Compare commits

...

9 Commits

Author SHA1 Message Date
Xuwznln
37d8108ec4 fix: discard_tips 2025-08-06 19:27:10 +08:00
Xuwznln
6081dac561 fix: discard_tips error 2025-08-06 19:18:35 +08:00
Xuwznln
5b2d066127 fix: drop_tips not using auto resource select 2025-08-06 19:10:04 +08:00
ZiWei
06e66765e7 feat: 添加ChinWe设备控制类,支持串口通信和电机控制功能 (#79) 2025-08-06 18:49:37 +08:00
Xuwznln
98ce360088 feat: add trace log level 2025-08-04 20:27:02 +08:00
Xuwznln
5cd0f72fbd modify default discovery_interval to 15s 2025-08-04 14:10:43 +08:00
Xuwznln
343f394203 fix: working dir error when input config path
feat: report publish topic when error
2025-08-04 14:04:31 +08:00
Junhan Chang
46aa7a7bd2 fix: workstation handlers and vessel_id parsing 2025-08-04 10:24:42 +08:00
Junhan Chang
a66369e2c3 Cleanup registry to be easy-understanding (#76)
* delete deprecated mock devices

* rename categories

* combine chromatographic devices

* rename rviz simulation nodes

* organic virtual devices

* parse vessel_id

* run registry completion before merge

---------

Co-authored-by: Xuwznln <18435084+Xuwznln@users.noreply.github.com>
2025-08-03 11:21:37 +08:00
57 changed files with 3079 additions and 9523 deletions

View File

@@ -14,8 +14,8 @@
"type": "device", "type": "device",
"class": "workstation", "class": "workstation",
"position": { "position": {
"x": 620.6111111111111, "x": 0,
"y": 171, "y": 0,
"z": 0 "z": 0
}, },
"config": { "config": {

View File

@@ -1,8 +1,8 @@
{ {
"nodes": [ "nodes": [
{ {
"id": "PLR_STATION", "id": "liquid_handler",
"name": "PLR_LH_TEST", "name": "liquid_handler",
"parent": null, "parent": null,
"type": "device", "type": "device",
"class": "liquid_handler", "class": "liquid_handler",
@@ -37,7 +37,7 @@
"tip_rack", "tip_rack",
"plate_well" "plate_well"
], ],
"parent": "PLR_STATION", "parent": "liquid_handler",
"type": "deck", "type": "deck",
"class": "OTDeck", "class": "OTDeck",
"position": { "position": {
@@ -9650,7 +9650,7 @@
"children": [], "children": [],
"parent": null, "parent": null,
"type": "device", "type": "device",
"class": "moveit.arm_slider", "class": "robotic_arm.SCARA_with_slider.virtual",
"position": { "position": {
"x": -500, "x": -500,
"y": 1000, "y": 1000,

View File

@@ -8,7 +8,7 @@
"children": [], "children": [],
"parent": null, "parent": null,
"type": "device", "type": "device",
"class": "moveit.arm_slider", "class": "robotic_arm.SCARA_with_slider.virtual",
"position": { "position": {
"x": -500, "x": -500,
"y": 1000, "y": 1000,

View File

@@ -0,0 +1,949 @@
{
"nodes": [
{
"id": "simple_station",
"name": "愚公常量合成工作站",
"children": [
"serial_pump",
"pump_reagents",
"pump_workup",
"flask_CH2Cl2",
"waste_workup",
"separator_controller",
"flask_separator",
"flask_air"
],
"parent": null,
"type": "device",
"class": "workstation",
"position": {
"x": 620.6111111111111,
"y": 171,
"z": 0
},
"config": {
"protocol_type": ["PumpTransferProtocol", "CleanProtocol", "SeparateProtocol", "EvaporateProtocol"]
},
"data": {
}
},
{
"id": "serial_pump",
"name": "serial_pump",
"children": [],
"parent": "simple_station",
"type": "device",
"class": "serial",
"position": {
"x": 620.6111111111111,
"y": 171,
"z": 0
},
"config": {
"port": "COM7",
"baudrate": 9600
},
"data": {
}
},
{
"id": "pump_reagents",
"name": "pump_reagents",
"children": [],
"parent": "simple_station",
"type": "device",
"class": "syringepump.runze",
"position": {
"x": 620.6111111111111,
"y": 171,
"z": 0
},
"config": {
"port": "/devices/PumpBackbone/Serial/serialwrite",
"address": "1",
"max_volume": 25.0
},
"data": {
"max_velocity": 1.0,
"position": 0.0,
"status": "Idle",
"valve_position": "0"
}
},
{
"id": "flask_CH2Cl2",
"name": "flask_CH2Cl2",
"children": [],
"parent": "simple_station",
"type": "container",
"class": null,
"position": {
"x": 430.4087301587302,
"y": 428,
"z": 0
},
"config": {
"max_volume": 2000.0
},
"data": {
"liquid": [
{
"liquid_type": "CH2Cl2",
"liquid_volume": 1500.0
}
]
}
},
{
"id": "flask_acetone",
"name": "flask_acetone",
"children": [],
"parent": "simple_station",
"type": "container",
"class": null,
"position": {
"x": 295.36944444444447,
"y": 428,
"z": 0
},
"config": {
"max_volume": 2000.0
},
"data": {
"liquid": [
{
"liquid_type": "acetone",
"liquid_volume": 1500.0
}
]
}
},
{
"id": "flask_NH4Cl",
"name": "flask_NH4Cl",
"children": [],
"parent": "simple_station",
"type": "container",
"class": null,
"position": {
"x": 165.36944444444444,
"y": 428,
"z": 0
},
"config": {
"max_volume": 2000.0
},
"data": {
"liquid": [
{
"liquid_type": "NH4Cl",
"liquid_volume": 1500.0
}
]
}
},
{
"id": "flask_grignard",
"name": "flask_grignard",
"children": [],
"parent": "simple_station",
"type": "container",
"class": null,
"position": {
"x": 165.36944444444444,
"y": 428,
"z": 0
},
"config": {
"max_volume": 2000.0
},
"data": {
"liquid": [
{
"liquid_type": "grignard",
"liquid_volume": 1500.0
}
]
}
},
{
"id": "flask_THF",
"name": "flask_THF",
"children": [],
"parent": "simple_station",
"type": "container",
"class": null,
"position": {
"x": 35,
"y": 428,
"z": 0
},
"config": {
"max_volume": 2000.0
},
"data": {
"liquid": [
{
"liquid_type": "THF",
"liquid_volume": 1500.0
}
]
}
},
{
"id": "reactor",
"name": "reactor",
"children": [],
"parent": "simple_station",
"type": "container",
"class": null,
"position": {
"x": 698.1111111111111,
"y": 428,
"z": 0
},
"config": {
"max_volume": 5000.0
},
"data": {
"liquid": [
]
}
},
{
"id": "stirrer",
"name": "stirrer",
"children": [],
"parent": "simple_station",
"type": "device",
"class": "heaterstirrer.dalong",
"position": {
"x": 698.1111111111111,
"y": 478,
"z": 0
},
"config": {
"port": "COM43",
"temp_warning": 60.0
},
"data": {
"status": "Idle",
"temp": 0.0,
"stir_speed": 0.0
}
},
{
"id": "pump_workup",
"name": "pump_workup",
"children": [],
"parent": "simple_station",
"type": "device",
"class": "syringepump.runze",
"position": {
"x": 1195.611507936508,
"y": 686,
"z": 0
},
"config": {
"port": "/devices/PumpBackbone/Serial/serialwrite",
"address": "2",
"max_volume": 25.0
},
"data": {
"max_velocity": 1.0,
"position": 0.0,
"status": "Idle",
"valve_position": "0"
}
},
{
"id": "waste_workup",
"name": "waste_workup",
"children": [],
"parent": "simple_station",
"type": "container",
"class": null,
"position": {
"x": 1587.703373015873,
"y": 1172.5,
"z": 0
},
"config": {
"max_volume": 2000.0
},
"data": {
"liquid": [
]
}
},
{
"id": "separator_controller",
"name": "separator_controller",
"children": [],
"parent": "simple_station",
"type": "device",
"class": "separator.homemade",
"position": {
"x": 1624.4027777777778,
"y": 665.5,
"z": 0
},
"config": {
"port_executor": "/dev/tty.usbserial-11140",
"port_sensor": "/dev/tty.usbserial-11130"
},
"data": {
"sensordata": 0.0,
"status": "Idle"
}
},
{
"id": "flask_separator",
"name": "flask_separator",
"children": [],
"parent": "simple_station",
"type": "container",
"class": null,
"position": {
"x": 1614.404365079365,
"y": 948,
"z": 0
},
"config": {
"max_volume": 2000.0
},
"data": {
"liquid": [
]
}
},
{
"id": "flask_holding",
"name": "flask_holding",
"children": [],
"parent": "simple_station",
"type": "container",
"class": null,
"position": {
"x": 1915.7035714285714,
"y": 665.5,
"z": 0
},
"config": {
"max_volume": 2000.0
},
"data": {
"liquid": [
]
}
},
{
"id": "flask_H2O",
"name": "flask_H2O",
"children": [],
"parent": "simple_station",
"type": "container",
"class": null,
"position": {
"x": 1785.7035714285714,
"y": 665.5,
"z": 0
},
"config": {
"max_volume": 2000.0
},
"data": {
"liquid": [
{
"liquid_type": "H2O",
"liquid_volume": 1500.0
}
]
}
},
{
"id": "flask_NaHCO3",
"name": "flask_NaHCO3",
"children": [],
"parent": "simple_station",
"type": "container",
"class": null,
"position": {
"x": 2054.0650793650793,
"y": 665.5,
"z": 0
},
"config": {
"max_volume": 2000.0
},
"data": {
"liquid": [
{
"liquid_type": "NaHCO3",
"liquid_volume": 1500.0
}
]
}
},
{
"id": "pump_column",
"name": "pump_column",
"children": [],
"parent": "simple_station",
"type": "device",
"class": "syringepump.runze",
"position": {
"x": 1630.6527777777778,
"y": 448.5,
"z": 0
},
"config": {
"port": "/devices/PumpBackbone/Serial/serialwrite",
"address": "3",
"max_volume": 25.0
},
"data": {
"max_velocity": 1.0,
"position": 0.0,
"status": "Idle",
"valve_position": "0"
}
},
{
"id": "rotavap",
"name": "rotavap",
"children": [],
"parent": "simple_station",
"type": "device",
"class": "rotavap",
"position": {
"x": 1339.7031746031746,
"y": 968.5,
"z": 0
},
"config": {
"port": "COM15"
},
"data": {
"temperature": 0.0,
"rotate_time": 0.0,
"status": "Idle"
}
},
{
"id": "flask_rv",
"name": "flask_rv",
"children": [],
"parent": "simple_station",
"type": "container",
"class": null,
"position": {
"x": 1339.7031746031746,
"y": 1152,
"z": 0
},
"config": {
"max_volume": 2000.0
},
"data": {
"liquid": [
]
}
},
{
"id": "column",
"name": "column",
"children": [],
"parent": "simple_station",
"type": "container",
"class": null,
"position": {
"x": 909.722619047619,
"y": 948,
"z": 0
},
"config": {
"max_volume": 200.0
},
"data": {
"liquid": [
]
}
},
{
"id": "flask_column",
"name": "flask_column",
"children": [],
"parent": "simple_station",
"type": "container",
"class": null,
"position": {
"x": 867.972619047619,
"y": 1152,
"z": 0
},
"config": {
"max_volume": 2000.0
},
"data": {
"liquid": [
]
}
},
{
"id": "flask_air",
"name": "flask_air",
"children": [],
"parent": "simple_station",
"type": "container",
"class": null,
"position": {
"x": 742.722619047619,
"y": 948,
"z": 0
},
"config": {
"max_volume": 2000.0
},
"data": {
"liquid": [
]
}
},
{
"id": "dry_column",
"name": "dry_column",
"children": [],
"parent": "simple_station",
"type": "container",
"class": null,
"position": {
"x": 1206.722619047619,
"y": 948,
"z": 0
},
"config": {
"max_volume": 200.0
},
"data": {
"liquid": [
]
}
},
{
"id": "flask_dry_column",
"name": "flask_dry_column",
"children": [],
"parent": "simple_station",
"type": "container",
"class": null,
"position": {
"x": 1148.222619047619,
"y": 1152,
"z": 0
},
"config": {
"max_volume": 2000.0
},
"data": {
"liquid": [
]
}
},
{
"id": "pump_ext",
"name": "pump_ext",
"children": [],
"parent": "simple_station",
"type": "device",
"class": "syringepump.runze",
"position": {
"x": 1469.7031746031746,
"y": 968.5,
"z": 0
},
"config": {
"port": "/devices/PumpBackbone/Serial/serialwrite",
"address": "4",
"max_volume": 25.0
},
"data": {
"max_velocity": 1.0,
"position": 0.0,
"status": "Idle",
"valve_position": "0"
}
},
{
"id": "AGV",
"name": "AGV",
"children": ["zhixing_agv", "zhixing_ur_arm"],
"parent": null,
"type": "device",
"class": "workstation",
"position": {
"x": 698.1111111111111,
"y": 478,
"z": 0
},
"config": {
"protocol_type": ["AGVTransferProtocol"]
},
"data": {
}
},
{
"id": "zhixing_agv",
"name": "zhixing_agv",
"children": [],
"parent": "AGV",
"type": "device",
"class": "zhixing_agv",
"position": {
"x": 698.1111111111111,
"y": 478,
"z": 0
},
"config": {
"host": "192.168.1.42"
},
"data": {
}
},
{
"id": "zhixing_ur_arm",
"name": "zhixing_ur_arm",
"children": [],
"parent": "AGV",
"type": "device",
"class": "zhixing_ur_arm",
"position": {
"x": 698.1111111111111,
"y": 478,
"z": 0
},
"config": {
"host": "192.168.1.178"
},
"data": {
}
}
],
"links": [
{
"source": "pump_reagents",
"target": "serial_pump",
"type": "communication",
"port": {
"pump_reagents": "port",
"serial_pump": "port"
}
},
{
"source": "pump_workup",
"target": "serial_pump",
"type": "communication",
"port": {
"pump_reagents": "port",
"serial_pump": "port"
}
},
{
"source": "pump_column",
"target": "serial_pump",
"type": "communication",
"port": {
"pump_reagents": "port",
"serial_pump": "port"
}
},
{
"source": "pump_ext",
"target": "serial_pump",
"type": "communication",
"port": {
"pump_reagents": "port",
"serial_pump": "port"
}
},
{
"source": "reactor",
"target": "pump_reagents",
"type": "physical",
"port": {
"reactor": "top",
"pump_reagents": "5"
}
},
{
"source": "rotavap",
"target": "flask_rv",
"type": "physical",
"port": {
"rotavap": "bottom",
"flask_rv": "top"
}
},
{
"source": "separator_controller",
"target": "flask_separator",
"type": "physical",
"port": {
"separator_controller": "bottom",
"flask_separator": "top"
}
},
{
"source": "column",
"target": "flask_column",
"type": "physical",
"port": {
"column": "bottom",
"flask_column": "top"
}
},
{
"source": "dry_column",
"target": "flask_dry_column",
"type": "physical",
"port": {
"dry_column": "bottom",
"flask_dry_column": "top"
}
},
{
"source": "pump_ext",
"target": "pump_column",
"type": "physical",
"port": {
"pump_ext": "8",
"pump_column": "1"
}
},
{
"source": "pump_ext",
"target": "waste_workup",
"type": "physical",
"port": {
"pump_ext": "2",
"waste_workup": "-1"
}
},
{
"source": "pump_reagents",
"target": "flask_THF",
"type": "physical",
"port": {
"pump_reagents": "7",
"flask_THF": "top"
}
},
{
"source": "pump_reagents",
"target": "flask_NH4Cl",
"type": "physical",
"port": {
"pump_reagents": "4",
"flask_NH4Cl": "top"
}
},
{
"source": "pump_reagents",
"target": "flask_CH2Cl2",
"type": "physical",
"port": {
"pump_reagents": "2",
"flask_CH2Cl2": "top"
}
},
{
"source": "pump_reagents",
"target": "flask_acetone",
"type": "physical",
"port": {
"pump_reagents": "3",
"flask_acetone": "top"
}
},
{
"source": "pump_reagents",
"target": "pump_workup",
"type": "physical",
"port": {
"pump_reagents": "1",
"pump_workup": "8"
}
},
{
"source": "pump_reagents",
"target": "flask_grignard",
"type": "physical",
"port": {
"pump_reagents": "6",
"flask_grignard": "top"
}
},
{
"source": "pump_reagents",
"target": "reactor",
"type": "physical",
"port": {
"pump_reagents": "5",
"reactor": "top"
}
},
{
"source": "pump_reagents",
"target": "flask_air",
"type": "physical",
"port": {
"pump_reagents": "8",
"flask_air": "-1"
}
},
{
"source": "pump_workup",
"target": "waste_workup",
"type": "physical",
"port": {
"pump_workup": "2",
"waste_workup": "-1"
}
},
{
"source": "pump_workup",
"target": "flask_H2O",
"type": "physical",
"port": {
"pump_workup": "7",
"flask_H2O": "top"
}
},
{
"source": "pump_workup",
"target": "flask_NaHCO3",
"type": "physical",
"port": {
"pump_workup": "6",
"flask_NaHCO3": "top"
}
},
{
"source": "pump_workup",
"target": "pump_reagents",
"type": "physical",
"port": {
"pump_workup": "8",
"pump_reagents": "1"
}
},
{
"source": "pump_workup",
"target": "flask_holding",
"type": "physical",
"port": {
"pump_workup": "5",
"flask_holding": "top"
}
},
{
"source": "pump_workup",
"target": "separator_controller",
"type": "physical",
"port": {
"pump_workup": "4",
"separator_controller": "top"
}
},
{
"source": "pump_workup",
"target": "flask_separator",
"type": "physical",
"port": {
"pump_workup": "3",
"flask_separator": "top"
}
},
{
"source": "pump_workup",
"target": "pump_column",
"type": "physical",
"port": {
"pump_workup": "1",
"pump_column": "8"
}
},
{
"source": "pump_column",
"target": "column",
"type": "physical",
"port": {
"pump_column": "4",
"column": "top"
}
},
{
"source": "pump_column",
"target": "flask_column",
"type": "physical",
"port": {
"pump_column": "3",
"flask_column": "top"
}
},
{
"source": "pump_column",
"target": "rotavap",
"type": "physical",
"port": {
"pump_column": "2",
"rotavap": "-1"
}
},
{
"source": "pump_column",
"target": "pump_workup",
"type": "physical",
"port": {
"pump_column": "8",
"pump_workup": "1"
}
},
{
"source": "pump_column",
"target": "flask_air",
"type": "physical",
"port": {
"pump_column": "5",
"flask_air": "-1"
}
},
{
"source": "pump_column",
"target": "dry_column",
"type": "physical",
"port": {
"pump_column": "7",
"dry_column": "top"
}
},
{
"source": "pump_column",
"target": "flask_dry_column",
"type": "physical",
"port": {
"pump_column": "6",
"flask_dry_column": "top"
}
},
{
"source": "pump_column",
"target": "pump_ext",
"type": "physical",
"port": {
"pump_column": "1",
"pump_ext": "8"
}
}
]
}

View File

@@ -171,6 +171,8 @@ def main():
"error", "error",
) )
os._exit(1) os._exit(1)
elif config_path and os.path.exists(config_path):
working_dir = os.path.dirname(config_path)
elif os.path.exists(working_dir) and os.path.exists(os.path.join(working_dir, "local_config.py")): elif os.path.exists(working_dir) and os.path.exists(os.path.join(working_dir, "local_config.py")):
config_path = os.path.join(working_dir, "local_config.py") config_path = os.path.join(working_dir, "local_config.py")
elif not config_path and ( elif not config_path and (

