dict = {"action": action, "parameters": params, "step_number": step_number}
if description:
step_dict["description"] = description
# 保留描述字段
if "description" in step:
step_dict["description"] = step["description"]
normalized.append(step_dict)
return normalized
def normalize_labware(data: List[Dict[str, Any]]) -> Dict[str, Dict[str, Any]]:
"""
将不同格式的 labware 数据规范化为统一的字典格式
支持的输入格式:
- reagent_name + material_name + positions
- name + labware + slot
Args:
data: 原始 labware 数据列表
Returns:
规范化后的 labware 字典,格式为 {name: {"slot": int, "labware": str, "well": list, "type": str, "role": str, "name": str}, ...}
"""
labware = {}
for item in data:
# 获取 key 名称(优先使用 reagent_name其次是 material_name 或 name
reagent_name = item.get("reagent_name")
key = reagent_name or item.get("material_name") or item.get("name")
if not key:
continue
key = str(key)
# 处理重复 key自动添加后缀
idx = 1
original_key = key
while key in labware:
idx += 1
key = f"{original_key}_{idx}"
labware[key] = {
"slot": item.get("positions") or item.get("slot"),
"labware": item.get("material_name") or item.get("labware"),
"well": item.get("well", []),
"type": item.get("type", "reagent"),
"role": item.get("role", ""),
"name": key,
}
return labware
def convert_from_json(
data: Union[str, PathLike, Dict[str, Any]],
workstation_name: str = "PRCXi",
workstation_name: str = DEFAULT_WORKSTATION,
validate: bool = True,
) -> WorkflowGraph:
"""
从 JSON 数据或文件转换为 WorkflowGraph
支持的 JSON 格式
1. {"workflow": [...], "reagent": {...}} - 直接格式
2. {"steps_info": [...], "labware_info": [...]} - 需要规范化的格式
JSON 格式:
{"workflow": [...], "reagent": {...}}
Args:
data: JSON 文件路径、字典数据、或 JSON 字符串
@@ -251,7 +222,7 @@ def convert_from_json(
WorkflowGraph: 构建好的工作流图
Raises:
ValueError: 不支持的 JSON 格式 或 句柄校验失败
ValueError: 不支持的 JSON 格式
FileNotFoundError: 文件不存在
json.JSONDecodeError: JSON 解析失败
"""
@@ -262,7 +233,6 @@ def convert_from_json(
with path.open("r", encoding="utf-8") as fp:
json_data = json.load(fp)
elif isinstance(data, str):
# 尝试作为 JSON 字符串解析
json_data = json.loads(data)
else:
raise FileNotFoundError(f"文件不存在: {data}")
@@ -271,30 +241,24 @@ def convert_from_json(
else:
raise TypeError(f"不支持的数据类型: {type(data)}")
# 根据格式解析数据
if "workflow" in json_data and "reagent" in json_data:
# 格式1: workflow/reagent已经是规范格式
protocol_steps = json_data["workflow"]
labware_info = json_data["reagent"]
elif "steps_info" in json_data and "labware_info" in json_data:
# 格式2: steps_info/labware_info需要规范化
protocol_steps = normalize_steps(json_data["steps_info"])
labware_info = normalize_labware(json_data["labware_info"])
elif "steps" in json_data and "labware" in json_data:
# 格式3: steps/labware另一种常见格式
protocol_steps = normalize_steps(json_data["steps"])
if isinstance(json_data["labware"], list):
labware_info = normalize_labware(json_data["labware"])
else:
labware_info = json_data["labware"]
else:
# 校验格式
if "workflow" not in json_data or "reagent" not in json_data:
raise ValueError(
"不支持的 JSON 格式。支持的格式\n"
"1. {'workflow': [...], 'reagent': {...}}\n"
"2. {'steps_info': [...], 'labware_info': [...]}\n"
"3. {'steps': [...], 'labware': [...]}"
"不支持的 JSON 格式。请使用标准格式:\n"
'{"workflow": [{"action": "...", "action_args": {...}}, ...], '
'"reagent": {"name": {"slot": int, "well": [...], "labware": "..."}, ...}}'
)
# 提取数据
workflow = json_data["workflow"]
reagent = json_data["reagent"]
# 规范化步骤数据
protocol_steps = normalize_workflow_steps(workflow)