View File

@@ -166,7 +166,7 @@ class MQTTClient:
status = {"data": device_status.get(device_id, {}), "device_id": device_id, "timestamp": time.time()} status = {"data": device_status.get(device_id, {}), "device_id": device_id, "timestamp": time.time()}
address = f"labs/{MQConfig.lab_id}/devices/" address = f"labs/{MQConfig.lab_id}/devices/"
self.client.publish(address, json.dumps(status), qos=2) self.client.publish(address, json.dumps(status), qos=2)
logger.info(f"Device {device_id} status published: address: {address}, {status}") # logger.info(f"Device {device_id} status published: address: {address}, {status}")
def publish_job_status(self, feedback_data: dict, job_id: str, status: str, return_info: Optional[str] = None): def publish_job_status(self, feedback_data: dict, job_id: str, status: str, return_info: Optional[str] = None):
if self.mqtt_disable: if self.mqtt_disable:

View File

@@ -2,6 +2,7 @@ import networkx as nx
import re import re
import logging import logging
from typing import List, Dict, Any, Union from typing import List, Dict, Any, Union
from .utils.vessel_parser import get_vessel
from .pump_protocol import generate_pump_protocol_with_rinsing from .pump_protocol import generate_pump_protocol_with_rinsing
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
@@ -346,16 +347,7 @@ def generate_add_protocol(
""" """
# 🔧 核心修改从字典中提取容器ID # 🔧 核心修改从字典中提取容器ID
# 统一处理vessel参数 vessel_id, vessel_data = get_vessel(vessel)
if isinstance(vessel, dict):
if "id" not in vessel:
vessel_id = list(vessel.values())[0].get("id", "")
else:
vessel_id = vessel.get("id", "")
vessel_data = vessel.get("data", {})
else:
vessel_id = str(vessel)
vessel_data = G.nodes[vessel_id].get("data", {}) if vessel_id in G.nodes() else {}
# 🔧 修改:更新容器的液体体积(假设有 liquid_volume 字段) # 🔧 修改:更新容器的液体体积(假设有 liquid_volume 字段)
if "data" in vessel and "liquid_volume" in vessel["data"]: if "data" in vessel and "liquid_volume" in vessel["data"]:

View File

@@ -1,6 +1,7 @@
import networkx as nx import networkx as nx
import logging import logging
from typing import List, Dict, Any, Union from typing import List, Dict, Any, Union
from .utils.vessel_parser import get_vessel
from .pump_protocol import generate_pump_protocol_with_rinsing from .pump_protocol import generate_pump_protocol_with_rinsing
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
@@ -235,16 +236,7 @@ def generate_adjust_ph_protocol(
List[Dict[str, Any]]: 动作序列 List[Dict[str, Any]]: 动作序列
""" """
# 统一处理vessel参数 vessel_id, vessel_data = get_vessel(vessel)
if isinstance(vessel, dict):
if "id" not in vessel:
vessel_id = list(vessel.values())[0].get("id", "")
else:
vessel_id = vessel.get("id", "")
vessel_data = vessel.get("data", {})
else:
vessel_id = str(vessel)
vessel_data = G.nodes[vessel_id].get("data", {}) if vessel_id in G.nodes() else {}
if not vessel_id: if not vessel_id:
debug_print(f"❌ vessel 参数无效必须包含id字段或直接提供容器ID. vessel: {vessel}") debug_print(f"❌ vessel 参数无效必须包含id字段或直接提供容器ID. vessel: {vessel}")

View File

@@ -1,5 +1,6 @@
from typing import List, Dict, Any from typing import List, Dict, Any
import networkx as nx import networkx as nx
from .utils.vessel_parser import get_vessel
from .pump_protocol import generate_pump_protocol from .pump_protocol import generate_pump_protocol
@@ -181,16 +182,7 @@ def generate_clean_vessel_protocol(
clean_protocol = generate_clean_vessel_protocol(G, {"id": "main_reactor"}, "water", 100.0, 60.0, 2) clean_protocol = generate_clean_vessel_protocol(G, {"id": "main_reactor"}, "water", 100.0, 60.0, 2)
""" """
# 🔧 核心修改从字典中提取容器ID # 🔧 核心修改从字典中提取容器ID
# 统一处理vessel参数 vessel_id, vessel_data = get_vessel(vessel)
if isinstance(vessel, dict):
if "id" not in vessel:
vessel_id = list(vessel.values())[0].get("id", "")
else:
vessel_id = vessel.get("id", "")
vessel_data = vessel.get("data", {})
else:
vessel_id = str(vessel)
vessel_data = G.nodes[vessel_id].get("data", {}) if vessel_id in G.nodes() else {}
action_sequence = [] action_sequence = []

View File

@@ -2,6 +2,8 @@ import networkx as nx
import re import re
import logging import logging
from typing import List, Dict, Any, Union from typing import List, Dict, Any, Union
from unilabos.compile.utils.vessel_parser import get_vessel
from .pump_protocol import generate_pump_protocol_with_rinsing from .pump_protocol import generate_pump_protocol_with_rinsing
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
@@ -446,7 +448,7 @@ def generate_dissolve_protocol(
""" """
# 🔧 核心修改从字典中提取容器ID # 🔧 核心修改从字典中提取容器ID
vessel_id = vessel["id"] vessel_id, vessel_data = get_vessel(vessel)
debug_print("=" * 60) debug_print("=" * 60)
debug_print("🧪 开始生成溶解协议") debug_print("🧪 开始生成溶解协议")

View File

@@ -1,6 +1,8 @@
import networkx as nx import networkx as nx
from typing import List, Dict, Any from typing import List, Dict, Any
from unilabos.compile.utils.vessel_parser import get_vessel
def find_connected_heater(G: nx.DiGraph, vessel: str) -> str: def find_connected_heater(G: nx.DiGraph, vessel: str) -> str:
""" """
@@ -63,7 +65,7 @@ def generate_dry_protocol(
List[Dict[str, Any]]: 动作序列 List[Dict[str, Any]]: 动作序列
""" """
# 🔧 核心修改从字典中提取容器ID # 🔧 核心修改从字典中提取容器ID
vessel_id = vessel["id"] vessel_id, vessel_data = get_vessel(vessel)
action_sequence = [] action_sequence = []

View File

@@ -3,6 +3,7 @@ import logging
import uuid import uuid
import sys import sys
from typing import List, Dict, Any, Optional from typing import List, Dict, Any, Optional
from .utils.vessel_parser import get_vessel
from .pump_protocol import generate_pump_protocol_with_rinsing, generate_pump_protocol from .pump_protocol import generate_pump_protocol_with_rinsing, generate_pump_protocol
# 设置日志 # 设置日志
@@ -288,16 +289,7 @@ def generate_evacuateandrefill_protocol(
""" """
# 🔧 核心修改从字典中提取容器ID # 🔧 核心修改从字典中提取容器ID
# 统一处理vessel参数 vessel_id, vessel_data = get_vessel(vessel)
if isinstance(vessel, dict):
if "id" not in vessel:
vessel_id = list(vessel.values())[0].get("id", "")
else:
vessel_id = vessel.get("id", "")
vessel_data = vessel.get("data", {})
else:
vessel_id = str(vessel)
vessel_data = G.nodes[vessel_id].get("data", {}) if vessel_id in G.nodes() else {}
# 硬编码重复次数为 3 # 硬编码重复次数为 3
repeats = 3 repeats = 3

View File

@@ -2,6 +2,7 @@ from typing import List, Dict, Any, Optional, Union
import networkx as nx import networkx as nx
import logging import logging
import re import re
from .utils.vessel_parser import get_vessel
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
@@ -201,16 +202,7 @@ def generate_evaporate_protocol(
""" """
# 🔧 核心修改从字典中提取容器ID # 🔧 核心修改从字典中提取容器ID
# 统一处理vessel参数 vessel_id, vessel_data = get_vessel(vessel)
if isinstance(vessel, dict):
if "id" not in vessel:
vessel_id = list(vessel.values())[0].get("id", "")
else:
vessel_id = vessel.get("id", "")
vessel_data = vessel.get("data", {})
else:
vessel_id = str(vessel)
vessel_data = G.nodes[vessel_id].get("data", {}) if vessel_id in G.nodes() else {}
debug_print("🌟" * 20) debug_print("🌟" * 20)
debug_print("🌪️ 开始生成蒸发协议(支持单位和体积运算)✨") debug_print("🌪️ 开始生成蒸发协议(支持单位和体积运算)✨")

View File

@@ -1,6 +1,7 @@
from typing import List, Dict, Any, Optional from typing import List, Dict, Any, Optional
import networkx as nx import networkx as nx
import logging import logging
from .utils.vessel_parser import get_vessel
from .pump_protocol import generate_pump_protocol_with_rinsing from .pump_protocol import generate_pump_protocol_with_rinsing
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
@@ -68,16 +69,7 @@ def generate_filter_protocol(
""" """
# 🔧 核心修改从字典中提取容器ID # 🔧 核心修改从字典中提取容器ID
# 统一处理vessel参数 vessel_id, vessel_data = get_vessel(vessel)
if isinstance(vessel, dict):
if "id" not in vessel:
vessel_id = list(vessel.values())[0].get("id", "")
else:
vessel_id = vessel.get("id", "")
vessel_data = vessel.get("data", {})
else:
vessel_id = str(vessel)
vessel_data = G.nodes[vessel_id].get("data", {}) if vessel_id in G.nodes() else {}
debug_print("🌊" * 20) debug_print("🌊" * 20)
debug_print("🚀 开始生成过滤协议(支持体积运算)✨") debug_print("🚀 开始生成过滤协议(支持体积运算)✨")

View File

@@ -2,6 +2,7 @@ from typing import List, Dict, Any, Union
import networkx as nx import networkx as nx
import logging import logging
import re import re
from .utils.vessel_parser import get_vessel
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
@@ -217,16 +218,7 @@ def generate_heat_chill_protocol(
""" """
# 🔧 核心修改从字典中提取容器ID # 🔧 核心修改从字典中提取容器ID
# 统一处理vessel参数 vessel_id, vessel_data = get_vessel(vessel)
if isinstance(vessel, dict):
if "id" not in vessel:
vessel_id = list(vessel.values())[0].get("id", "")
else:
vessel_id = vessel.get("id", "")
vessel_data = vessel.get("data", {})
else:
vessel_id = str(vessel)
vessel_data = G.nodes[vessel_id].get("data", {}) if vessel_id in G.nodes() else {}
debug_print("🌡️" * 20) debug_print("🌡️" * 20)
debug_print("🚀 开始生成加热冷却协议支持vessel字典") debug_print("🚀 开始生成加热冷却协议支持vessel字典")

View File

@@ -1,5 +1,6 @@
import networkx as nx import networkx as nx
from typing import List, Dict, Any, Optional from typing import List, Dict, Any, Optional
from .utils.vessel_parser import get_vessel
def parse_temperature(temp_str: str) -> float: def parse_temperature(temp_str: str) -> float:
@@ -170,16 +171,7 @@ def generate_hydrogenate_protocol(
""" """
# 🔧 核心修改从字典中提取容器ID # 🔧 核心修改从字典中提取容器ID
# 统一处理vessel参数 vessel_id, vessel_data = get_vessel(vessel)
if isinstance(vessel, dict):
if "id" not in vessel:
vessel_id = list(vessel.values())[0].get("id", "")
else:
vessel_id = vessel.get("id", "")
vessel_data = vessel.get("data", {})
else:
vessel_id = str(vessel)
vessel_data = G.nodes[vessel_id].get("data", {}) if vessel_id in G.nodes() else {}
action_sequence = [] action_sequence = []

View File

@@ -2,6 +2,7 @@ import networkx as nx
import re import re
import logging import logging
from typing import List, Dict, Any, Tuple, Union from typing import List, Dict, Any, Tuple, Union
from .utils.vessel_parser import get_vessel
from .pump_protocol import generate_pump_protocol_with_rinsing from .pump_protocol import generate_pump_protocol_with_rinsing
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
@@ -287,16 +288,7 @@ def generate_recrystallize_protocol(
""" """
# 🔧 核心修改从字典中提取容器ID # 🔧 核心修改从字典中提取容器ID
# 统一处理vessel参数 vessel_id, vessel_data = get_vessel(vessel)
if isinstance(vessel, dict):
if "id" not in vessel:
vessel_id = list(vessel.values())[0].get("id", "")
else:
vessel_id = vessel.get("id", "")
vessel_data = vessel.get("data", {})
else:
vessel_id = str(vessel)
vessel_data = G.nodes[vessel_id].get("data", {}) if vessel_id in G.nodes() else {}
action_sequence = [] action_sequence = []

View File

@@ -3,6 +3,7 @@ import re
import logging import logging
import sys import sys
from typing import List, Dict, Any, Union from typing import List, Dict, Any, Union
from .utils.vessel_parser import get_vessel
from .pump_protocol import generate_pump_protocol_with_rinsing from .pump_protocol import generate_pump_protocol_with_rinsing
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
@@ -63,6 +64,461 @@ def create_action_log(message: str, emoji: str = "📝") -> Dict[str, Any]:
} }
} }
def generate_separate_protocol(
G: nx.DiGraph,
# 🔧 基础参数支持XDL的vessel参数
vessel: dict = None, # 🔧 修改:从字符串改为字典类型
purpose: str = "separate", # 分离目的
product_phase: str = "top", # 产物相
# 🔧 可选的详细参数
from_vessel: Union[str, dict] = "", # 源容器通常在separate前已经transfer了
separation_vessel: Union[str, dict] = "", # 分离容器与vessel同义
to_vessel: Union[str, dict] = "", # 目标容器(可选)
waste_phase_to_vessel: Union[str, dict] = "", # 废相目标容器
product_vessel: Union[str, dict] = "", # XDL: 产物容器与to_vessel同义
waste_vessel: Union[str, dict] = "", # XDL: 废液容器与waste_phase_to_vessel同义
# 🔧 溶剂相关参数
solvent: str = "", # 溶剂名称
solvent_volume: Union[str, float] = 0.0, # 溶剂体积
volume: Union[str, float] = 0.0, # XDL: 体积与solvent_volume同义
# 🔧 操作参数
through: str = "", # 通过材料
repeats: int = 1, # 重复次数
stir_time: float = 30.0, # 搅拌时间(秒)
stir_speed: float = 300.0, # 搅拌速度
settling_time: float = 300.0, # 沉降时间(秒)
**kwargs
) -> List[Dict[str, Any]]:
"""
生成分离操作的协议序列 - 支持vessel字典和体积运算
支持XDL参数格式
- vessel: 分离容器字典(必需)
- purpose: "wash", "extract", "separate"
- product_phase: "top", "bottom"
- product_vessel: 产物收集容器
- waste_vessel: 废液收集容器
- solvent: 溶剂名称
- volume: "200 mL", "?" 或数值
- repeats: 重复次数
分离流程:
1. (可选)添加溶剂到分离容器
2. 搅拌混合
3. 静置分层
4. 收集指定相到目标容器
5. 重复指定次数
"""
# 🔧 核心修改vessel参数兼容处理
if vessel is None:
if isinstance(separation_vessel, dict):
vessel = separation_vessel
else:
raise ValueError("必须提供vessel字典参数")
# 🔧 核心修改从字典中提取容器ID
vessel_id, vessel_data = get_vessel(vessel)
debug_print("🌀" * 20)
debug_print("🚀 开始生成分离协议支持vessel字典和体积运算")
debug_print(f"📝 输入参数:")
debug_print(f" 🥽 vessel: {vessel} (ID: {vessel_id})")
debug_print(f" 🎯 分离目的: '{purpose}'")
debug_print(f" 📊 产物相: '{product_phase}'")
debug_print(f" 💧 溶剂: '{solvent}'")
debug_print(f" 📏 体积: {volume} (类型: {type(volume)})")
debug_print(f" 🔄 重复次数: {repeats}")
debug_print(f" 🎯 产物容器: '{product_vessel}'")
debug_print(f" 🗑️ 废液容器: '{waste_vessel}'")
debug_print(f" 📦 其他参数: {kwargs}")
debug_print("🌀" * 20)
action_sequence = []
# 🔧 新增:记录分离前的容器状态
debug_print("🔍 记录分离前容器状态...")
original_liquid_volume = get_vessel_liquid_volume(vessel)
debug_print(f"📊 分离前液体体积: {original_liquid_volume:.2f}mL")
# === 参数验证和标准化 ===
debug_print("🔍 步骤1: 参数验证和标准化...")
action_sequence.append(create_action_log(f"开始分离操作 - 容器: {vessel_id}", "🎬"))
action_sequence.append(create_action_log(f"分离目的: {purpose}", "🧪"))
action_sequence.append(create_action_log(f"产物相: {product_phase}", "📊"))
# 统一容器参数 - 支持字典和字符串
def extract_vessel_id(vessel_param):
if isinstance(vessel_param, dict):
return vessel_param.get("id", "")
elif isinstance(vessel_param, str):
return vessel_param
else:
return ""
final_vessel_id, _ = vessel_id
final_to_vessel_id, _ = get_vessel(to_vessel) or get_vessel(product_vessel)
final_waste_vessel_id, _ = get_vessel(waste_phase_to_vessel) or get_vessel(waste_vessel)
# 统一体积参数
final_volume = parse_volume_input(volume or solvent_volume)
# 🔧 修复确保repeats至少为1
if repeats <= 0:
repeats = 1
debug_print(f"⚠️ 重复次数参数 <= 0自动设置为 1")
debug_print(f"🔧 标准化后的参数:")
debug_print(f" 🥼 分离容器: '{final_vessel_id}'")
debug_print(f" 🎯 产物容器: '{final_to_vessel_id}'")
debug_print(f" 🗑️ 废液容器: '{final_waste_vessel_id}'")
debug_print(f" 📏 溶剂体积: {final_volume}mL")
debug_print(f" 🔄 重复次数: {repeats}")
action_sequence.append(create_action_log(f"分离容器: {final_vessel_id}", "🧪"))
action_sequence.append(create_action_log(f"溶剂体积: {final_volume}mL", "📏"))
action_sequence.append(create_action_log(f"重复次数: {repeats}", "🔄"))
# 验证必需参数
if not purpose:
purpose = "separate"
if not product_phase:
product_phase = "top"
if purpose not in ["wash", "extract", "separate"]:
debug_print(f"⚠️ 未知的分离目的 '{purpose}',使用默认值 'separate'")
purpose = "separate"
action_sequence.append(create_action_log(f"未知目的,使用: {purpose}", "⚠️"))
if product_phase not in ["top", "bottom"]:
debug_print(f"⚠️ 未知的产物相 '{product_phase}',使用默认值 'top'")
product_phase = "top"
action_sequence.append(create_action_log(f"未知相别,使用: {product_phase}", "⚠️"))
debug_print("✅ 参数验证通过")
action_sequence.append(create_action_log("参数验证通过", ""))
# === 查找设备 ===
debug_print("🔍 步骤2: 查找设备...")
action_sequence.append(create_action_log("正在查找相关设备...", "🔍"))
# 查找分离器设备
separator_device = find_separator_device(G, final_vessel_id) # 🔧 使用 final_vessel_id
if separator_device:
action_sequence.append(create_action_log(f"找到分离器设备: {separator_device}", "🧪"))
else:
debug_print("⚠️ 未找到分离器设备,可能无法执行分离")
action_sequence.append(create_action_log("未找到分离器设备", "⚠️"))
# 查找搅拌器
stirrer_device = find_connected_stirrer(G, final_vessel_id) # 🔧 使用 final_vessel_id
if stirrer_device:
action_sequence.append(create_action_log(f"找到搅拌器: {stirrer_device}", "🌪️"))
else:
action_sequence.append(create_action_log("未找到搅拌器", "⚠️"))
# 查找溶剂容器(如果需要)
solvent_vessel = ""
if solvent and solvent.strip():
solvent_vessel = find_solvent_vessel(G, solvent)
if solvent_vessel:
action_sequence.append(create_action_log(f"找到溶剂容器: {solvent_vessel}", "💧"))
else:
action_sequence.append(create_action_log(f"未找到溶剂容器: {solvent}", "⚠️"))
debug_print(f"📊 设备配置:")
debug_print(f" 🧪 分离器设备: '{separator_device}'")
debug_print(f" 🌪️ 搅拌器设备: '{stirrer_device}'")
debug_print(f" 💧 溶剂容器: '{solvent_vessel}'")
# === 执行分离流程 ===
debug_print("🔍 步骤3: 执行分离流程...")
action_sequence.append(create_action_log("开始分离工作流程", "🎯"))
# 🔧 新增:体积变化跟踪变量
current_volume = original_liquid_volume
try:
for repeat_idx in range(repeats):
cycle_num = repeat_idx + 1
debug_print(f"🔄 第{cycle_num}轮: 开始分离循环 {cycle_num}/{repeats}")
action_sequence.append(create_action_log(f"分离循环 {cycle_num}/{repeats} 开始", "🔄"))
# 步骤3.1: 添加溶剂(如果需要)
if solvent_vessel and final_volume > 0:
debug_print(f"🔄 第{cycle_num}轮 步骤1: 添加溶剂 {solvent} ({final_volume}mL)")
action_sequence.append(create_action_log(f"向分离容器添加 {final_volume}mL {solvent}", "💧"))
try:
# 使用pump protocol添加溶剂
pump_actions = generate_pump_protocol_with_rinsing(
G=G,
from_vessel=solvent_vessel,
to_vessel=final_vessel_id, # 🔧 使用 final_vessel_id
volume=final_volume,
amount="",
time=0.0,
viscous=False,
rinsing_solvent="",
rinsing_volume=0.0,
rinsing_repeats=0,
solid=False,
flowrate=2.5,
transfer_flowrate=0.5,
rate_spec="",
event="",
through="",
**kwargs
)
action_sequence.extend(pump_actions)
debug_print(f"✅ 溶剂添加完成,添加了 {len(pump_actions)} 个动作")
action_sequence.append(create_action_log(f"溶剂转移完成 ({len(pump_actions)} 个操作)", ""))
# 🔧 新增:更新体积 - 添加溶剂后
current_volume += final_volume
update_vessel_volume(vessel, G, current_volume, f"添加{final_volume}mL {solvent}")
except Exception as e:
debug_print(f"❌ 溶剂添加失败: {str(e)}")
action_sequence.append(create_action_log(f"溶剂添加失败: {str(e)}", ""))
else:
debug_print(f"🔄 第{cycle_num}轮 步骤1: 无需添加溶剂")
action_sequence.append(create_action_log("无需添加溶剂", "⏭️"))
# 步骤3.2: 启动搅拌(如果有搅拌器)
if stirrer_device and stir_time > 0:
debug_print(f"🔄 第{cycle_num}轮 步骤2: 开始搅拌 ({stir_speed}rpm持续 {stir_time}s)")
action_sequence.append(create_action_log(f"开始搅拌: {stir_speed}rpm持续 {stir_time}s", "🌪️"))
action_sequence.append({
"device_id": stirrer_device,
"action_name": "start_stir",
"action_kwargs": {
"vessel": final_vessel_id, # 🔧 使用 final_vessel_id
"stir_speed": stir_speed,
"purpose": f"分离混合 - {purpose}"
}
})
# 搅拌等待
stir_minutes = stir_time / 60
action_sequence.append(create_action_log(f"搅拌中,持续 {stir_minutes:.1f} 分钟", "⏱️"))
action_sequence.append({
"action_name": "wait",
"action_kwargs": {"time": stir_time}
})
# 停止搅拌
action_sequence.append(create_action_log("停止搅拌器", "🛑"))
action_sequence.append({
"device_id": stirrer_device,
"action_name": "stop_stir",
"action_kwargs": {"vessel": final_vessel_id} # 🔧 使用 final_vessel_id
})
else:
debug_print(f"🔄 第{cycle_num}轮 步骤2: 无需搅拌")
action_sequence.append(create_action_log("无需搅拌", "⏭️"))
# 步骤3.3: 静置分层
if settling_time > 0:
debug_print(f"🔄 第{cycle_num}轮 步骤3: 静置分层 ({settling_time}s)")
settling_minutes = settling_time / 60
action_sequence.append(create_action_log(f"静置分层 ({settling_minutes:.1f} 分钟)", "⚖️"))
action_sequence.append({
"action_name": "wait",
"action_kwargs": {"time": settling_time}
})
else:
debug_print(f"🔄 第{cycle_num}轮 步骤3: 未指定静置时间")
action_sequence.append(create_action_log("未指定静置时间", "⏭️"))
# 步骤3.4: 执行分离操作
if separator_device:
debug_print(f"🔄 第{cycle_num}轮 步骤4: 执行分离操作")
action_sequence.append(create_action_log(f"执行分离: 收集{product_phase}", "🧪"))
# 🔧 替换为具体的分离操作逻辑基于old版本
# 首先进行分液判断(电导突跃)
action_sequence.append({
"device_id": separator_device,
"action_name": "valve_open",
"action_kwargs": {
"command": "delta > 0.05"
}
})
# 估算每相的体积(假设大致平分)
phase_volume = current_volume / 2
# 智能查找分离容器底部
separation_vessel_bottom = find_separation_vessel_bottom(G, final_vessel_id) # ✅
if product_phase == "bottom":
debug_print(f"🔄 收集底相产物到 {final_to_vessel_id}")
action_sequence.append(create_action_log("收集底相产物", "📦"))
# 产物转移到目标瓶
if final_to_vessel_id:
pump_actions = generate_pump_protocol_with_rinsing(
G=G,
from_vessel=separation_vessel_bottom,
to_vessel=final_to_vessel_id,
volume=current_volume,
flowrate=2.5,
**kwargs
)
action_sequence.extend(pump_actions)
# 放出上面那一相60秒后关阀门
action_sequence.append({
"device_id": separator_device,
"action_name": "valve_open",
"action_kwargs": {
"command": "time > 60"
}
})
# 弃去上面那一相进废液
if final_waste_vessel_id:
pump_actions = generate_pump_protocol_with_rinsing(
G=G,
from_vessel=separation_vessel_bottom,
to_vessel=final_waste_vessel_id,
volume=current_volume,
flowrate=2.5,
**kwargs
)
action_sequence.extend(pump_actions)
elif product_phase == "top":
debug_print(f"🔄 收集上相产物到 {final_to_vessel_id}")
action_sequence.append(create_action_log("收集上相产物", "📦"))
# 弃去下面那一相进废液
if final_waste_vessel_id:
pump_actions = generate_pump_protocol_with_rinsing(
G=G,
from_vessel=separation_vessel_bottom,
to_vessel=final_waste_vessel_id,
volume=phase_volume,
flowrate=2.5,
**kwargs
)
action_sequence.extend(pump_actions)
# 放出上面那一相60秒后关阀门
action_sequence.append({
"device_id": separator_device,
"action_name": "valve_open",
"action_kwargs": {
"command": "time > 60"
}
})
# 产物转移到目标瓶
if final_to_vessel_id:
pump_actions = generate_pump_protocol_with_rinsing(
G=G,
from_vessel=separation_vessel_bottom,
to_vessel=final_to_vessel_id,
volume=phase_volume,
flowrate=2.5,
**kwargs
)
action_sequence.extend(pump_actions)
debug_print(f"✅ 分离操作已完成")
action_sequence.append(create_action_log("分离操作完成", ""))
# 🔧 新增:分离后体积估算
separated_volume = phase_volume * 0.95 # 假设5%损失,只保留产物相体积
update_vessel_volume(vessel, G, separated_volume, f"分离操作后(第{cycle_num}轮)")
current_volume = separated_volume
# 收集结果
if final_to_vessel_id:
action_sequence.append(
create_action_log(f"产物 ({product_phase}相) 收集到: {final_to_vessel_id}", "📦"))
if final_waste_vessel_id:
action_sequence.append(create_action_log(f"废相收集到: {final_waste_vessel_id}", "🗑️"))
else:
debug_print(f"🔄 第{cycle_num}轮 步骤4: 无分离器设备,跳过分离")
action_sequence.append(create_action_log("无分离器设备可用", ""))
# 添加等待时间模拟分离
action_sequence.append({
"action_name": "wait",
"action_kwargs": {"time": 10.0}
})
# 🔧 新增如果不是最后一次从中转瓶转移回分液漏斗基于old版本逻辑
if repeat_idx < repeats - 1 and final_to_vessel_id and final_to_vessel_id != final_vessel_id:
debug_print(f"🔄 第{cycle_num}轮: 产物转移回分离容器准备下一轮")
action_sequence.append(create_action_log("产物转回分离容器,准备下一轮", "🔄"))
pump_actions = generate_pump_protocol_with_rinsing(
G=G,
from_vessel=final_to_vessel_id,
to_vessel=final_vessel_id,
volume=current_volume,
flowrate=2.5,
**kwargs
)
action_sequence.extend(pump_actions)
# 更新体积回到分离容器
update_vessel_volume(vessel, G, current_volume, f"产物转回分离容器(第{cycle_num}轮后)")
# 循环间等待(除了最后一次)
if repeat_idx < repeats - 1:
debug_print(f"🔄 第{cycle_num}轮: 等待下一次循环...")
action_sequence.append(create_action_log("等待下一次循环...", ""))
action_sequence.append({
"action_name": "wait",
"action_kwargs": {"time": 5}
})
else:
action_sequence.append(create_action_log(f"分离循环 {cycle_num}/{repeats} 完成", "🌟"))
except Exception as e:
debug_print(f"❌ 分离工作流程执行失败: {str(e)}")
action_sequence.append(create_action_log(f"分离工作流程失败: {str(e)}", ""))
# 🔧 新增:分离完成后的最终状态报告
final_liquid_volume = get_vessel_liquid_volume(vessel)
# === 最终结果 ===
total_time = (stir_time + settling_time + 15) * repeats # 估算总时间
debug_print("🌀" * 20)
debug_print(f"🎉 分离协议生成完成")
debug_print(f"📊 协议统计:")
debug_print(f" 📋 总动作数: {len(action_sequence)}")
debug_print(f" ⏱️ 预计总时间: {total_time:.0f}s ({total_time / 60:.1f} 分钟)")
debug_print(f" 🥼 分离容器: {final_vessel_id}")
debug_print(f" 🎯 分离目的: {purpose}")
debug_print(f" 📊 产物相: {product_phase}")
debug_print(f" 🔄 重复次数: {repeats}")
debug_print(f"💧 体积变化统计:")
debug_print(f" - 分离前体积: {original_liquid_volume:.2f}mL")
debug_print(f" - 分离后体积: {final_liquid_volume:.2f}mL")
if solvent:
debug_print(f" 💧 溶剂: {solvent} ({final_volume}mL × {repeats}轮 = {final_volume * repeats:.2f}mL)")
if final_to_vessel_id:
debug_print(f" 🎯 产物容器: {final_to_vessel_id}")
if final_waste_vessel_id:
debug_print(f" 🗑️ 废液容器: {final_waste_vessel_id}")
debug_print("🌀" * 20)
# 添加完成日志
summary_msg = f"分离协议完成: {final_vessel_id} ({purpose}{repeats} 次循环)"
if solvent:
summary_msg += f",使用 {final_volume * repeats:.2f}mL {solvent}"
action_sequence.append(create_action_log(summary_msg, "🎉"))
return action_sequence
def parse_volume_input(volume_input: Union[str, float]) -> float: def parse_volume_input(volume_input: Union[str, float]) -> float:
""" """
解析体积输入,支持带单位的字符串 解析体积输入,支持带单位的字符串
@@ -364,386 +820,54 @@ def update_vessel_volume(vessel: dict, G: nx.DiGraph, new_volume: float, descrip
debug_print(f"📊 容器 '{vessel_id}' 体积已更新为: {new_volume:.2f}mL") debug_print(f"📊 容器 '{vessel_id}' 体积已更新为: {new_volume:.2f}mL")
def generate_separate_protocol(
G: nx.DiGraph, def find_separation_vessel_bottom(G: nx.DiGraph, vessel_id: str) -> str:
# 🔧 基础参数支持XDL的vessel参数 """
vessel: dict = None, # 🔧 修改:从字符串改为字典类型 智能查找分离容器的底部容器假设为flask或vessel类型
purpose: str = "separate", # 分离目的
product_phase: str = "top", # 产物相 Args:
# 🔧 可选的详细参数 G: 网络图
from_vessel: Union[str, dict] = "", # 源容器通常在separate前已经transfer了 vessel_id: 分离容器ID
separation_vessel: Union[str, dict] = "", # 分离容器与vessel同义
to_vessel: Union[str, dict] = "", # 目标容器(可选) Returns:
waste_phase_to_vessel: Union[str, dict] = "", # 废相目标容器 str: 底部容器ID
product_vessel: Union[str, dict] = "", # XDL: 产物容器与to_vessel同义 """
waste_vessel: Union[str, dict] = "", # XDL: 废液容器与waste_phase_to_vessel同义 debug_print(f"🔍 查找分离容器 {vessel_id} 的底部容器...")
# 🔧 溶剂相关参数
solvent: str = "", # 溶剂名称 # 方法1根据命名规则推测
solvent_volume: Union[str, float] = 0.0, # 溶剂体积 possible_bottoms = [
volume: Union[str, float] = 0.0, # XDL: 体积与solvent_volume同义 f"{vessel_id}_bottom",
# 🔧 操作参数 f"flask_{vessel_id}",
through: str = "", # 通过材料 f"vessel_{vessel_id}",
repeats: int = 1, # 重复次数 f"{vessel_id}_flask",
stir_time: float = 30.0, # 搅拌时间(秒) f"{vessel_id}_vessel"
stir_speed: float = 300.0, # 搅拌速度 ]
settling_time: float = 300.0, # 沉降时间(秒)
**kwargs debug_print(f"📋 尝试的底部容器名称: {possible_bottoms}")
) -> List[Dict[str, Any]]:
""" for bottom_id in possible_bottoms:
生成分离操作的协议序列 - 支持vessel字典和体积运算 if bottom_id in G.nodes():
node_type = G.nodes[bottom_id].get('type', '')
支持XDL参数格式 if node_type == 'container':
- vessel: 分离容器字典(必需) debug_print(f"✅ 通过命名规则找到底部容器: {bottom_id}")
- purpose: "wash", "extract", "separate" return bottom_id
- product_phase: "top", "bottom"
- product_vessel: 产物收集容器 # 方法2查找与分离器相连的容器假设底部容器会与分离器相连
- waste_vessel: 废液收集容器 debug_print(f"📋 方法2: 查找连接的容器...")
- solvent: 溶剂名称 for node in G.nodes():
- volume: "200 mL", "?" 或数值 node_data = G.nodes[node]
- repeats: 重复次数 node_class = node_data.get('class', '') or ''
分离流程: if 'separator' in node_class.lower():
1. (可选)添加溶剂到分离容器 # 检查分离器的输入端
2. 搅拌混合 if G.has_edge(node, vessel_id):
3. 静置分层 for neighbor in G.neighbors(node):
4. 收集指定相到目标容器 if neighbor != vessel_id:
5. 重复指定次数 neighbor_type = G.nodes[neighbor].get('type', '')
""" if neighbor_type == 'container':
debug_print(f"✅ 通过连接找到底部容器: {neighbor}")
# 🔧 核心修改vessel参数兼容处理 return neighbor
if vessel is None:
if isinstance(separation_vessel, dict): debug_print(f"❌ 无法找到分离容器 {vessel_id} 的底部容器")
vessel = separation_vessel return ""
else:
raise ValueError("必须提供vessel字典参数")
# 🔧 核心修改从字典中提取容器ID
# 统一处理vessel参数
if isinstance(vessel, dict):
if "id" not in vessel:
vessel_id = list(vessel.values())[0].get("id", "")
else:
vessel_id = vessel.get("id", "")
vessel_data = vessel.get("data", {})
else:
vessel_id = str(vessel)
vessel_data = G.nodes[vessel_id].get("data", {}) if vessel_id in G.nodes() else {}
debug_print("🌀" * 20)
debug_print("🚀 开始生成分离协议支持vessel字典和体积运算")
debug_print(f"📝 输入参数:")
debug_print(f" 🥽 vessel: {vessel} (ID: {vessel_id})")
debug_print(f" 🎯 分离目的: '{purpose}'")
debug_print(f" 📊 产物相: '{product_phase}'")
debug_print(f" 💧 溶剂: '{solvent}'")
debug_print(f" 📏 体积: {volume} (类型: {type(volume)})")
debug_print(f" 🔄 重复次数: {repeats}")
debug_print(f" 🎯 产物容器: '{product_vessel}'")
debug_print(f" 🗑️ 废液容器: '{waste_vessel}'")
debug_print(f" 📦 其他参数: {kwargs}")
debug_print("🌀" * 20)
action_sequence = []
# 🔧 新增:记录分离前的容器状态
debug_print("🔍 记录分离前容器状态...")
original_liquid_volume = get_vessel_liquid_volume(vessel)
debug_print(f"📊 分离前液体体积: {original_liquid_volume:.2f}mL")
# === 参数验证和标准化 ===
debug_print("🔍 步骤1: 参数验证和标准化...")
action_sequence.append(create_action_log(f"开始分离操作 - 容器: {vessel_id}", "🎬"))
action_sequence.append(create_action_log(f"分离目的: {purpose}", "🧪"))
action_sequence.append(create_action_log(f"产物相: {product_phase}", "📊"))
# 统一容器参数 - 支持字典和字符串
def extract_vessel_id(vessel_param):
if isinstance(vessel_param, dict):
return vessel_param.get("id", "")
elif isinstance(vessel_param, str):
return vessel_param
else:
return ""
final_vessel_id = vessel_id
final_to_vessel_id = extract_vessel_id(to_vessel) or extract_vessel_id(product_vessel)
final_waste_vessel_id = extract_vessel_id(waste_phase_to_vessel) or extract_vessel_id(waste_vessel)
# 统一体积参数
final_volume = parse_volume_input(volume or solvent_volume)
# 🔧 修复确保repeats至少为1
if repeats <= 0:
repeats = 1
debug_print(f"⚠️ 重复次数参数 <= 0自动设置为 1")
debug_print(f"🔧 标准化后的参数:")
debug_print(f" 🥼 分离容器: '{final_vessel_id}'")
debug_print(f" 🎯 产物容器: '{final_to_vessel_id}'")
debug_print(f" 🗑️ 废液容器: '{final_waste_vessel_id}'")
debug_print(f" 📏 溶剂体积: {final_volume}mL")
debug_print(f" 🔄 重复次数: {repeats}")
action_sequence.append(create_action_log(f"分离容器: {final_vessel_id}", "🧪"))
action_sequence.append(create_action_log(f"溶剂体积: {final_volume}mL", "📏"))
action_sequence.append(create_action_log(f"重复次数: {repeats}", "🔄"))
# 验证必需参数
if not purpose:
purpose = "separate"
if not product_phase:
product_phase = "top"
if purpose not in ["wash", "extract", "separate"]:
debug_print(f"⚠️ 未知的分离目的 '{purpose}',使用默认值 'separate'")
purpose = "separate"
action_sequence.append(create_action_log(f"未知目的,使用: {purpose}", "⚠️"))
if product_phase not in ["top", "bottom"]:
debug_print(f"⚠️ 未知的产物相 '{product_phase}',使用默认值 'top'")
product_phase = "top"
action_sequence.append(create_action_log(f"未知相别,使用: {product_phase}", "⚠️"))
debug_print("✅ 参数验证通过")
action_sequence.append(create_action_log("参数验证通过", ""))
# === 查找设备 ===
debug_print("🔍 步骤2: 查找设备...")
action_sequence.append(create_action_log("正在查找相关设备...", "🔍"))
# 查找分离器设备
separator_device = find_separator_device(G, final_vessel_id) # 🔧 使用 final_vessel_id
if separator_device:
action_sequence.append(create_action_log(f"找到分离器设备: {separator_device}", "🧪"))
else:
debug_print("⚠️ 未找到分离器设备,可能无法执行分离")
action_sequence.append(create_action_log("未找到分离器设备", "⚠️"))
# 查找搅拌器
stirrer_device = find_connected_stirrer(G, final_vessel_id) # 🔧 使用 final_vessel_id
if stirrer_device:
action_sequence.append(create_action_log(f"找到搅拌器: {stirrer_device}", "🌪️"))
else:
action_sequence.append(create_action_log("未找到搅拌器", "⚠️"))
# 查找溶剂容器(如果需要)
solvent_vessel = ""
if solvent and solvent.strip():
solvent_vessel = find_solvent_vessel(G, solvent)
if solvent_vessel:
action_sequence.append(create_action_log(f"找到溶剂容器: {solvent_vessel}", "💧"))
else:
action_sequence.append(create_action_log(f"未找到溶剂容器: {solvent}", "⚠️"))
debug_print(f"📊 设备配置:")
debug_print(f" 🧪 分离器设备: '{separator_device}'")
debug_print(f" 🌪️ 搅拌器设备: '{stirrer_device}'")
debug_print(f" 💧 溶剂容器: '{solvent_vessel}'")
# === 执行分离流程 ===
debug_print("🔍 步骤3: 执行分离流程...")
action_sequence.append(create_action_log("开始分离工作流程", "🎯"))
# 🔧 新增:体积变化跟踪变量
current_volume = original_liquid_volume
try:
for repeat_idx in range(repeats):
cycle_num = repeat_idx + 1
debug_print(f"🔄 第{cycle_num}轮: 开始分离循环 {cycle_num}/{repeats}")
action_sequence.append(create_action_log(f"分离循环 {cycle_num}/{repeats} 开始", "🔄"))
# 步骤3.1: 添加溶剂(如果需要)
if solvent_vessel and final_volume > 0:
debug_print(f"🔄 第{cycle_num}轮 步骤1: 添加溶剂 {solvent} ({final_volume}mL)")
action_sequence.append(create_action_log(f"向分离容器添加 {final_volume}mL {solvent}", "💧"))
try:
# 使用pump protocol添加溶剂
pump_actions = generate_pump_protocol_with_rinsing(
G=G,
from_vessel=solvent_vessel,
to_vessel=final_vessel_id, # 🔧 使用 final_vessel_id
volume=final_volume,
amount="",
time=0.0,
viscous=False,
rinsing_solvent="",
rinsing_volume=0.0,
rinsing_repeats=0,
solid=False,
flowrate=2.5,
transfer_flowrate=0.5,
rate_spec="",
event="",
through="",
**kwargs
)
action_sequence.extend(pump_actions)
debug_print(f"✅ 溶剂添加完成,添加了 {len(pump_actions)} 个动作")
action_sequence.append(create_action_log(f"溶剂转移完成 ({len(pump_actions)} 个操作)", ""))
# 🔧 新增:更新体积 - 添加溶剂后
current_volume += final_volume
update_vessel_volume(vessel, G, current_volume, f"添加{final_volume}mL {solvent}")
except Exception as e:
debug_print(f"❌ 溶剂添加失败: {str(e)}")
action_sequence.append(create_action_log(f"溶剂添加失败: {str(e)}", ""))
else:
debug_print(f"🔄 第{cycle_num}轮 步骤1: 无需添加溶剂")
action_sequence.append(create_action_log("无需添加溶剂", "⏭️"))
# 步骤3.2: 启动搅拌(如果有搅拌器)
if stirrer_device and stir_time > 0:
debug_print(f"🔄 第{cycle_num}轮 步骤2: 开始搅拌 ({stir_speed}rpm持续 {stir_time}s)")
action_sequence.append(create_action_log(f"开始搅拌: {stir_speed}rpm持续 {stir_time}s", "🌪️"))
action_sequence.append({
"device_id": stirrer_device,
"action_name": "start_stir",
"action_kwargs": {
"vessel": final_vessel_id, # 🔧 使用 final_vessel_id
"stir_speed": stir_speed,
"purpose": f"分离混合 - {purpose}"
}
})
# 搅拌等待
stir_minutes = stir_time / 60
action_sequence.append(create_action_log(f"搅拌中,持续 {stir_minutes:.1f} 分钟", "⏱️"))
action_sequence.append({
"action_name": "wait",
"action_kwargs": {"time": stir_time}
})
# 停止搅拌
action_sequence.append(create_action_log("停止搅拌器", "🛑"))
action_sequence.append({
"device_id": stirrer_device,
"action_name": "stop_stir",
"action_kwargs": {"vessel": final_vessel_id} # 🔧 使用 final_vessel_id
})
else:
debug_print(f"🔄 第{cycle_num}轮 步骤2: 无需搅拌")
action_sequence.append(create_action_log("无需搅拌", "⏭️"))
# 步骤3.3: 静置分层
if settling_time > 0:
debug_print(f"🔄 第{cycle_num}轮 步骤3: 静置分层 ({settling_time}s)")
settling_minutes = settling_time / 60
action_sequence.append(create_action_log(f"静置分层 ({settling_minutes:.1f} 分钟)", "⚖️"))
action_sequence.append({
"action_name": "wait",
"action_kwargs": {"time": settling_time}
})
else:
debug_print(f"🔄 第{cycle_num}轮 步骤3: 未指定静置时间")
action_sequence.append(create_action_log("未指定静置时间", "⏭️"))
# 步骤3.4: 执行分离操作
if separator_device:
debug_print(f"🔄 第{cycle_num}轮 步骤4: 执行分离操作")
action_sequence.append(create_action_log(f"执行分离: 收集{product_phase}", "🧪"))
# 调用分离器设备的separate方法
separate_action = {
"device_id": separator_device,
"action_name": "separate",
"action_kwargs": {
"purpose": purpose,
"product_phase": product_phase,
"from_vessel": extract_vessel_id(from_vessel) or final_vessel_id, # 🔧 使用vessel_id
"separation_vessel": final_vessel_id, # 🔧 使用 final_vessel_id
"to_vessel": final_to_vessel_id or final_vessel_id, # 🔧 使用vessel_id
"waste_phase_to_vessel": final_waste_vessel_id or final_vessel_id, # 🔧 使用vessel_id
"solvent": solvent,
"solvent_volume": final_volume,
"through": through,
"repeats": 1, # 每次调用只做一次分离
"stir_time": 0, # 已经在上面完成
"stir_speed": stir_speed,
"settling_time": 0 # 已经在上面完成
}
}
action_sequence.append(separate_action)
debug_print(f"✅ 分离操作已添加")
action_sequence.append(create_action_log("分离操作完成", ""))
# 🔧 新增:分离后体积估算(分离通常不改变总体积,但会重新分配)
# 假设分离后保持体积(实际情况可能有少量损失)
separated_volume = current_volume * 0.95 # 假设5%损失
update_vessel_volume(vessel, G, separated_volume, f"分离操作后(第{cycle_num}轮)")
current_volume = separated_volume
# 收集结果
if final_to_vessel_id:
action_sequence.append(create_action_log(f"产物 ({product_phase}相) 收集到: {final_to_vessel_id}", "📦"))
if final_waste_vessel_id:
action_sequence.append(create_action_log(f"废相收集到: {final_waste_vessel_id}", "🗑️"))
else:
debug_print(f"🔄 第{cycle_num}轮 步骤4: 无分离器设备,跳过分离")
action_sequence.append(create_action_log("无分离器设备可用", ""))
# 添加等待时间模拟分离
action_sequence.append({
"action_name": "wait",
"action_kwargs": {"time": 10.0}
})
# 循环间等待(除了最后一次)
if repeat_idx < repeats - 1:
debug_print(f"🔄 第{cycle_num}轮: 等待下一次循环...")
action_sequence.append(create_action_log("等待下一次循环...", ""))
action_sequence.append({
"action_name": "wait",
"action_kwargs": {"time": 5}
})
else:
action_sequence.append(create_action_log(f"分离循环 {cycle_num}/{repeats} 完成", "🌟"))
except Exception as e:
debug_print(f"❌ 分离工作流程执行失败: {str(e)}")
action_sequence.append(create_action_log(f"分离工作流程失败: {str(e)}", ""))
# 添加错误日志
action_sequence.append({
"device_id": "system",
"action_name": "log_message",
"action_kwargs": {
"message": f"分离操作失败: {str(e)}"
}
})
# 🔧 新增:分离完成后的最终状态报告
final_liquid_volume = get_vessel_liquid_volume(vessel)
# === 最终结果 ===
total_time = (stir_time + settling_time + 15) * repeats # 估算总时间
debug_print("🌀" * 20)
debug_print(f"🎉 分离协议生成完成")
debug_print(f"📊 协议统计:")
debug_print(f" 📋 总动作数: {len(action_sequence)}")
debug_print(f" ⏱️ 预计总时间: {total_time:.0f}s ({total_time/60:.1f} 分钟)")
debug_print(f" 🥼 分离容器: {final_vessel_id}")
debug_print(f" 🎯 分离目的: {purpose}")
debug_print(f" 📊 产物相: {product_phase}")
debug_print(f" 🔄 重复次数: {repeats}")
debug_print(f"💧 体积变化统计:")
debug_print(f" - 分离前体积: {original_liquid_volume:.2f}mL")
debug_print(f" - 分离后体积: {final_liquid_volume:.2f}mL")
if solvent:
debug_print(f" 💧 溶剂: {solvent} ({final_volume}mL × {repeats}轮 = {final_volume * repeats:.2f}mL)")
if final_to_vessel_id:
debug_print(f" 🎯 产物容器: {final_to_vessel_id}")
if final_waste_vessel_id:
debug_print(f" 🗑️ 废液容器: {final_waste_vessel_id}")
debug_print("🌀" * 20)
# 添加完成日志
summary_msg = f"分离协议完成: {final_vessel_id} ({purpose}{repeats} 次循环)"
if solvent:
summary_msg += f",使用 {final_volume * repeats:.2f}mL {solvent}"
action_sequence.append(create_action_log(summary_msg, "🎉"))
return action_sequence