# reagent 已经是字典格式,直接使用
labware_info = reagent
# 构建工作流图
graph = build_protocol_graph(
labware_info=labware_info,
@@ -317,7 +281,7 @@ def convert_from_json(
def convert_json_to_node_link(
data: Union[str, PathLike, Dict[str, Any]],
workstation_name: str = "PRCXi",
workstation_name: str = DEFAULT_WORKSTATION,
) -> Dict[str, Any]:
"""
将 JSON 数据转换为 node-link 格式的字典
@@ -335,7 +299,7 @@ def convert_json_to_node_link(
def convert_json_to_workflow_list(
data: Union[str, PathLike, Dict[str, Any]],
workstation_name: str = "PRCXi",
workstation_name: str = DEFAULT_WORKSTATION,
) -> List[Dict[str, Any]]:
"""
将 JSON 数据转换为工作流列表格式
@@ -349,8 +313,3 @@ def convert_json_to_workflow_list(
"""
graph = convert_from_json(data, workstation_name)
return graph.to_dict()
# 为了向后兼容,保留下划线前缀的别名
_normalize_steps = normalize_steps
_normalize_labware = normalize_labware

View File

@@ -0,0 +1,356 @@
"""
JSON 工作流转换模块
提供从多种 JSON 格式转换为统一工作流格式的功能。
支持的格式:
1. workflow/reagent 格式
2. steps_info/labware_info 格式
"""
import json
from os import PathLike
from pathlib import Path
from typing import Any, Dict, List, Optional, Set, Tuple, Union
from unilabos.workflow.common import WorkflowGraph, build_protocol_graph
from unilabos.registry.registry import lab_registry
def get_action_handles(resource_name: str, template_name: str) -> Dict[str, List[str]]:
"""
从 registry 获取指定设备和动作的 handles 配置
Args:
resource_name: 设备资源名称,如 "liquid_handler.prcxi"
template_name: 动作模板名称,如 "transfer_liquid"
Returns:
包含 source 和 target handler_keys 的字典:
{"source": ["sources_out", "targets_out", ...], "target": ["sources", "targets", ...]}
"""
result = {"source": [], "target": []}
device_info = lab_registry.device_type_registry.get(resource_name, {})
if not device_info:
return result
action_mappings = device_info.get("class", {}).get("action_value_mappings", {})
action_config = action_mappings.get(template_name, {})
handles = action_config.get("handles", {})
if isinstance(handles, dict):
# 处理 input handles (作为 target)
for handle in handles.get("input", []):
handler_key = handle.get("handler_key", "")
if handler_key:
result["source"].append(handler_key)
# 处理 output handles (作为 source)
for handle in handles.get("output", []):
handler_key = handle.get("handler_key", "")
if handler_key:
result["target"].append(handler_key)
return result
def validate_workflow_handles(graph: WorkflowGraph) -> Tuple[bool, List[str]]:
"""
校验工作流图中所有边的句柄配置是否正确
Args:
graph: 工作流图对象
Returns:
(is_valid, errors): 是否有效,错误信息列表
"""
errors = []
nodes = graph.nodes
for edge in graph.edges:
left_uuid = edge.get("source")
right_uuid = edge.get("target")
# target_handle_key是target, right的输入节点入节点
# source_handle_key是source, left的输出节点出节点
right_source_conn_key = edge.get("target_handle_key", "")
left_target_conn_key = edge.get("source_handle_key", "")
# 获取源节点和目标节点信息
left_node = nodes.get(left_uuid, {})
right_node = nodes.get(right_uuid, {})
left_res_name = left_node.get("resource_name", "")
left_template_name = left_node.get("template_name", "")
right_res_name = right_node.get("resource_name", "")
right_template_name = right_node.get("template_name", "")
# 获取源节点的 output handles
left_node_handles = get_action_handles(left_res_name, left_template_name)
target_valid_keys = left_node_handles.get("target", [])
target_valid_keys.append("ready")
# 获取目标节点的 input handles
right_node_handles = get_action_handles(right_res_name, right_template_name)