View File

@@ -0,0 +1,20 @@
def get_vessel(vessel):
"""
统一处理vessel参数返回vessel_id和vessel_data。
Args:
vessel: 可以是一个字典或字符串表示vessel的ID或数据。
Returns:
tuple: 包含vessel_id和vessel_data。
"""
if isinstance(vessel, dict):
if "id" not in vessel:
vessel_id = list(vessel.values())[0].get("id", "")
else:
vessel_id = vessel.get("id", "")
vessel_data = vessel.get("data", {})
else:
vessel_id = str(vessel)
vessel_data = {}
return vessel_id, vessel_data

View File

@@ -0,0 +1,282 @@
import sys
import threading
import serial
import serial.tools.list_ports
import re
import time
from typing import Optional, List, Dict, Tuple
class ChinweDevice:
"""
ChinWe设备控制类
提供串口通信、电机控制、传感器数据读取等功能
"""
def __init__(self, port: str, baudrate: int = 115200, debug: bool = False):
"""
初始化ChinWe设备
Args:
port: 串口名称如果为None则自动检测
baudrate: 波特率默认115200
"""
self.debug = debug
self.port = port
self.baudrate = baudrate
self.serial_port: Optional[serial.Serial] = None
self._voltage: float = 0.0
self._ec_value: float = 0.0
self._ec_adc_value: int = 0
self._is_connected = False
self.connect()
@property
def is_connected(self) -> bool:
"""获取连接状态"""
return self._is_connected and self.serial_port and self.serial_port.is_open
@property
def voltage(self) -> float:
"""获取电源电压值"""
return self._voltage
@property
def ec_value(self) -> float:
"""获取电导率值 (ms/cm)"""
return self._ec_value
@property
def ec_adc_value(self) -> int:
"""获取EC ADC原始值"""
return self._ec_adc_value
@property
def device_status(self) -> Dict[str, any]:
"""
获取设备状态信息
Returns:
包含设备状态的字典
"""
return {
"connected": self.is_connected,
"port": self.port,
"baudrate": self.baudrate,
"voltage": self.voltage,
"ec_value": self.ec_value,
"ec_adc_value": self.ec_adc_value
}
def connect(self, port: Optional[str] = None, baudrate: Optional[int] = None) -> bool:
"""
连接到串口设备
Args:
port: 串口名称如果为None则使用初始化时的port或自动检测
baudrate: 波特率如果为None则使用初始化时的baudrate
Returns:
连接是否成功
"""
if self.is_connected:
return True
target_port = port or self.port
target_baudrate = baudrate or self.baudrate
try:
self.serial_port = serial.Serial(target_port, target_baudrate, timeout=0.5)
self._is_connected = True
self.port = target_port
self.baudrate = target_baudrate
connect_allow_times = 5
while not self.serial_port.is_open and connect_allow_times > 0:
time.sleep(0.5)
connect_allow_times -= 1
print(f"尝试连接到 {target_port} @ {target_baudrate},剩余尝试次数: {connect_allow_times}", self.debug)
raise ValueError("串口未打开,请检查设备连接")
print(f"已连接到 {target_port} @ {target_baudrate}", self.debug)
threading.Thread(target=self._read_data, daemon=True).start()
return True
except Exception as e:
print(f"ChinweDevice连接失败: {e}")
self._is_connected = False
return False
def disconnect(self) -> bool:
"""
断开串口连接
Returns:
断开是否成功
"""
if self.serial_port and self.serial_port.is_open:
try:
self.serial_port.close()
self._is_connected = False
print("已断开串口连接")
return True
except Exception as e:
print(f"断开连接失败: {e}")
return False
return True
def _send_motor_command(self, command: str) -> bool:
"""
发送电机控制命令
Args:
command: 电机命令字符串,例如 "M 1 CW 1.5"
Returns:
发送是否成功
"""
if not self.is_connected:
print("设备未连接")
return False
try:
self.serial_port.write((command + "\n").encode('utf-8'))
print(f"发送命令: {command}")
return True
except Exception as e:
print(f"发送命令失败: {e}")
return False
def rotate_motor(self, motor_id: int, turns: float, clockwise: bool = True) -> bool:
"""
使电机转动指定圈数
Args:
motor_id: 电机ID1, 2, 3...
turns: 转动圈数,支持小数
clockwise: True为顺时针False为逆时针
Returns:
命令发送是否成功
"""
if clockwise:
command = f"M {motor_id} CW {turns}"
else:
command = f"M {motor_id} CCW {turns}"
return self._send_motor_command(command)
def set_motor_speed(self, motor_id: int, speed: float) -> bool:
"""
设置电机转速(如果设备支持)
Args:
motor_id: 电机ID1, 2, 3...
speed: 转速值
Returns:
命令发送是否成功
"""
command = f"M {motor_id} SPEED {speed}"
return self._send_motor_command(command)
def _read_data(self) -> List[str]:
"""
读取串口数据并解析
Returns:
读取到的数据行列表
"""
print("开始读取串口数据...")
if not self.is_connected:
return []
data_lines = []
try:
while self.serial_port.in_waiting:
time.sleep(0.1) # 等待数据稳定
try:
line = self.serial_port.readline().decode('utf-8', errors='ignore').strip()
if line:
data_lines.append(line)
self._parse_sensor_data(line)
except Exception as ex:
print(f"解码数据错误: {ex}")
except Exception as e:
print(f"读取串口数据错误: {e}")
return data_lines
def _parse_sensor_data(self, line: str) -> None:
"""
解析传感器数据
Args:
line: 接收到的数据行
"""
# 解析电源电压
if "电源电压" in line:
try:
val = float(line.split("")[1].replace("V", "").strip())
self._voltage = val
if self.debug:
print(f"电源电压更新: {val}V")
except Exception:
pass
# 解析电导率和ADC原始值支持两种格式
if "电导率" in line and "ADC原始值" in line:
try:
# 支持格式如电导率2.50ms/cm, ADC原始值2052
ec_match = re.search(r"电导率[:]\s*([\d\.]+)", line)
adc_match = re.search(r"ADC原始值[:]\s*(\d+)", line)
if ec_match:
ec_val = float(ec_match.group(1))
self._ec_value = ec_val
if self.debug:
print(f"电导率更新: {ec_val:.2f} ms/cm")
if adc_match:
adc_val = int(adc_match.group(1))
self._ec_adc_value = adc_val
if self.debug:
print(f"EC ADC原始值更新: {adc_val}")
except Exception:
pass
# 仅电导率无ADC原始值
elif "电导率" in line:
try:
val = float(line.split("")[1].replace("ms/cm", "").strip())
self._ec_value = val
if self.debug:
print(f"电导率更新: {val:.2f} ms/cm")
except Exception:
pass
# 仅ADC原始值如有分开回传场景
elif "ADC原始值" in line:
try:
adc_val = int(line.split("")[1].strip())
self._ec_adc_value = adc_val
if self.debug:
print(f"EC ADC原始值更新: {adc_val}")
except Exception:
pass
def spin_when_ec_ge_0():
pass
def main():
"""测试函数"""
print("=== ChinWe设备测试 ===")
# 创建设备实例
device = ChinweDevice("/dev/tty.usbserial-A5069RR4", debug=True)
try:
# 测试5: 发送电机命令
print("\n5. 发送电机命令测试:")
print(" 5.3 使用通用函数控制电机20顺时针转2圈:")
device.rotate_motor(2, 20.0, clockwise=True)
time.sleep(0.5)
finally:
time.sleep(10)
# 测试7: 断开连接
print("\n7. 断开连接:")
device.disconnect()
if __name__ == "__main__":
main()

View File

@@ -138,6 +138,8 @@ class LiquidHandlerMiddleware(LiquidHandler):
offsets: Optional[List[Coordinate]] = None, offsets: Optional[List[Coordinate]] = None,
**backend_kwargs, **backend_kwargs,
): ):
if not offsets or (isinstance(offsets, list) and len(offsets) != len(use_channels)):
offsets = [Coordinate.zero()] * len(use_channels)
if self._simulator: if self._simulator:
return await self._simulate_handler.discard_tips(use_channels, allow_nonzero_volume, offsets, **backend_kwargs) return await self._simulate_handler.discard_tips(use_channels, allow_nonzero_volume, offsets, **backend_kwargs)
return await super().discard_tips(use_channels, allow_nonzero_volume, offsets, **backend_kwargs) return await super().discard_tips(use_channels, allow_nonzero_volume, offsets, **backend_kwargs)

View File

@@ -1,177 +0,0 @@
import time
import threading
class MockChiller:
def __init__(self, port: str = "MOCK"):
self.port = port
self._current_temperature: float = 25.0 # 室温开始
self._target_temperature: float = 25.0
self._status: str = "Idle"
self._is_cooling: bool = False
self._is_heating: bool = False
self._vessel = "Unknown"
self._purpose = "Unknown"
# 模拟温度变化的线程
self._temperature_thread = None
self._running = True
self._temperature_thread = threading.Thread(target=self._temperature_control_loop)
self._temperature_thread.daemon = True
self._temperature_thread.start()
@property
def current_temperature(self) -> float:
"""当前温度 - 会被自动识别的设备属性"""
return self._current_temperature
@property
def target_temperature(self) -> float:
"""目标温度"""
return self._target_temperature
@property
def status(self) -> str:
"""设备状态 - 会被自动识别的设备属性"""
return self._status
@property
def is_cooling(self) -> bool:
"""是否正在冷却"""
return self._is_cooling
@property
def is_heating(self) -> bool:
"""是否正在加热"""
return self._is_heating
@property
def vessel(self) -> str:
"""当前操作的容器名称"""
return self._vessel
@property
def purpose(self) -> str:
"""当前操作目的"""
return self._purpose
def heat_chill_start(self, vessel: str, temp: float, purpose: str):
"""设置目标温度并记录容器和目的"""
self._vessel = str(vessel)
self._purpose = str(purpose)
self._target_temperature = float(temp)
diff = self._target_temperature - self._current_temperature
if abs(diff) < 0.1:
self._status = "At Target Temperature"
self._is_cooling = False
self._is_heating = False
elif diff < 0:
self._status = "Cooling"
self._is_cooling = True
self._is_heating = False
else:
self._status = "Heating"
self._is_heating = True
self._is_cooling = False
self._start_temperature_control()
return True
def heat_chill_stop(self, vessel: str):
"""停止加热/制冷"""
if vessel != self._vessel:
return {"success": False, "status": f"Wrong vessel: expected {self._vessel}, got {vessel}"}
# 停止温度控制线程,锁定当前温度
self._stop_temperature_control()
# 更新状态
self._status = "Stopped"
self._is_cooling = False
self._is_heating = False
# 重新启动线程但保持温度
self._running = True
self._temperature_thread = threading.Thread(target=self._temperature_control_loop)
self._temperature_thread.daemon = True
self._temperature_thread.start()
return {"success": True, "status": self._status}
def _start_temperature_control(self):
"""启动温度控制线程"""
self._running = True
if self._temperature_thread is None or not self._temperature_thread.is_alive():
self._temperature_thread = threading.Thread(target=self._temperature_control_loop)
self._temperature_thread.daemon = True
self._temperature_thread.start()
def _stop_temperature_control(self):
"""停止温度控制"""
self._running = False
if self._temperature_thread:
self._temperature_thread.join(timeout=1.0)
def _temperature_control_loop(self):
"""温度控制循环 - 模拟真实冷却器的温度变化"""
while self._running:
# 如果状态是 Stopped不改变温度
if self._status == "Stopped":
time.sleep(1.0)
continue
temp_diff = self._target_temperature - self._current_temperature
if abs(temp_diff) < 0.1:
self._status = "At Target Temperature"
self._is_cooling = False
self._is_heating = False
elif temp_diff < 0:
self._status = "Cooling"
self._is_cooling = True
self._is_heating = False
self._current_temperature -= 0.5
else:
self._status = "Heating"
self._is_heating = True
self._is_cooling = False
self._current_temperature += 0.3
time.sleep(1.0)
def emergency_stop(self):
"""紧急停止"""
self._status = "Emergency Stop"
self._stop_temperature_control()
self._is_cooling = False
self._is_heating = False
def get_status_info(self) -> dict:
"""获取完整状态信息"""
return {
"current_temperature": self._current_temperature,
"target_temperature": self._target_temperature,
"status": self._status,
"is_cooling": self._is_cooling,
"is_heating": self._is_heating,
"vessel": self._vessel,
"purpose": self._purpose,
}
# 用于测试的主函数
if __name__ == "__main__":
chiller = MockChiller()
# 测试基本功能
print("启动冷却器测试...")
print(f"初始状态: {chiller.get_status_info()}")
# 模拟运行10秒
for i in range(10):
time.sleep(1)
print(f"{i+1}秒: 当前温度={chiller.current_temperature:.1f}°C, 状态={chiller.status}")
chiller.emergency_stop()
print("测试完成")