source_valid_keys = right_node_handles.get("source", [])
source_valid_keys.append("ready")
# 如果节点配置了 output handles则 source_port 必须有效
if not right_source_conn_key:
node_name = left_node.get("name", left_uuid[:8])
errors.append(f"源节点 '{node_name}' 的 source_handle_key 为空," f"应设置为: {source_valid_keys}")
elif right_source_conn_key not in source_valid_keys:
node_name = left_node.get("name", left_uuid[:8])
errors.append(
f"源节点 '{node_name}' 的 source 端点 '{right_source_conn_key}' 不存在," f"支持的端点: {source_valid_keys}"
)
# 如果节点配置了 input handles则 target_port 必须有效
if not left_target_conn_key:
node_name = right_node.get("name", right_uuid[:8])
errors.append(f"目标节点 '{node_name}' 的 target_handle_key 为空," f"应设置为: {target_valid_keys}")
elif left_target_conn_key not in target_valid_keys:
node_name = right_node.get("name", right_uuid[:8])
errors.append(
f"目标节点 '{node_name}' 的 target 端点 '{left_target_conn_key}' 不存在,"
f"支持的端点: {target_valid_keys}"
)
return len(errors) == 0, errors
# action 到 resource_name 的映射
ACTION_RESOURCE_MAPPING: Dict[str, str] = {
# 生物实验操作
"transfer_liquid": "liquid_handler.prcxi",
"transfer": "liquid_handler.prcxi",
"incubation": "incubator.prcxi",
"move_labware": "labware_mover.prcxi",
"oscillation": "shaker.prcxi",
# 有机化学操作
"HeatChillToTemp": "heatchill.chemputer",
"StopHeatChill": "heatchill.chemputer",
"StartHeatChill": "heatchill.chemputer",
"HeatChill": "heatchill.chemputer",
"Dissolve": "stirrer.chemputer",
"Transfer": "liquid_handler.chemputer",
"Evaporate": "rotavap.chemputer",
"Recrystallize": "reactor.chemputer",
"Filter": "filter.chemputer",
"Dry": "dryer.chemputer",
"Add": "liquid_handler.chemputer",
}
def normalize_steps(data: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
"""
将不同格式的步骤数据规范化为统一格式
支持的输入格式:
- action + parameters
- action + action_args
- operation + parameters
Args:
data: 原始步骤数据列表
Returns:
规范化后的步骤列表,格式为 [{"action": str, "parameters": dict, "description": str?, "step_number": int?}, ...]
"""
normalized = []
for idx, step in enumerate(data):
# 获取动作名称(支持 action 或 operation 字段)
action = step.get("action") or step.get("operation")
if not action:
continue
# 获取参数(支持 parameters 或 action_args 字段)
raw_params = step.get("parameters") or step.get("action_args") or {}
params = dict(raw_params)
# 规范化 source/target -> sources/targets
if "source" in raw_params and "sources" not in raw_params:
params["sources"] = raw_params["source"]
if "target" in raw_params and "targets" not in raw_params:
params["targets"] = raw_params["target"]
# 获取描述(支持 description 或 purpose 字段)
description = step.get("description") or step.get("purpose")
# 获取步骤编号(优先使用原始数据中的 step_number否则使用索引+1
step_number = step.get("step_number", idx + 1)
step_dict = {"action": action, "parameters": params, "step_number": step_number}
if description:
step_dict["description"] = description
normalized.append(step_dict)
return normalized
def normalize_labware(data: List[Dict[str, Any]]) -> Dict[str, Dict[str, Any]]:
"""
将不同格式的 labware 数据规范化为统一的字典格式
支持的输入格式:
- reagent_name + material_name + positions
- name + labware + slot
Args:
data: 原始 labware 数据列表
Returns:
规范化后的 labware 字典,格式为 {name: {"slot": int, "labware": str, "well": list, "type": str, "role": str, "name": str}, ...}
"""
labware = {}
for item in data:
# 获取 key 名称(优先使用 reagent_name其次是 material_name 或 name
reagent_name = item.get("reagent_name")
key = reagent_name or item.get("material_name") or item.get("name")
if not key:
continue
key = str(key)
# 处理重复 key自动添加后缀
idx = 1
original_key = key
while key in labware:
idx += 1
key = f"{original_key}_{idx}"
labware[key] = {
"slot": item.get("positions") or item.get("slot"),
"labware": item.get("material_name") or item.get("labware"),
"well": item.get("well", []),
"type": item.get("type", "reagent"),
"role": item.get("role", ""),
"name": key,
}
return labware
def convert_from_json(
data: Union[str, PathLike, Dict[str, Any]],
workstation_name: str = "PRCXi",
validate: bool = True,
) -> WorkflowGraph:
"""
从 JSON 数据或文件转换为 WorkflowGraph
支持的 JSON 格式:
1. {"workflow": [...], "reagent": {...}} - 直接格式
2. {"steps_info": [...], "labware_info": [...]} - 需要规范化的格式
Args:
data: JSON 文件路径、字典数据、或 JSON 字符串
workstation_name: 工作站名称,默认 "PRCXi"
validate: 是否校验句柄配置,默认 True
Returns:
WorkflowGraph: 构建好的工作流图
Raises:
ValueError: 不支持的 JSON 格式 或 句柄校验失败
FileNotFoundError: 文件不存在
json.JSONDecodeError: JSON 解析失败
"""
# 处理输入数据
if isinstance(data, (str, PathLike)):
path = Path(data)
if path.exists():
with path.open("r", encoding="utf-8") as fp:
json_data = json.load(fp)
elif isinstance(data, str):
# 尝试作为 JSON 字符串解析
json_data = json.loads(data)
else:
raise FileNotFoundError(f"文件不存在: {data}")
elif isinstance(data, dict):
json_data = data
else:
raise TypeError(f"不支持的数据类型: {type(data)}")
# 根据格式解析数据
if "workflow" in json_data and "reagent" in json_data:
# 格式1: workflow/reagent已经是规范格式
protocol_steps = json_data["workflow"]
labware_info = json_data["reagent"]
elif "steps_info" in json_data and "labware_info" in json_data:
# 格式2: steps_info/labware_info需要规范化
protocol_steps = normalize_steps(json_data["steps_info"])
labware_info = normalize_labware(json_data["labware_info"])
elif "steps" in json_data and "labware" in json_data:
# 格式3: steps/labware另一种常见格式
protocol_steps = normalize_steps(json_data["steps"])
if isinstance(json_data["labware"], list):
labware_info = normalize_labware(json_data["labware"])
else:
labware_info = json_data["labware"]
else:
raise ValueError(
"不支持的 JSON 格式。支持的格式:\n"
"1. {'workflow': [...], 'reagent': {...}}\n"
"2. {'steps_info': [...], 'labware_info': [...]}\n"
"3. {'steps': [...], 'labware': [...]}"
)
# 构建工作流图
graph = build_protocol_graph(
labware_info=labware_info,
protocol_steps=protocol_steps,
workstation_name=workstation_name,
action_resource_mapping=ACTION_RESOURCE_MAPPING,
)
# 校验句柄配置
if validate:
is_valid, errors = validate_workflow_handles(graph)
if not is_valid:
import warnings
for error in errors:
warnings.warn(f"句柄校验警告: {error}")
return graph
def convert_json_to_node_link(
data: Union[str, PathLike, Dict[str, Any]],
workstation_name: str = "PRCXi",
) -> Dict[str, Any]:
"""
将 JSON 数据转换为 node-link 格式的字典
Args:
data: JSON 文件路径、字典数据、或 JSON 字符串
workstation_name: 工作站名称,默认 "PRCXi"
Returns:
Dict: node-link 格式的工作流数据
"""
graph = convert_from_json(data, workstation_name)
return graph.to_node_link_dict()
def convert_json_to_workflow_list(
data: Union[str, PathLike, Dict[str, Any]],
workstation_name: str = "PRCXi",
) -> List[Dict[str, Any]]:
"""
将 JSON 数据转换为工作流列表格式
Args:
data: JSON 文件路径、字典数据、或 JSON 字符串
workstation_name: 工作站名称,默认 "PRCXi"
Returns:
List: 工作流节点列表
"""
graph = convert_from_json(data, workstation_name)
return graph.to_dict()
# 为了向后兼容,保留下划线前缀的别名
_normalize_steps = normalize_steps
_normalize_labware = normalize_labware