View File

@@ -1,235 +0,0 @@
import time
import threading
class MockFilter:
def __init__(self, port: str = "MOCK"):
# 基本参数初始化
self.port = port
self._status: str = "Idle"
self._is_filtering: bool = False
# 过滤性能参数
self._flow_rate: float = 1.0 # 流速(L/min)
self._pressure_drop: float = 0.0 # 压降(Pa)
self._filter_life: float = 100.0 # 滤芯寿命(%)
# 过滤操作参数
self._vessel: str = "" # 源容器
self._filtrate_vessel: str = "" # 目标容器
self._stir: bool = False # 是否搅拌
self._stir_speed: float = 0.0 # 搅拌速度
self._temperature: float = 25.0 # 温度(℃)
self._continue_heatchill: bool = False # 是否继续加热/制冷
self._target_volume: float = 0.0 # 目标过滤体积(L)
self._filtered_volume: float = 0.0 # 已过滤体积(L)
self._progress: float = 0.0 # 过滤进度(%)
# 线程控制
self._filter_thread = None
self._running = False
@property
def status(self) -> str:
return self._status
@property
def is_filtering(self) -> bool:
return self._is_filtering
@property
def flow_rate(self) -> float:
return self._flow_rate
@property
def pressure_drop(self) -> float:
return self._pressure_drop
@property
def filter_life(self) -> float:
return self._filter_life
# 新增 property
@property
def vessel(self) -> str:
return self._vessel
@property
def filtrate_vessel(self) -> str:
return self._filtrate_vessel
@property
def filtered_volume(self) -> float:
return self._filtered_volume
@property
def progress(self) -> float:
return self._progress
@property
def stir(self) -> bool:
return self._stir
@property
def stir_speed(self) -> float:
return self._stir_speed
@property
def temperature(self) -> float:
return self._temperature
@property
def continue_heatchill(self) -> bool:
return self._continue_heatchill
@property
def target_volume(self) -> float:
return self._target_volume
def filter(self, vessel: str, filtrate_vessel: str, stir: bool = False, stir_speed: float = 0.0, temp: float = 25.0, continue_heatchill: bool = False, volume: float = 0.0) -> dict:
"""新的过滤操作"""
# 停止任何正在进行的过滤
if self._is_filtering:
self.stop_filtering()
# 验证参数
if volume <= 0:
return {"success": False, "message": "Target volume must be greater than 0"}
# 设置新的过滤参数
self._vessel = vessel
self._filtrate_vessel = filtrate_vessel
self._stir = stir
self._stir_speed = stir_speed
self._temperature = temp
self._continue_heatchill = continue_heatchill
self._target_volume = volume
# 重置过滤状态
self._filtered_volume = 0.0
self._progress = 0.0
self._status = "Starting Filter"
# 启动过滤过程
self._flow_rate = 1.0 # 设置默认流速
self._start_filter_process()
return {"success": True, "message": "Filter started"}
def stop_filtering(self):
"""停止过滤"""
self._status = "Stopping Filter"
self._stop_filter_process()
self._flow_rate = 0.0
self._is_filtering = False
self._status = "Stopped"
return True
def replace_filter(self):
"""更换滤芯"""
self._filter_life = 100.0
self._status = "Filter Replaced"
return True
def _start_filter_process(self):
"""启动过滤过程线程"""
if not self._running:
self._running = True
self._is_filtering = True
self._filter_thread = threading.Thread(target=self._filter_loop)
self._filter_thread.daemon = True
self._filter_thread.start()
def _stop_filter_process(self):
"""停止过滤过程"""
self._running = False
if self._filter_thread:
self._filter_thread.join(timeout=1.0)
def _filter_loop(self):
"""过滤进程主循环"""
update_interval = 1.0 # 更新间隔(秒)
while self._running and self._is_filtering:
try:
self._status = "Filtering"
# 计算这一秒过滤的体积 (L/min -> L/s)
volume_increment = (self._flow_rate / 60.0) * update_interval
# 更新已过滤体积
self._filtered_volume += volume_increment
# 更新进度 (避免除零错误)
if self._target_volume > 0:
self._progress = min(100.0, (self._filtered_volume / self._target_volume) * 100.0)
# 更新滤芯寿命 (每过滤1L减少0.5%寿命)
self._filter_life = max(0.0, self._filter_life - (volume_increment * 0.5))
# 更新压降 (根据滤芯寿命和流速动态计算)
life_factor = self._filter_life / 100.0 # 将寿命转换为0-1的因子
flow_factor = self._flow_rate / 2.0 # 将流速标准化(假设2L/min是标准流速)
base_pressure = 100.0 # 基础压降
# 压降随滤芯寿命降低而增加,随流速增加而增加
self._pressure_drop = base_pressure * (2 - life_factor) * flow_factor
# 检查是否完成目标体积
if self._target_volume > 0 and self._filtered_volume >= self._target_volume:
self._status = "Completed"
self._progress = 100.0
self.stop_filtering()
break
# 检查滤芯寿命
if self._filter_life <= 10.0:
self._status = "Filter Needs Replacement"
time.sleep(update_interval)
except Exception as e:
print(f"Error in filter loop: {e}")
self.emergency_stop()
break
def emergency_stop(self):
"""紧急停止"""
self._status = "Emergency Stop"
self._stop_filter_process()
self._is_filtering = False
self._flow_rate = 0.0
def get_status_info(self) -> dict:
"""扩展的状态信息"""
return {
"status": self._status,
"is_filtering": self._is_filtering,
"flow_rate": self._flow_rate,
"pressure_drop": self._pressure_drop,
"filter_life": self._filter_life,
"vessel": self._vessel,
"filtrate_vessel": self._filtrate_vessel,
"filtered_volume": self._filtered_volume,
"target_volume": self._target_volume,
"progress": self._progress,
"temperature": self._temperature,
"stir": self._stir,
"stir_speed": self._stir_speed
}
# 用于测试的主函数
if __name__ == "__main__":
filter_device = MockFilter()
# 测试基本功能
print("启动过滤器测试...")
print(f"初始状态: {filter_device.get_status_info()}")
# 模拟运行10秒
for i in range(10):
time.sleep(1)
print(
f"{i+1}秒: "
f"寿命={filter_device.filter_life:.1f}%, 状态={filter_device.status}"
)
filter_device.emergency_stop()
print("测试完成")

View File

@@ -1,247 +0,0 @@
import time
import threading
class MockHeater:
def __init__(self, port: str = "MOCK"):
self.port = port
self._current_temperature: float = 25.0 # 室温开始
self._target_temperature: float = 25.0
self._status: str = "Idle"
self._is_heating: bool = False
self._heating_power: float = 0.0 # 加热功率百分比 0-100
self._max_temperature: float = 300.0 # 最大加热温度
# 新增加的属性
self._vessel: str = "Unknown"
self._purpose: str = "Unknown"
self._stir: bool = False
self._stir_speed: float = 0.0
# 模拟加热过程的线程
self._heating_thread = None
self._running = True
self._heating_thread = threading.Thread(target=self._heating_control_loop)
self._heating_thread.daemon = True
self._heating_thread.start()
@property
def current_temperature(self) -> float:
"""当前温度 - 会被自动识别的设备属性"""
return self._current_temperature
@property
def target_temperature(self) -> float:
"""目标温度"""
return self._target_temperature
@property
def status(self) -> str:
"""设备状态 - 会被自动识别的设备属性"""
return self._status
@property
def is_heating(self) -> bool:
"""是否正在加热"""
return self._is_heating
@property
def heating_power(self) -> float:
"""加热功率百分比"""
return self._heating_power
@property
def max_temperature(self) -> float:
"""最大加热温度"""
return self._max_temperature
@property
def vessel(self) -> str:
"""当前操作的容器名称"""
return self._vessel
@property
def purpose(self) -> str:
"""操作目的"""
return self._purpose
@property
def stir(self) -> bool:
"""是否搅拌"""
return self._stir
@property
def stir_speed(self) -> float:
"""搅拌速度"""
return self._stir_speed
def heat_chill_start(self, vessel: str, temp: float, purpose: str) -> dict:
"""开始加热/制冷过程"""
self._vessel = str(vessel)
self._purpose = str(purpose)
self._target_temperature = float(temp)
diff = self._target_temperature - self._current_temperature
if abs(diff) < 0.1:
self._status = "At Target Temperature"
self._is_heating = False
elif diff > 0:
self._status = "Heating"
self._is_heating = True
else:
self._status = "Cooling Down"
self._is_heating = False
return {"success": True, "status": self._status}
def heat_chill_stop(self, vessel: str) -> dict:
"""停止加热/制冷"""
if vessel != self._vessel:
return {"success": False, "status": f"Wrong vessel: expected {self._vessel}, got {vessel}"}
self._status = "Stopped"
self._is_heating = False
self._heating_power = 0.0
return {"success": True, "status": self._status}
def heat_chill(self, vessel: str, temp: float, time: float,
stir: bool = False, stir_speed: float = 0.0,
purpose: str = "Unknown") -> dict:
"""完整的加热/制冷控制"""
self._vessel = str(vessel)
self._target_temperature = float(temp)
self._purpose = str(purpose)
self._stir = stir
self._stir_speed = stir_speed
diff = self._target_temperature - self._current_temperature
if abs(diff) < 0.1:
self._status = "At Target Temperature"
self._is_heating = False
elif diff > 0:
self._status = "Heating"
self._is_heating = True
else:
self._status = "Cooling Down"
self._is_heating = False
return {"success": True, "status": self._status}
def set_temperature(self, temperature: float):
"""设置目标温度 - 需要在注册表添加的设备动作"""
try:
temperature = float(temperature)
except ValueError:
self._status = "Error: Invalid temperature value"
return False
if temperature > self._max_temperature:
self._status = f"Error: Temperature exceeds maximum ({self._max_temperature}°C)"
return False
self._target_temperature = temperature
self._status = "Setting Temperature"
# 启动加热控制
self._start_heating_control()
return True
def set_heating_power(self, power: float):
"""设置加热功率"""
try:
power = float(power)
except ValueError:
self._status = "Error: Invalid power value"
return False
self._heating_power = max(0.0, min(100.0, power)) # 限制在0-100%
return True
def _start_heating_control(self):
"""启动加热控制线程"""
if not self._running:
self._running = True
self._heating_thread = threading.Thread(target=self._heating_control_loop)
self._heating_thread.daemon = True
self._heating_thread.start()
def _stop_heating_control(self):
"""停止加热控制"""
self._running = False
if self._heating_thread:
self._heating_thread.join(timeout=1.0)
def _heating_control_loop(self):
"""加热控制循环"""
while self._running:
# 如果状态是 Stopped不改变温度
if self._status == "Stopped":
time.sleep(1.0)
continue
temp_diff = self._target_temperature - self._current_temperature
if abs(temp_diff) < 0.1:
self._status = "At Target Temperature"
self._is_heating = False
self._heating_power = 10.0
elif temp_diff > 0:
self._status = "Heating"
self._is_heating = True
self._heating_power = min(100.0, abs(temp_diff) * 2)
self._current_temperature += 0.5
else:
self._status = "Cooling Down"
self._is_heating = False
self._heating_power = 0.0
self._current_temperature -= 0.2
time.sleep(1.0)
def emergency_stop(self):
"""紧急停止"""
self._status = "Emergency Stop"
self._stop_heating_control()
self._is_heating = False
self._heating_power = 0.0
def get_status_info(self) -> dict:
"""获取完整状态信息"""
return {
"current_temperature": self._current_temperature,
"target_temperature": self._target_temperature,
"status": self._status,
"is_heating": self._is_heating,
"heating_power": self._heating_power,
"max_temperature": self._max_temperature,
"vessel": self._vessel,
"purpose": self._purpose,
"stir": self._stir,
"stir_speed": self._stir_speed
}
# 用于测试的主函数
if __name__ == "__main__":
heater = MockHeater()
print("启动加热器测试...")
print(f"初始状态: {heater.get_status_info()}")
# 设置目标温度为80度
heater.set_temperature(80.0)
# 模拟运行15秒
try:
for i in range(15):
time.sleep(1)
status = heater.get_status_info()
print(
f"\r温度: {status['current_temperature']:.1f}°C / {status['target_temperature']:.1f}°C | "
f"功率: {status['heating_power']:.1f}% | 状态: {status['status']}",
end=""
)
except KeyboardInterrupt:
heater.emergency_stop()
print("\n测试被手动停止")
print("\n测试完成")

View File

@@ -1,360 +0,0 @@
import time
import threading
from datetime import datetime, timedelta
class MockPump:
def __init__(self, port: str = "MOCK"):
self.port = port
# 设备基本状态属性
self._current_device = "MockPump1" # 设备标识符
self._status: str = "Idle" # 设备状态Idle, Running, Error, Stopped
self._pump_state: str = "Stopped" # 泵运行状态Running, Stopped, Paused
# 流量相关属性
self._flow_rate: float = 0.0 # 当前流速 (mL/min)
self._target_flow_rate: float = 0.0 # 目标流速 (mL/min)
self._max_flow_rate: float = 100.0 # 最大流速 (mL/min)
self._total_volume: float = 0.0 # 累计流量 (mL)
# 压力相关属性
self._pressure: float = 0.0 # 当前压力 (bar)
self._max_pressure: float = 10.0 # 最大压力 (bar)
# 运行控制线程
self._pump_thread = None
self._running = False
self._thread_lock = threading.Lock()
# 新增 PumpTransfer 相关属性
self._from_vessel: str = ""
self._to_vessel: str = ""
self._transfer_volume: float = 0.0
self._amount: str = ""
self._transfer_time: float = 0.0
self._is_viscous: bool = False
self._rinsing_solvent: str = ""
self._rinsing_volume: float = 0.0
self._rinsing_repeats: int = 0
self._is_solid: bool = False
# 时间追踪
self._start_time: datetime = None
self._time_spent: timedelta = timedelta()
self._time_remaining: timedelta = timedelta()
# ==================== 状态属性 ====================
# 这些属性会被Uni-Lab系统自动识别并定时对外广播
@property
def status(self) -> str:
return self._status
@property
def current_device(self) -> str:
"""当前设备标识符"""
return self._current_device
@property
def pump_state(self) -> str:
return self._pump_state
@property
def flow_rate(self) -> float:
return self._flow_rate
@property
def target_flow_rate(self) -> float:
return self._target_flow_rate
@property
def pressure(self) -> float:
return self._pressure
@property
def total_volume(self) -> float:
return self._total_volume
@property
def max_flow_rate(self) -> float:
return self._max_flow_rate
@property
def max_pressure(self) -> float:
return self._max_pressure
# 添加新的属性访问器
@property
def from_vessel(self) -> str:
return self._from_vessel
@property
def to_vessel(self) -> str:
return self._to_vessel
@property
def transfer_volume(self) -> float:
return self._transfer_volume
@property
def amount(self) -> str:
return self._amount
@property
def transfer_time(self) -> float:
return self._transfer_time
@property
def is_viscous(self) -> bool:
return self._is_viscous
@property
def rinsing_solvent(self) -> str:
return self._rinsing_solvent
@property
def rinsing_volume(self) -> float:
return self._rinsing_volume
@property
def rinsing_repeats(self) -> int:
return self._rinsing_repeats
@property
def is_solid(self) -> bool:
return self._is_solid
# 修改这两个属性装饰器
@property
def time_spent(self) -> float:
"""已用时间(秒)"""
if isinstance(self._time_spent, timedelta):
return self._time_spent.total_seconds()
return float(self._time_spent)
@property
def time_remaining(self) -> float:
"""剩余时间(秒)"""
if isinstance(self._time_remaining, timedelta):
return self._time_remaining.total_seconds()
return float(self._time_remaining)
# ==================== 设备控制方法 ====================
# 这些方法需要在注册表中添加会作为ActionServer接受控制指令
def pump_transfer(self, from_vessel: str, to_vessel: str, volume: float,
amount: str = "", time: float = 0.0, viscous: bool = False,
rinsing_solvent: str = "", rinsing_volume: float = 0.0,
rinsing_repeats: int = 0, solid: bool = False) -> dict:
"""Execute pump transfer operation"""
# Stop any existing operation first
self._stop_pump_operation()
# Set transfer parameters
self._from_vessel = from_vessel
self._to_vessel = to_vessel
self._transfer_volume = float(volume)
self._amount = amount
self._transfer_time = float(time)
self._is_viscous = viscous
self._rinsing_solvent = rinsing_solvent
self._rinsing_volume = float(rinsing_volume)
self._rinsing_repeats = int(rinsing_repeats)
self._is_solid = solid
# Calculate flow rate
if self._transfer_time > 0 and self._transfer_volume > 0:
self._target_flow_rate = (self._transfer_volume / self._transfer_time) * 60.0
else:
self._target_flow_rate = 10.0 if not self._is_viscous else 5.0
# Reset timers and counters
self._start_time = datetime.now()
self._time_spent = timedelta()
self._time_remaining = timedelta(seconds=self._transfer_time)
self._total_volume = 0.0
self._flow_rate = 0.0
# Start pump operation
self._pump_state = "Running"
self._status = "Starting Transfer"
self._running = True
# Start pump operation thread
self._pump_thread = threading.Thread(target=self._pump_operation_loop)
self._pump_thread.daemon = True
self._pump_thread.start()
# Wait briefly to ensure thread starts
time.sleep(0.1)
return {
"success": True,
"status": self._status,
"current_device": self._current_device,
"time_spent": 0.0,
"time_remaining": float(self._transfer_time)
}
def pause_pump(self) -> str:
if self._pump_state != "Running":
self._status = "Error: Pump not running"
return "Error"
self._pump_state = "Paused"
self._status = "Pump Paused"
self._stop_pump_operation()
return "Success"
def resume_pump(self) -> str:
if self._pump_state != "Paused":
self._status = "Error: Pump not paused"
return "Error"
self._pump_state = "Running"
self._status = "Resuming Pump"
self._start_pump_operation()
return "Success"
def reset_volume_counter(self) -> str:
self._total_volume = 0.0
self._status = "Volume counter reset"
return "Success"
def emergency_stop(self) -> str:
self._status = "Emergency Stop"
self._pump_state = "Stopped"
self._stop_pump_operation()
self._flow_rate = 0.0
self._pressure = 0.0
self._target_flow_rate = 0.0
return "Success"
# ==================== 内部控制方法 ====================
def _start_pump_operation(self):
with self._thread_lock:
if not self._running:
self._running = True
self._pump_thread = threading.Thread(target=self._pump_operation_loop)
self._pump_thread.daemon = True
self._pump_thread.start()
def _stop_pump_operation(self):
with self._thread_lock:
self._running = False
if self._pump_thread and self._pump_thread.is_alive():
self._pump_thread.join(timeout=2.0)
def _pump_operation_loop(self):
"""泵运行主循环"""
print("Pump operation loop started") # Debug print
while self._running and self._pump_state == "Running":
try:
# Calculate flow rate adjustment
flow_diff = self._target_flow_rate - self._flow_rate
# Adjust flow rate more aggressively (50% of difference)
adjustment = flow_diff * 0.5
self._flow_rate += adjustment
# Ensure flow rate is within bounds
self._flow_rate = max(0.1, min(self._max_flow_rate, self._flow_rate))
# Update status based on flow rate
if abs(flow_diff) < 0.1:
self._status = "Running at Target Flow Rate"
else:
self._status = "Adjusting Flow Rate"
# Calculate volume increment
volume_increment = (self._flow_rate / 60.0) # mL/s
self._total_volume += volume_increment
# Update time tracking
self._time_spent = datetime.now() - self._start_time
if self._transfer_time > 0:
remaining = self._transfer_time - self._time_spent.total_seconds()
self._time_remaining = timedelta(seconds=max(0, remaining))
# Check completion
if self._total_volume >= self._transfer_volume:
self._status = "Transfer Completed"
self._pump_state = "Stopped"
self._running = False
break
# Update pressure
self._pressure = (self._flow_rate / self._max_flow_rate) * self._max_pressure
print(f"Debug - Flow: {self._flow_rate:.1f}, Volume: {self._total_volume:.1f}") # Debug print
time.sleep(1.0)
except Exception as e:
print(f"Error in pump operation: {str(e)}")
self._status = "Error in pump operation"
self._pump_state = "Stopped"
self._running = False
break
def get_status_info(self) -> dict:
"""
获取完整的设备状态信息
Returns:
dict: 包含所有设备状态的字典
"""
return {
"status": self._status,
"pump_state": self._pump_state,
"flow_rate": self._flow_rate,
"target_flow_rate": self._target_flow_rate,
"pressure": self._pressure,
"total_volume": self._total_volume,
"max_flow_rate": self._max_flow_rate,
"max_pressure": self._max_pressure,
"current_device": self._current_device,
"from_vessel": self._from_vessel,
"to_vessel": self._to_vessel,
"transfer_volume": self._transfer_volume,
"amount": self._amount,
"transfer_time": self._transfer_time,
"is_viscous": self._is_viscous,
"rinsing_solvent": self._rinsing_solvent,
"rinsing_volume": self._rinsing_volume,
"rinsing_repeats": self._rinsing_repeats,
"is_solid": self._is_solid,
"time_spent": self._time_spent.total_seconds(),
"time_remaining": self._time_remaining.total_seconds()
}
# 用于测试的主函数
if __name__ == "__main__":
pump = MockPump()
# 测试基本功能
print("启动泵设备测试...")
print(f"初始状态: {pump.get_status_info()}")
# 设置流速并启动
pump.set_flow_rate(50.0)
pump.start_pump()
# 模拟运行10秒
for i in range(10):
time.sleep(1)
print(f"{i+1}秒: 流速={pump.flow_rate:.1f}mL/min, 压力={pump.pressure:.2f}bar, 状态={pump.status}")
# 测试方向切换
print("切换泵方向...")
pump.emergency_stop()
print("测试完成")

View File

@@ -1,390 +0,0 @@
import time
import threading
import json
class MockRotavap:
"""
模拟旋转蒸发器设备类
这个类模拟了一个实验室旋转蒸发器的行为,包括旋转控制、
真空泵控制、温度控制等功能。参考了现有的 RotavapOne 实现。
"""
def __init__(self, port: str = "MOCK"):
"""
初始化MockRotavap实例
Args:
port (str): 设备端口,默认为"MOCK"表示模拟设备
"""
self.port = port
# 设备基本状态属性
self._status: str = "Idle" # 设备状态Idle, Running, Error, Stopped
# 旋转相关属性
self._rotate_state: str = "Stopped" # 旋转状态Running, Stopped
self._rotate_time: float = 0.0 # 旋转剩余时间 (秒)
self._rotate_speed: float = 0.0 # 旋转速度 (rpm)
self._max_rotate_speed: float = 300.0 # 最大旋转速度 (rpm)
# 真空泵相关属性
self._pump_state: str = "Stopped" # 泵状态Running, Stopped
self._pump_time: float = 0.0 # 泵剩余时间 (秒)
self._vacuum_level: float = 0.0 # 真空度 (mbar)
self._target_vacuum: float = 50.0 # 目标真空度 (mbar)
# 温度相关属性
self._temperature: float = 25.0 # 水浴温度 (°C)
self._target_temperature: float = 25.0 # 目标温度 (°C)
self._max_temperature: float = 180.0 # 最大温度 (°C)
# 运行控制线程
self._operation_thread = None
self._running = False
self._thread_lock = threading.Lock()
# 操作成功标志
self.success: str = "True" # 使用字符串而不是布尔值
# ==================== 状态属性 ====================
# 这些属性会被Uni-Lab系统自动识别并定时对外广播
@property
def status(self) -> str:
return self._status
@property
def rotate_state(self) -> str:
return self._rotate_state
@property
def rotate_time(self) -> float:
return self._rotate_time
@property
def rotate_speed(self) -> float:
return self._rotate_speed
@property
def pump_state(self) -> str:
return self._pump_state
@property
def pump_time(self) -> float:
return self._pump_time
@property
def vacuum_level(self) -> float:
return self._vacuum_level
@property
def temperature(self) -> float:
return self._temperature
@property
def target_temperature(self) -> float:
return self._target_temperature
# ==================== 设备控制方法 ====================
# 这些方法需要在注册表中添加会作为ActionServer接受控制指令
def set_timer(self, command: str) -> str:
"""
设置定时器 - 兼容现有RotavapOne接口
Args:
command (str): JSON格式的命令字符串包含rotate_time和pump_time
Returns:
str: 操作结果状态 ("Success", "Error")
"""
try:
timer = json.loads(command)
rotate_time = timer.get("rotate_time", 0)
pump_time = timer.get("pump_time", 0)
self.success = "False"
self._rotate_time = float(rotate_time)
self._pump_time = float(pump_time)
self.success = "True"
self._status = "Timer Set"
return "Success"
except (json.JSONDecodeError, ValueError, KeyError) as e:
self._status = f"Error: Invalid command format - {str(e)}"
self.success = "False"
return "Error"
def set_rotate_time(self, time_seconds: float) -> str:
"""
设置旋转时间
Args:
time_seconds (float): 旋转时间 (秒)
Returns:
str: 操作结果状态 ("Success", "Error")
"""
self.success = "False"
self._rotate_time = max(0.0, float(time_seconds))
self.success = "True"
self._status = "Rotate time set"
return "Success"
def set_pump_time(self, time_seconds: float) -> str:
"""
设置泵时间
Args:
time_seconds (float): 泵时间 (秒)
Returns:
str: 操作结果状态 ("Success", "Error")
"""
self.success = "False"
self._pump_time = max(0.0, float(time_seconds))
self.success = "True"
self._status = "Pump time set"
return "Success"
def set_rotate_speed(self, speed: float) -> str:
"""
设置旋转速度
Args:
speed (float): 旋转速度 (rpm)
Returns:
str: 操作结果状态 ("Success", "Error")
"""
if speed < 0 or speed > self._max_rotate_speed:
self._status = f"Error: Speed out of range (0-{self._max_rotate_speed})"
return "Error"
self._rotate_speed = speed
self._status = "Rotate speed set"
return "Success"
def set_temperature(self, temperature: float) -> str:
"""
设置水浴温度
Args:
temperature (float): 目标温度 (°C)
Returns:
str: 操作结果状态 ("Success", "Error")
"""
if temperature < 0 or temperature > self._max_temperature:
self._status = f"Error: Temperature out of range (0-{self._max_temperature})"
return "Error"
self._target_temperature = temperature
self._status = "Temperature set"
# 启动操作线程以开始温度控制
self._start_operation()
return "Success"
def start_rotation(self) -> str:
"""
启动旋转
Returns:
str: 操作结果状态 ("Success", "Error")
"""
if self._rotate_time <= 0:
self._status = "Error: No rotate time set"
return "Error"
self._rotate_state = "Running"
self._status = "Rotation started"
return "Success"
def start_pump(self) -> str:
"""
启动真空泵
Returns:
str: 操作结果状态 ("Success", "Error")
"""
if self._pump_time <= 0:
self._status = "Error: No pump time set"
return "Error"
self._pump_state = "Running"
self._status = "Pump started"
return "Success"
def stop_all_operations(self) -> str:
"""
停止所有操作
Returns:
str: 操作结果状态 ("Success", "Error")
"""
self._rotate_state = "Stopped"
self._pump_state = "Stopped"
self._stop_operation()
self._rotate_time = 0.0
self._pump_time = 0.0
self._vacuum_level = 0.0
self._status = "All operations stopped"
return "Success"
def emergency_stop(self) -> str:
"""
紧急停止
Returns:
str: 操作结果状态 ("Success", "Error")
"""
self._status = "Emergency Stop"
self.stop_all_operations()
return "Success"
# ==================== 内部控制方法 ====================
def _start_operation(self):
"""
启动操作线程
这个方法启动一个后台线程来模拟旋蒸的实际运行过程。
"""
with self._thread_lock:
if not self._running:
self._running = True
self._operation_thread = threading.Thread(target=self._operation_loop)
self._operation_thread.daemon = True
self._operation_thread.start()
def _stop_operation(self):
"""
停止操作线程
安全地停止后台运行线程并等待其完成。
"""
with self._thread_lock:
self._running = False
if self._operation_thread and self._operation_thread.is_alive():
self._operation_thread.join(timeout=2.0)
def _operation_loop(self):
"""
操作主循环
这个方法在后台线程中运行,模拟真实旋蒸的工作过程:
1. 时间倒计时
2. 温度控制
3. 真空度控制
4. 状态更新
"""
while self._running:
try:
# 处理旋转时间倒计时
if self._rotate_time > 0:
self._rotate_state = "Running"
self._rotate_time = max(0.0, self._rotate_time - 1.0)
else:
self._rotate_state = "Stopped"
# 处理泵时间倒计时
if self._pump_time > 0:
self._pump_state = "Running"
self._pump_time = max(0.0, self._pump_time - 1.0)
# 模拟真空度变化
if self._vacuum_level > self._target_vacuum:
self._vacuum_level = max(self._target_vacuum, self._vacuum_level - 5.0)
else:
self._pump_state = "Stopped"
# 真空度逐渐回升
self._vacuum_level = min(1013.25, self._vacuum_level + 2.0)
# 模拟温度控制
temp_diff = self._target_temperature - self._temperature
if abs(temp_diff) > 0.5:
if temp_diff > 0:
self._temperature += min(1.0, temp_diff * 0.1)
else:
self._temperature += max(-1.0, temp_diff * 0.1)
# 更新整体状态
if self._rotate_state == "Running" or self._pump_state == "Running":
self._status = "Operating"
elif self._rotate_time > 0 or self._pump_time > 0:
self._status = "Ready"
else:
self._status = "Idle"
# 等待1秒后继续下一次循环
time.sleep(1.0)
except Exception as e:
self._status = f"Error in operation: {str(e)}"
break
# 循环结束时的清理工作
self._status = "Idle"
def get_status_info(self) -> dict:
"""
获取完整的设备状态信息
Returns:
dict: 包含所有设备状态的字典
"""
return {
"status": self._status,
"rotate_state": self._rotate_state,
"rotate_time": self._rotate_time,
"rotate_speed": self._rotate_speed,
"pump_state": self._pump_state,
"pump_time": self._pump_time,
"vacuum_level": self._vacuum_level,
"temperature": self._temperature,
"target_temperature": self._target_temperature,
"success": self.success,
}
# 用于测试的主函数
if __name__ == "__main__":
rotavap = MockRotavap()
# 测试基本功能
print("启动旋转蒸发器测试...")
print(f"初始状态: {rotavap.get_status_info()}")
# 设置定时器
timer_command = '{"rotate_time": 300, "pump_time": 600}'
rotavap.set_timer(timer_command)
# 设置温度和转速
rotavap.set_temperature(60.0)
rotavap.set_rotate_speed(120.0)
# 启动操作
rotavap.start_rotation()
rotavap.start_pump()
# 模拟运行10秒
for i in range(10):
time.sleep(1)
print(
f"{i+1}秒: 旋转={rotavap.rotate_time:.0f}s, 泵={rotavap.pump_time:.0f}s, "
f"温度={rotavap.temperature:.1f}°C, 真空={rotavap.vacuum_level:.1f}mbar"
)
rotavap.emergency_stop()
print("测试完成")

View File

@@ -1,399 +0,0 @@
import time
import threading
from datetime import datetime, timedelta
class MockSeparator:
def __init__(self, port: str = "MOCK"):
self.port = port
# 基本状态属性
self._status: str = "Idle" # 当前总体状态
self._valve_state: str = "Closed" # 阀门状态Open 或 Closed
self._settling_time: float = 0.0 # 静置时间(秒)
# 搅拌相关属性
self._shake_time: float = 0.0 # 剩余摇摆时间(秒)
self._shake_status: str = "Not Shaking" # 摇摆状态
# 用于后台模拟 shake 动作
self._operation_thread = None
self._thread_lock = threading.Lock()
self._running = False
# Separate action 相关属性
self._current_device: str = "MockSeparator1"
self._purpose: str = "" # wash or extract
self._product_phase: str = "" # top or bottom
self._from_vessel: str = ""
self._separation_vessel: str = ""
self._to_vessel: str = ""
self._waste_phase_to_vessel: str = ""
self._solvent: str = ""
self._solvent_volume: float = 0.0
self._through: str = ""
self._repeats: int = 1
self._stir_time: float = 0.0
self._stir_speed: float = 0.0
self._time_spent = timedelta()
self._time_remaining = timedelta()
self._start_time = datetime.now() # 添加这一行
@property
def current_device(self) -> str:
return self._current_device
@property
def purpose(self) -> str:
return self._purpose
@property
def valve_state(self) -> str:
return self._valve_state
@property
def settling_time(self) -> float:
return self._settling_time
@property
def status(self) -> str:
return self._status
@property
def shake_time(self) -> float:
with self._thread_lock:
return self._shake_time
@property
def shake_status(self) -> str:
with self._thread_lock:
return self._shake_status
@property
def product_phase(self) -> str:
return self._product_phase
@property
def from_vessel(self) -> str:
return self._from_vessel
@property
def separation_vessel(self) -> str:
return self._separation_vessel
@property
def to_vessel(self) -> str:
return self._to_vessel
@property
def waste_phase_to_vessel(self) -> str:
return self._waste_phase_to_vessel
@property
def solvent(self) -> str:
return self._solvent
@property
def solvent_volume(self) -> float:
return self._solvent_volume
@property
def through(self) -> str:
return self._through
@property
def repeats(self) -> int:
return self._repeats
@property
def stir_time(self) -> float:
return self._stir_time
@property
def stir_speed(self) -> float:
return self._stir_speed
@property
def time_spent(self) -> float:
if self._running:
self._time_spent = datetime.now() - self._start_time
return self._time_spent.total_seconds()
@property
def time_remaining(self) -> float:
if self._running:
elapsed = (datetime.now() - self._start_time).total_seconds()
total_time = (self._stir_time + self._settling_time + 10) * self._repeats
remain = max(0, total_time - elapsed)
self._time_remaining = timedelta(seconds=remain)
return self._time_remaining.total_seconds()
def separate(self, purpose: str, product_phase: str, from_vessel: str,
separation_vessel: str, to_vessel: str, waste_phase_to_vessel: str = "",
solvent: str = "", solvent_volume: float = 0.0, through: str = "",
repeats: int = 1, stir_time: float = 0.0, stir_speed: float = 0.0,
settling_time: float = 60.0) -> dict:
"""
执行分离操作
"""
with self._thread_lock:
# 检查是否已经在运行
if self._running:
return {
"success": False,
"status": "Error: Operation already in progress"
}
# 必填参数验证
if not all([from_vessel, separation_vessel, to_vessel]):
self._status = "Error: Missing required vessel parameters"
return {"success": False}
# 验证参数
if purpose not in ["wash", "extract"]:
self._status = "Error: Invalid purpose"
return {"success": False}
if product_phase not in ["top", "bottom"]:
self._status = "Error: Invalid product phase"
return {"success": False}
# 数值参数验证
try:
solvent_volume = float(solvent_volume)
repeats = int(repeats)
stir_time = float(stir_time)
stir_speed = float(stir_speed)
settling_time = float(settling_time)
except ValueError:
self._status = "Error: Invalid numeric parameters"
return {"success": False}
# 设置参数
self._purpose = purpose
self._product_phase = product_phase
self._from_vessel = from_vessel
self._separation_vessel = separation_vessel
self._to_vessel = to_vessel
self._waste_phase_to_vessel = waste_phase_to_vessel
self._solvent = solvent
self._solvent_volume = float(solvent_volume)
self._through = through
self._repeats = int(repeats)
self._stir_time = float(stir_time)
self._stir_speed = float(stir_speed)
self._settling_time = float(settling_time)
# 重置计时器
self._start_time = datetime.now()
self._time_spent = timedelta()
total_time = (self._stir_time + self._settling_time + 10) * self._repeats
self._time_remaining = timedelta(seconds=total_time)
# 启动分离操作
self._status = "Starting Separation"
self._running = True
# 在锁内创建和启动线程
self._operation_thread = threading.Thread(target=self._operation_loop)
self._operation_thread.daemon = True
self._operation_thread.start()
# 等待确认操作已经开始
time.sleep(0.1) # 短暂等待确保操作线程已启动
return {
"success": True,
"status": self._status,
"current_device": self._current_device,
"time_spent": self._time_spent.total_seconds(),
"time_remaining": self._time_remaining.total_seconds()
}
def shake(self, shake_time: float) -> str:
"""
模拟 shake搅拌操作
- 进入 "Shaking" 状态,倒计时 shake_time 秒
- shake 结束后,进入 "Settling" 状态,静置时间固定为 5 秒
- 最后恢复为 Idle
"""
try:
shake_time = float(shake_time)
except ValueError:
self._status = "Error: Invalid shake time"
return "Error"
with self._thread_lock:
self._status = "Shaking"
self._settling_time = 0.0
self._shake_time = shake_time
self._shake_status = "Shaking"
def _run_shake():
remaining = shake_time
while remaining > 0:
time.sleep(1)
remaining -= 1
with self._thread_lock:
self._shake_time = remaining
with self._thread_lock:
self._status = "Settling"
self._settling_time = 60.0 # 固定静置时间为60秒
self._shake_status = "Settling"
while True:
with self._thread_lock:
if self._settling_time <= 0:
self._status = "Idle"
self._shake_status = "Idle"
break
time.sleep(1)
with self._thread_lock:
self._settling_time = max(0.0, self._settling_time - 1)
self._operation_thread = threading.Thread(target=_run_shake)
self._operation_thread.daemon = True
self._operation_thread.start()
return "Success"
def set_valve(self, command: str) -> str:
"""
阀门控制命令:传入 "open""close"
"""
command = command.lower()
if command == "open":
self._valve_state = "Open"
self._status = "Valve Opened"
elif command == "close":
self._valve_state = "Closed"
self._status = "Valve Closed"
else:
self._status = "Error: Invalid valve command"
return "Error"
return "Success"
def _operation_loop(self):
"""分离操作主循环"""
try:
current_repeat = 1
# 立即更新状态确保不会停留在Starting Separation
with self._thread_lock:
self._status = f"Separation Cycle {current_repeat}/{self._repeats}"
while self._running and current_repeat <= self._repeats:
# 第一步:搅拌
if self._stir_time > 0:
with self._thread_lock:
self._status = f"Stirring (Repeat {current_repeat}/{self._repeats})"
remaining_stir = self._stir_time
while remaining_stir > 0 and self._running:
time.sleep(1)
remaining_stir -= 1
# 第二步:静置
if self._settling_time > 0:
with self._thread_lock:
self._status = f"Settling (Repeat {current_repeat}/{self._repeats})"
remaining_settle = self._settling_time
while remaining_settle > 0 and self._running:
time.sleep(1)
remaining_settle -= 1
# 第三步:打开阀门排出
with self._thread_lock:
self._valve_state = "Open"
self._status = f"Draining (Repeat {current_repeat}/{self._repeats})"
# 模拟排出时间5秒
time.sleep(10)
# 关闭阀门
with self._thread_lock:
self._valve_state = "Closed"
# 检查是否继续下一次重复
if current_repeat < self._repeats:
current_repeat += 1
else:
with self._thread_lock:
self._status = "Separation Complete"
break
except Exception as e:
with self._thread_lock:
self._status = f"Error in separation: {str(e)}"
finally:
with self._thread_lock:
self._running = False
self._valve_state = "Closed"
if self._status == "Starting Separation":
self._status = "Error: Operation failed to start"
elif self._status != "Separation Complete":
self._status = "Stopped"
def stop_operations(self) -> str:
"""停止任何正在执行的操作"""
with self._thread_lock:
self._running = False
if self._operation_thread and self._operation_thread.is_alive():
self._operation_thread.join(timeout=1.0)
self._operation_thread = None
self._settling_time = 0.0
self._status = "Idle"
self._shake_status = "Idle"
self._shake_time = 0.0
self._time_remaining = timedelta()
return "Success"
def get_status_info(self) -> dict:
"""获取当前设备状态信息"""
with self._thread_lock:
current_time = datetime.now()
if self._start_time:
self._time_spent = current_time - self._start_time
return {
"status": self._status,
"valve_state": self._valve_state,
"settling_time": self._settling_time,
"shake_time": self._shake_time,
"shake_status": self._shake_status,
"current_device": self._current_device,
"purpose": self._purpose,
"product_phase": self._product_phase,
"from_vessel": self._from_vessel,
"separation_vessel": self._separation_vessel,
"to_vessel": self._to_vessel,
"waste_phase_to_vessel": self._waste_phase_to_vessel,
"solvent": self._solvent,
"solvent_volume": self._solvent_volume,
"through": self._through,
"repeats": self._repeats,
"stir_time": self._stir_time,
"stir_speed": self._stir_speed,
"time_spent": self._time_spent.total_seconds(),
"time_remaining": self._time_remaining.total_seconds()
}
# 主函数用于测试
if __name__ == "__main__":
separator = MockSeparator()
print("启动简单版分离器测试...")
print("初始状态:", separator.get_status_info())
# 触发 shake 操作,模拟 10 秒的搅拌
print("执行 shake 操作...")
print(separator.shake(10.0))
# 循环显示状态变化
for i in range(20):
time.sleep(1)
info = separator.get_status_info()
print(
f"{i+1}秒: 状态={info['status']}, 静置时间={info['settling_time']:.1f}秒, "
f"阀门状态={info['valve_state']}, shake_time={info['shake_time']:.1f}, "
f"shake_status={info['shake_status']}"
)
# 模拟打开阀门
print("打开阀门...", separator.set_valve("open"))
print("最终状态:", separator.get_status_info())

View File

@@ -1,89 +0,0 @@
import time
class MockSolenoidValve:
"""
模拟电磁阀设备类 - 简化版本
这个类提供了电磁阀的基本功能:开启、关闭和状态查询
"""
def __init__(self, port: str = "MOCK"):
"""
初始化MockSolenoidValve实例
Args:
port (str): 设备端口,默认为"MOCK"表示模拟设备
"""
self.port = port
self._status: str = "Idle"
self._valve_status: str = "Closed" # 阀门位置Open, Closed
@property
def status(self) -> str:
"""设备状态 - 会被自动识别的设备属性"""
return self._status
@property
def valve_status(self) -> str:
"""阀门状态"""
return self._valve_status
def set_valve_status(self, status: str) -> str:
"""
设置阀门位置
Args:
position (str): 阀门位置,可选值:"Open", "Closed"
Returns:
str: 操作结果状态 ("Success", "Error")
"""
if status not in ["Open", "Closed"]:
self._status = "Error: Invalid position"
return "Error"
self._status = "Moving"
time.sleep(1) # 模拟阀门动作时间
self._valve_status = status
self._status = "Idle"
return "Success"
def open_valve(self) -> str:
"""打开阀门"""
return self.set_valve_status("Open")
def close_valve(self) -> str:
"""关闭阀门"""
return self.set_valve_status("Closed")
def get_valve_status(self) -> str:
"""获取阀门位置"""
return self._valve_status
def is_open(self) -> bool:
"""检查阀门是否打开"""
return self._valve_status == "Open"
def is_closed(self) -> bool:
"""检查阀门是否关闭"""
return self._valve_status == "Closed"
# 用于测试的主函数
if __name__ == "__main__":
valve = MockSolenoidValve()
print("启动电磁阀测试...")
print(f"初始状态: 位置={valve.valve_status}, 状态={valve.status}")
# 测试开启阀门
valve.open_valve()
print(f"开启后: 位置={valve.valve_status}, 状态={valve.status}")
# 测试关闭阀门
valve.close_valve()
print(f"关闭后: 位置={valve.valve_status}, 状态={valve.status}")
print("测试完成")

View File

@@ -1,307 +0,0 @@
import time
import threading
class MockStirrer:
def __init__(self, port: str = "MOCK"):
self.port = port
# 设备基本状态属性
self._status: str = "Idle" # 设备状态Idle, Running, Error, Stopped
# 搅拌相关属性
self._stir_speed: float = 0.0 # 当前搅拌速度 (rpm)
self._target_stir_speed: float = 0.0 # 目标搅拌速度 (rpm)
self._max_stir_speed: float = 2000.0 # 最大搅拌速度 (rpm)
self._stir_state: str = "Stopped" # 搅拌状态Running, Stopped
# 温度相关属性
self._temperature: float = 25.0 # 当前温度 (°C)
self._target_temperature: float = 25.0 # 目标温度 (°C)
self._max_temperature: float = 300.0 # 最大温度 (°C)
self._heating_state: str = "Off" # 加热状态On, Off
self._heating_power: float = 0.0 # 加热功率百分比 0-100
# 运行控制线程
self._operation_thread = None
self._running = False
self._thread_lock = threading.Lock()
# ==================== 状态属性 ====================
# 这些属性会被Uni-Lab系统自动识别并定时对外广播
@property
def status(self) -> str:
return self._status
@property
def stir_speed(self) -> float:
return self._stir_speed
@property
def target_stir_speed(self) -> float:
return self._target_stir_speed
@property
def stir_state(self) -> str:
return self._stir_state
@property
def temperature(self) -> float:
"""
当前温度
Returns:
float: 当前温度 (°C)
"""
return self._temperature
@property
def target_temperature(self) -> float:
"""
目标温度
Returns:
float: 目标温度 (°C)
"""
return self._target_temperature
@property
def heating_state(self) -> str:
return self._heating_state
@property
def heating_power(self) -> float:
return self._heating_power
@property
def max_stir_speed(self) -> float:
return self._max_stir_speed
@property
def max_temperature(self) -> float:
return self._max_temperature
# ==================== 设备控制方法 ====================
# 这些方法需要在注册表中添加会作为ActionServer接受控制指令
def set_stir_speed(self, speed: float) -> str:
speed = float(speed) # 确保传入的速度是浮点数
if speed < 0 or speed > self._max_stir_speed:
self._status = f"Error: Speed out of range (0-{self._max_stir_speed})"
return "Error"
self._target_stir_speed = speed
self._status = "Setting Stir Speed"
# 如果设置了非零速度,启动搅拌
if speed > 0:
self._stir_state = "Running"
else:
self._stir_state = "Stopped"
return "Success"
def set_temperature(self, temperature: float) -> str:
temperature = float(temperature) # 确保传入的温度是浮点数
if temperature < 0 or temperature > self._max_temperature:
self._status = f"Error: Temperature out of range (0-{self._max_temperature})"
return "Error"
self._target_temperature = temperature
self._status = "Setting Temperature"
return "Success"
def start_stirring(self) -> str:
if self._target_stir_speed <= 0:
self._status = "Error: No target speed set"
return "Error"
self._stir_state = "Running"
self._status = "Stirring Started"
return "Success"
def stop_stirring(self) -> str:
self._stir_state = "Stopped"
self._target_stir_speed = 0.0
self._status = "Stirring Stopped"
return "Success"
def heating_control(self, heating_state: str = "On") -> str:
if heating_state not in ["On", "Off"]:
self._status = "Error: Invalid heating state"
return "Error"
self._heating_state = heating_state
if heating_state == "On":
self._status = "Heating On"
else:
self._status = "Heating Off"
self._heating_power = 0.0
return "Success"
def stop_all_operations(self) -> str:
self._stir_state = "Stopped"
self._heating_state = "Off"
self._stop_operation()
self._stir_speed = 0.0
self._target_stir_speed = 0.0
self._heating_power = 0.0
self._status = "All operations stopped"
return "Success"
def emergency_stop(self) -> str:
"""
紧急停止
Returns:
str: 操作结果状态 ("Success", "Error")
"""
self._status = "Emergency Stop"
self.stop_all_operations()
return "Success"
# ==================== 内部控制方法 ====================
def _start_operation(self):
with self._thread_lock:
if not self._running:
self._running = True
self._operation_thread = threading.Thread(target=self._operation_loop)
self._operation_thread.daemon = True
self._operation_thread.start()
def _stop_operation(self):
"""
停止操作线程
安全地停止后台运行线程并等待其完成。
"""
with self._thread_lock:
self._running = False
if self._operation_thread and self._operation_thread.is_alive():
self._operation_thread.join(timeout=2.0)
def _operation_loop(self):
while self._running:
try:
# 处理搅拌速度控制
if self._stir_state == "Running":
speed_diff = self._target_stir_speed - self._stir_speed
if abs(speed_diff) < 1.0: # 速度接近目标值
self._stir_speed = self._target_stir_speed
if self._stir_speed > 0:
self._status = "Stirring at Target Speed"
else:
# 模拟速度调节每秒调整10%的差值
adjustment = speed_diff * 0.1
self._stir_speed += adjustment
self._status = "Adjusting Stir Speed"
# 确保速度在合理范围内
self._stir_speed = max(0.0, min(self._max_stir_speed, self._stir_speed))
else:
# 搅拌停止时速度逐渐降为0
if self._stir_speed > 0:
self._stir_speed = max(0.0, self._stir_speed - 50.0) # 每秒减少50rpm
# 处理温度控制
if self._heating_state == "On":
temp_diff = self._target_temperature - self._temperature
if abs(temp_diff) < 0.5: # 温度接近目标值
self._heating_power = 20.0 # 维持温度的最小功率
elif temp_diff > 0: # 需要加热
# 根据温差调整加热功率
if temp_diff > 50:
self._heating_power = 100.0
elif temp_diff > 20:
self._heating_power = 80.0
elif temp_diff > 10:
self._heating_power = 60.0
else:
self._heating_power = 40.0
# 模拟加热过程
heating_rate = self._heating_power / 100.0 * 1.5 # 最大每秒升温1.5度
self._temperature += heating_rate
else: # 目标温度低于当前温度
self._heating_power = 0.0
# 自然冷却
self._temperature -= 0.1
else:
self._heating_power = 0.0
# 自然冷却到室温
if self._temperature > 25.0:
self._temperature -= 0.2
# 限制温度范围
self._temperature = max(20.0, min(self._max_temperature, self._temperature))
# 更新整体状态
if self._stir_state == "Running" and self._heating_state == "On":
self._status = "Stirring and Heating"
elif self._stir_state == "Running":
self._status = "Stirring Only"
elif self._heating_state == "On":
self._status = "Heating Only"
else:
self._status = "Idle"
# 等待1秒后继续下一次循环
time.sleep(1.0)
except Exception as e:
self._status = f"Error in operation: {str(e)}"
break
# 循环结束时的清理工作
self._status = "Idle"
def get_status_info(self) -> dict:
return {
"status": self._status,
"stir_speed": self._stir_speed,
"target_stir_speed": self._target_stir_speed,
"stir_state": self._stir_state,
"temperature": self._temperature,
"target_temperature": self._target_temperature,
"heating_state": self._heating_state,
"heating_power": self._heating_power,
"max_stir_speed": self._max_stir_speed,
"max_temperature": self._max_temperature,
}
# 用于测试的主函数
if __name__ == "__main__":
stirrer = MockStirrer()
# 测试基本功能
print("启动搅拌器测试...")
print(f"初始状态: {stirrer.get_status_info()}")
# 设置搅拌速度和温度
stirrer.set_stir_speed(800.0)
stirrer.set_temperature(60.0)
stirrer.heating_control("On")
# 模拟运行15秒
for i in range(15):
time.sleep(1)
print(
f"{i+1}秒: 速度={stirrer.stir_speed:.0f}rpm, 温度={stirrer.temperature:.1f}°C, "
f"功率={stirrer.heating_power:.1f}%, 状态={stirrer.status}"
)
stirrer.emergency_stop()
print("测试完成")

View File

@@ -1,229 +0,0 @@
import time
import threading
from datetime import datetime, timedelta
class MockStirrer_new:
def __init__(self, port: str = "MOCK"):
self.port = port
# 基本状态属性
self._status: str = "Idle"
self._vessel: str = ""
self._purpose: str = ""
# 搅拌相关属性
self._stir_speed: float = 0.0
self._target_stir_speed: float = 0.0
self._max_stir_speed: float = 2000.0
self._stir_state: str = "Stopped"
# 计时相关
self._stir_time: float = 0.0
self._settling_time: float = 0.0
self._start_time = datetime.now()
self._time_remaining = timedelta()
# 运行控制
self._operation_thread = None
self._running = False
self._thread_lock = threading.Lock()
# 创建操作线程
self._operation_thread = threading.Thread(target=self._operation_loop)
self._operation_thread.daemon = True
self._operation_thread.start()
# ==================== 状态属性 ====================
@property
def status(self) -> str:
return self._status
@property
def stir_speed(self) -> float:
return self._stir_speed
@property
def target_stir_speed(self) -> float:
return self._target_stir_speed
@property
def stir_state(self) -> str:
return self._stir_state
@property
def vessel(self) -> str:
return self._vessel
@property
def purpose(self) -> str:
return self._purpose
@property
def stir_time(self) -> float:
return self._stir_time
@property
def settling_time(self) -> float:
return self._settling_time
@property
def max_stir_speed(self) -> float:
return self._max_stir_speed
@property
def progress(self) -> float:
"""返回当前操作的进度0-100"""
if not self._running:
return 0.0
elapsed = (datetime.now() - self._start_time).total_seconds()
total_time = self._stir_time + self._settling_time
if total_time <= 0:
return 100.0
return min(100.0, (elapsed / total_time) * 100)
# ==================== Action Server 方法 ====================
def start_stir(self, vessel: str, stir_speed: float = 0.0, purpose: str = "") -> dict:
"""
StartStir.action 对应的方法
"""
with self._thread_lock:
if self._running:
return {
"success": False,
"message": "Operation already in progress"
}
try:
# 重置所有参数
self._vessel = vessel
self._purpose = purpose
self._stir_time = 0.0 # 连续搅拌模式下不设置搅拌时间
self._settling_time = 0.0
self._start_time = datetime.now() # 重置开始时间
if stir_speed > 0:
self._target_stir_speed = min(stir_speed, self._max_stir_speed)
self._stir_state = "Running"
self._status = "Stirring Started"
self._running = True
return {
"success": True,
"message": "Stirring started successfully"
}
except Exception as e:
return {
"success": False,
"message": f"Error: {str(e)}"
}
def stir(self, stir_time: float, stir_speed: float, settling_time: float) -> dict:
"""
Stir.action 对应的方法
"""
with self._thread_lock:
try:
# 如果已经在运行,先停止当前操作
if self._running:
self._running = False
self._stir_state = "Stopped"
self._target_stir_speed = 0.0
time.sleep(0.1) # 给一个短暂的停止时间
# 重置所有参数
self._stir_time = float(stir_time)
self._settling_time = float(settling_time)
self._target_stir_speed = min(float(stir_speed), self._max_stir_speed)
self._start_time = datetime.now() # 重置开始时间
self._stir_state = "Running"
self._status = "Stirring"
self._running = True
return {"success": True}
except ValueError:
self._status = "Error: Invalid parameters"
return {"success": False}
def stop_stir(self, vessel: str) -> dict:
"""
StopStir.action 对应的方法
"""
with self._thread_lock:
if vessel != self._vessel:
return {
"success": False,
"message": "Vessel mismatch"
}
self._running = False
self._stir_state = "Stopped"
self._target_stir_speed = 0.0
self._status = "Stirring Stopped"
return {
"success": True,
"message": "Stirring stopped successfully"
}
# ==================== 内部控制方法 ====================
def _operation_loop(self):
"""操作主循环"""
while True:
try:
current_time = datetime.now()
with self._thread_lock: # 添加锁保护
if self._stir_state == "Running":
# 实际搅拌逻辑
speed_diff = self._target_stir_speed - self._stir_speed
if abs(speed_diff) > 0.1:
adjustment = speed_diff * 0.1
self._stir_speed += adjustment
else:
self._stir_speed = self._target_stir_speed
# 更新进度
if self._running:
if self._stir_time > 0: # 定时搅拌模式
elapsed = (current_time - self._start_time).total_seconds()
if elapsed >= self._stir_time + self._settling_time:
self._running = False
self._stir_state = "Stopped"
self._target_stir_speed = 0.0
self._stir_speed = 0.0
self._status = "Stirring Complete"
elif elapsed >= self._stir_time:
self._status = "Settling"
else: # 连续搅拌模式
self._status = "Stirring"
else:
# 停止状态下慢慢降低速度
if self._stir_speed > 0:
self._stir_speed = max(0, self._stir_speed - 20.0)
time.sleep(0.1)
except Exception as e:
print(f"Error in operation loop: {str(e)}") # 添加错误输出
self._status = f"Error: {str(e)}"
time.sleep(1.0) # 错误发生时等待较长时间
def get_status_info(self) -> dict:
"""获取设备状态信息"""
return {
"status": self._status,
"vessel": self._vessel,
"purpose": self._purpose,
"stir_speed": self._stir_speed,
"target_stir_speed": self._target_stir_speed,
"stir_state": self._stir_state,
"stir_time": self._stir_time, # 添加
"settling_time": self._settling_time, # 添加
"progress": self.progress,
"max_stir_speed": self._max_stir_speed
}

View File

@@ -1,410 +0,0 @@
import time
import threading
class MockVacuum:
"""
模拟真空泵设备类
这个类模拟了一个实验室真空泵的行为,包括真空度控制、
压力监测、运行状态管理等功能。参考了现有的 VacuumPumpMock 实现。
"""
def __init__(self, port: str = "MOCK"):
"""
初始化MockVacuum实例
Args:
port (str): 设备端口,默认为"MOCK"表示模拟设备
"""
self.port = port
# 设备基本状态属性
self._status: str = "Idle" # 设备状态Idle, Running, Error, Stopped
self._power_state: str = "Off" # 电源状态On, Off
self._pump_state: str = "Stopped" # 泵运行状态Running, Stopped, Paused
# 真空相关属性
self._vacuum_level: float = 1013.25 # 当前真空度 (mbar) - 大气压开始
self._target_vacuum: float = 50.0 # 目标真空度 (mbar)
self._min_vacuum: float = 1.0 # 最小真空度 (mbar)
self._max_vacuum: float = 1013.25 # 最大真空度 (mbar) - 大气压
# 泵性能相关属性
self._pump_speed: float = 0.0 # 泵速 (L/s)
self._max_pump_speed: float = 100.0 # 最大泵速 (L/s)
self._pump_efficiency: float = 95.0 # 泵效率百分比
# 运行控制线程
self._vacuum_thread = None
self._running = False
self._thread_lock = threading.Lock()
# ==================== 状态属性 ====================
# 这些属性会被Uni-Lab系统自动识别并定时对外广播
@property
def status(self) -> str:
"""
设备状态 - 会被自动识别的设备属性
Returns:
str: 当前设备状态 (Idle, Running, Error, Stopped)
"""
return self._status
@property
def power_state(self) -> str:
"""
电源状态
Returns:
str: 电源状态 (On, Off)
"""
return self._power_state
@property
def pump_state(self) -> str:
"""
泵运行状态
Returns:
str: 泵状态 (Running, Stopped, Paused)
"""
return self._pump_state
@property
def vacuum_level(self) -> float:
"""
当前真空度
Returns:
float: 当前真空度 (mbar)
"""
return self._vacuum_level
@property
def target_vacuum(self) -> float:
"""
目标真空度
Returns:
float: 目标真空度 (mbar)
"""
return self._target_vacuum
@property
def pump_speed(self) -> float:
"""
泵速
Returns:
float: 泵速 (L/s)
"""
return self._pump_speed
@property
def pump_efficiency(self) -> float:
"""
泵效率
Returns:
float: 泵效率百分比
"""
return self._pump_efficiency
@property
def max_pump_speed(self) -> float:
"""
最大泵速
Returns:
float: 最大泵速 (L/s)
"""
return self._max_pump_speed
# ==================== 设备控制方法 ====================
# 这些方法需要在注册表中添加会作为ActionServer接受控制指令
def power_control(self, power_state: str = "On") -> str:
"""
电源控制方法
Args:
power_state (str): 电源状态,可选值:"On", "Off"
Returns:
str: 操作结果状态 ("Success", "Error")
"""
if power_state not in ["On", "Off"]:
self._status = "Error: Invalid power state"
return "Error"
self._power_state = power_state
if power_state == "On":
self._status = "Power On"
self._start_vacuum_operation()
else:
self._status = "Power Off"
self.stop_vacuum()
return "Success"
def set_vacuum_level(self, vacuum_level: float) -> str:
"""
设置目标真空度
Args:
vacuum_level (float): 目标真空度 (mbar)
Returns:
str: 操作结果状态 ("Success", "Error")
"""
try:
vacuum_level = float(vacuum_level)
except ValueError:
self._status = "Error: Invalid vacuum level"
return "Error"
if self._power_state != "On":
self._status = "Error: Power Off"
return "Error"
if vacuum_level < self._min_vacuum or vacuum_level > self._max_vacuum:
self._status = f"Error: Vacuum level out of range ({self._min_vacuum}-{self._max_vacuum})"
return "Error"
self._target_vacuum = vacuum_level
self._status = "Setting Vacuum Level"
return "Success"
def start_vacuum(self) -> str:
"""
启动真空泵
Returns:
str: 操作结果状态 ("Success", "Error")
"""
if self._power_state != "On":
self._status = "Error: Power Off"
return "Error"
self._pump_state = "Running"
self._status = "Starting Vacuum Pump"
self._start_vacuum_operation()
return "Success"
def stop_vacuum(self) -> str:
"""
停止真空泵
Returns:
str: 操作结果状态 ("Success", "Error")
"""
self._pump_state = "Stopped"
self._status = "Stopping Vacuum Pump"
self._stop_vacuum_operation()
self._pump_speed = 0.0
return "Success"
def pause_vacuum(self) -> str:
"""
暂停真空泵
Returns:
str: 操作结果状态 ("Success", "Error")
"""
if self._pump_state != "Running":
self._status = "Error: Pump not running"
return "Error"
self._pump_state = "Paused"
self._status = "Vacuum Pump Paused"
self._stop_vacuum_operation()
return "Success"
def resume_vacuum(self) -> str:
"""
恢复真空泵运行
Returns:
str: 操作结果状态 ("Success", "Error")
"""
if self._pump_state != "Paused":
self._status = "Error: Pump not paused"
return "Error"
if self._power_state != "On":
self._status = "Error: Power Off"
return "Error"
self._pump_state = "Running"
self._status = "Resuming Vacuum Pump"
self._start_vacuum_operation()
return "Success"
def vent_to_atmosphere(self) -> str:
"""
通大气 - 将真空度恢复到大气压
Returns:
str: 操作结果状态 ("Success", "Error")
"""
self._target_vacuum = self._max_vacuum # 设置为大气压
self._status = "Venting to Atmosphere"
return "Success"
def emergency_stop(self) -> str:
"""
紧急停止
Returns:
str: 操作结果状态 ("Success", "Error")
"""
self._status = "Emergency Stop"
self._pump_state = "Stopped"
self._stop_vacuum_operation()
self._pump_speed = 0.0
return "Success"
# ==================== 内部控制方法 ====================
def _start_vacuum_operation(self):
"""
启动真空操作线程
这个方法启动一个后台线程来模拟真空泵的实际运行过程。
"""
with self._thread_lock:
if not self._running and self._power_state == "On":
self._running = True
self._vacuum_thread = threading.Thread(target=self._vacuum_operation_loop)
self._vacuum_thread.daemon = True
self._vacuum_thread.start()
def _stop_vacuum_operation(self):
"""
停止真空操作线程
安全地停止后台运行线程并等待其完成。
"""
with self._thread_lock:
self._running = False
if self._vacuum_thread and self._vacuum_thread.is_alive():
self._vacuum_thread.join(timeout=2.0)
def _vacuum_operation_loop(self):
"""
真空操作主循环
这个方法在后台线程中运行,模拟真空泵的工作过程:
1. 检查电源状态和运行状态
2. 如果泵状态为 "Running",根据目标真空调整泵速和真空度
3. 否则等待
"""
while self._running and self._power_state == "On":
try:
with self._thread_lock:
# 只有泵状态为 Running 时才进行更新
if self._pump_state == "Running":
vacuum_diff = self._vacuum_level - self._target_vacuum
if abs(vacuum_diff) < 1.0: # 真空度接近目标值
self._status = "At Target Vacuum"
self._pump_speed = self._max_pump_speed * 0.2 # 维持真空的最小泵速
elif vacuum_diff > 0: # 需要抽真空(降低压力)
self._status = "Pumping Down"
if vacuum_diff > 500:
self._pump_speed = self._max_pump_speed
elif vacuum_diff > 100:
self._pump_speed = self._max_pump_speed * 0.8
elif vacuum_diff > 50:
self._pump_speed = self._max_pump_speed * 0.6
else:
self._pump_speed = self._max_pump_speed * 0.4
# 根据泵速和效率计算真空降幅
pump_rate = (self._pump_speed / self._max_pump_speed) * self._pump_efficiency / 100.0
vacuum_reduction = pump_rate * 10.0 # 每秒最大降低10 mbar
self._vacuum_level = max(self._target_vacuum, self._vacuum_level - vacuum_reduction)
else: # 目标真空度高于当前值,需要通气
self._status = "Venting"
self._pump_speed = 0.0
self._vacuum_level = min(self._target_vacuum, self._vacuum_level + 5.0)
# 限制真空度范围
self._vacuum_level = max(self._min_vacuum, min(self._max_vacuum, self._vacuum_level))
else:
# 当泵状态不是 Running 时,可保持原状态
self._status = "Vacuum Pump Not Running"
# 释放锁后等待1秒钟
time.sleep(1.0)
except Exception as e:
with self._thread_lock:
self._status = f"Error in vacuum operation: {str(e)}"
break
# 循环结束后的清理工作
if self._pump_state == "Running":
self._status = "Idle"
# 停止泵后,真空度逐渐回升到大气压
while self._vacuum_level < self._max_vacuum * 0.9:
with self._thread_lock:
self._vacuum_level += 2.0
time.sleep(0.1)
def get_status_info(self) -> dict:
"""
获取完整的设备状态信息
Returns:
dict: 包含所有设备状态的字典
"""
return {
"status": self._status,
"power_state": self._power_state,
"pump_state": self._pump_state,
"vacuum_level": self._vacuum_level,
"target_vacuum": self._target_vacuum,
"pump_speed": self._pump_speed,
"pump_efficiency": self._pump_efficiency,
"max_pump_speed": self._max_pump_speed,
}
# 用于测试的主函数
if __name__ == "__main__":
vacuum = MockVacuum()
# 测试基本功能
print("启动真空泵测试...")
vacuum.power_control("On")
print(f"初始状态: {vacuum.get_status_info()}")
# 设置目标真空度并启动
vacuum.set_vacuum_level(10.0) # 设置为10mbar
vacuum.start_vacuum()
# 模拟运行15秒
for i in range(15):
time.sleep(1)
print(
f"{i+1}秒: 真空度={vacuum.vacuum_level:.1f}mbar, 泵速={vacuum.pump_speed:.1f}L/s, 状态={vacuum.status}"
)
# 测试通大气
print("测试通大气...")
vacuum.vent_to_atmosphere()
# 继续运行5秒观察通大气过程
for i in range(5):
time.sleep(1)
print(f"通大气第{i+1}秒: 真空度={vacuum.vacuum_level:.1f}mbar, 状态={vacuum.status}")
vacuum.emergency_stop()
print("测试完成")

View File

@@ -3,6 +3,7 @@ from threading import Lock, Event
from enum import Enum from enum import Enum
from dataclasses import dataclass from dataclasses import dataclass
import time import time
import traceback
from typing import Any, Union, Optional, overload from typing import Any, Union, Optional, overload
import serial.tools.list_ports import serial.tools.list_ports
@@ -386,3 +387,8 @@ class RunzeSyringePump:
def list(): def list():
for item in serial.tools.list_ports.comports(): for item in serial.tools.list_ports.comports():
yield RunzeSyringePumpInfo(port=item.device) yield RunzeSyringePumpInfo(port=item.device)
if __name__ == "__main__":
r = RunzeSyringePump("/dev/tty.usbserial-D30JUGG5", "1", 25.0)
r.initialize()

View File

@@ -331,7 +331,7 @@ class VirtualSolidDispenser:
"precision": self.precision "precision": self.precision
} }
self.logger.debug(f"📊 设备信息: 状态={self._status}, 试剂={self._current_reagent}, 加样量={self._dispensed_amount:.6f}g") # self.logger.debug(f"📊 设备信息: 状态={self._status}, 试剂={self._current_reagent}, 加样量={self._dispensed_amount:.6f}g")
return info return info
def __str__(self): def __str__(self):

View File

@@ -321,7 +321,7 @@ class VirtualStirrer:
"min_speed": self._min_speed "min_speed": self._min_speed
} }
self.logger.debug(f"📊 设备信息: 模式={self.operation_mode}, 速度={self.current_speed} RPM, 搅拌={self.is_stirring}") # self.logger.debug(f"📊 设备信息: 模式={self.operation_mode}, 速度={self.current_speed} RPM, 搅拌={self.is_stirring}")
return info return info
def __str__(self): def __str__(self):

View File

@@ -1,6 +1,6 @@
serial: serial:
category: category:
- serial - communication_devices
class: class:
action_value_mappings: action_value_mappings:
auto-handle_serial_request: auto-handle_serial_request:

View File

@@ -1,4 +1,4 @@
camera: camera.USB:
category: category:
- camera - camera
class: class:

View File

@@ -0,0 +1,404 @@
hplc.agilent:
category:
- characterization_chromatic
class:
action_value_mappings:
auto-check_status:
feedback: {}
goal: {}
goal_default: {}
handles: []
result: {}
schema:
description: 检查安捷伦HPLC设备状态的函数。用于监控设备的运行状态、连接状态、错误信息等关键指标。该函数定期查询设备状态确保系统稳定运行及时发现和报告设备异常。适用于自动化流程中的设备监控、故障诊断、系统维护等场景。
properties:
feedback: {}
goal:
properties: {}
required: []
type: object
result: {}
required:
- goal
title: check_status参数
type: object
type: UniLabJsonCommand
auto-extract_data_from_txt:
feedback: {}
goal: {}
goal_default:
file_path: null
handles: []
result: {}
schema:
description: 从文本文件中提取分析数据的函数。用于解析安捷伦HPLC生成的结果文件提取峰面积、保留时间、浓度等关键分析数据。支持多种文件格式的自动识别和数据结构化处理为后续数据分析和报告生成提供标准化的数据格式。适用于批量数据处理、结果验证、质量控制等分析工作流程。
properties:
feedback: {}
goal:
properties:
file_path:
type: string
required:
- file_path
type: object
result: {}
required:
- goal
title: extract_data_from_txt参数
type: object
type: UniLabJsonCommand
auto-start_sequence:
feedback: {}
goal: {}
goal_default:
params: null
resource: null
wf_name: null
handles: []
result: {}
schema:
description: 启动安捷伦HPLC分析序列的函数。用于执行预定义的分析方法序列包括样品进样、色谱分离、检测等完整的分析流程。支持参数配置、资源分配、工作流程管理等功能实现全自动的样品分析。适用于批量样品处理、标准化分析、质量检测等需要连续自动分析的应用场景。
properties:
feedback: {}
goal:
properties:
params:
type: string
resource:
type: object
wf_name:
type: string
required:
- wf_name
type: object
result: {}
required:
- goal
title: start_sequence参数
type: object
type: UniLabJsonCommand
auto-try_close_sub_device:
feedback: {}
goal: {}
goal_default:
device_name: null
handles: []
result: {}
schema:
description: 尝试关闭HPLC子设备的函数。用于安全地关闭泵、检测器、进样器等各个子模块确保设备正常断开连接并保护硬件安全。该函数提供错误处理和状态确认机制避免强制关闭可能造成的设备损坏。适用于设备维护、系统重启、紧急停机等需要安全关闭设备的场景。
properties:
feedback: {}
goal:
properties:
device_name:
type: string
required: []
type: object
result: {}
required:
- goal
title: try_close_sub_device参数
type: object
type: UniLabJsonCommand
auto-try_open_sub_device:
feedback: {}
goal: {}
goal_default:
device_name: null
handles: []
result: {}
schema:
description: 尝试打开HPLC子设备的函数。用于初始化和连接泵、检测器、进样器等各个子模块建立设备通信并进行自检。该函数提供连接验证和错误恢复机制确保子设备正常启动并准备就绪。适用于设备初始化、系统启动、设备重连等需要建立设备连接的场景。
properties:
feedback: {}
goal:
properties:
device_name:
type: string
required: []
type: object
result: {}
required:
- goal
title: try_open_sub_device参数
type: object
type: UniLabJsonCommand
execute_command_from_outer:
feedback: {}
goal:
command: command
goal_default:
command: ''
handles: []
result:
success: success
schema:
description: ''
properties:
feedback:
properties:
status:
type: string
required:
- status
title: SendCmd_Feedback
type: object
goal:
properties:
command:
type: string
required:
- command
title: SendCmd_Goal
type: object
result:
properties:
return_info:
type: string
success:
type: boolean
required:
- return_info
- success
title: SendCmd_Result
type: object
required:
- goal
title: SendCmd
type: object
type: SendCmd
module: unilabos.devices.hplc.AgilentHPLC:HPLCDriver
status_types:
could_run: bool
data_file: list
device_status: str
driver_init_ok: bool
finish_status: str
is_running: bool
status_text: str
success: bool
type: python
config_info: []
description: 安捷伦高效液相色谱HPLC分析设备用于复杂化合物的分离、检测和定量分析。该设备通过UI自动化技术控制安捷伦ChemStation软件实现全自动的样品分析流程。具备序列启动、设备状态监控、数据文件提取、结果处理等功能。支持多样品批量处理和实时状态反馈适用于药物分析、环境检测、食品安全、化学研究等需要高精度色谱分析的实验室应用。
handles: []
icon: ''
init_param_schema:
config:
properties:
driver_debug:
default: false
type: string
required: []
type: object
data:
properties:
could_run:
type: boolean
data_file:
type: array
device_status:
type: string
driver_init_ok:
type: boolean
finish_status:
type: string
is_running:
type: boolean
status_text:
type: string
success:
type: boolean
required:
- status_text
- device_status
- could_run
- driver_init_ok
- is_running
- success
- finish_status
- data_file
type: object
version: 1.0.0
hplc.agilent-zhida:
category:
- characterization_chromatic
class:
action_value_mappings:
abort:
feedback: {}
goal: {}
goal_default: {}
handles: []
result: {}
schema:
description: ''
properties:
feedback:
properties: {}
required: []
title: EmptyIn_Feedback
type: object
goal:
properties: {}
required: []
title: EmptyIn_Goal
type: object
result:
properties:
return_info:
type: string
required:
- return_info
title: EmptyIn_Result
type: object
required:
- goal
title: EmptyIn
type: object
type: EmptyIn
auto-close:
feedback: {}
goal: {}
goal_default: {}
handles: []
result: {}
schema:
description: HPLC设备连接关闭函数。安全地断开与智达HPLC设备的TCP socket连接释放网络资源。该函数确保连接的正确关闭避免网络资源泄露。通常在设备使用完毕或系统关闭时调用。
properties:
feedback: {}
goal:
properties: {}
required: []
type: object
result: {}
required:
- goal
title: close参数
type: object
type: UniLabJsonCommand
auto-connect:
feedback: {}
goal: {}
goal_default: {}
handles: []
result: {}
schema:
description: HPLC设备连接建立函数。与智达HPLC设备建立TCP socket通信连接配置通信超时参数。该函数是设备使用前的必要步骤建立成功后可进行状态查询、方法获取、任务启动等操作。连接失败时会抛出异常。
properties:
feedback: {}
goal:
properties: {}
required: []
type: object
result: {}
required:
- goal
title: connect参数
type: object
type: UniLabJsonCommand
get_methods:
feedback: {}
goal: {}
goal_default: {}
handles: []
result: {}
schema:
description: ''
properties:
feedback:
properties: {}
required: []
title: EmptyIn_Feedback
type: object
goal:
properties: {}
required: []
title: EmptyIn_Goal
type: object
result:
properties:
return_info:
type: string
required:
- return_info
title: EmptyIn_Result
type: object
required:
- goal
title: EmptyIn
type: object
type: EmptyIn
start:
feedback: {}
goal:
string: string
goal_default:
string: ''
handles: []
result: {}
schema:
description: ''
properties:
feedback:
properties: {}
required: []
title: StrSingleInput_Feedback
type: object
goal:
properties:
string:
type: string
required:
- string
title: StrSingleInput_Goal
type: object
result:
properties:
return_info:
type: string
success:
type: boolean
required:
- return_info
- success
title: StrSingleInput_Result
type: object
required:
- goal
title: StrSingleInput
type: object
type: StrSingleInput
module: unilabos.devices.zhida_hplc.zhida:ZhidaClient
status_types:
methods: dict
status: dict
type: python
config_info: []
description: 智达高效液相色谱HPLC分析设备用于实验室样品的分离、检测和定量分析。该设备通过TCP socket与HPLC控制系统通信支持远程控制和状态监控。具备自动进样、梯度洗脱、多检测器数据采集等功能可执行复杂的色谱分析方法。适用于化学分析、药物检测、环境监测、生物样品分析等需要高精度分离分析的实验室应用场景。
handles: []
icon: ''
init_param_schema:
config:
properties:
host:
default: 192.168.1.47
type: string
port:
default: 5792
type: string
timeout:
default: 10.0
type: string
required: []
type: object
data:
properties:
methods:
type: object
status:
type: object
required:
- status
- methods
type: object
version: 1.0.0

View File

@@ -1,225 +1,4 @@
hplc.agilent: raman.home_made:
category:
- characterization_optic
class:
action_value_mappings:
auto-check_status:
feedback: {}
goal: {}
goal_default: {}
handles: []
result: {}
schema:
description: 检查安捷伦HPLC设备状态的函数。用于监控设备的运行状态、连接状态、错误信息等关键指标。该函数定期查询设备状态确保系统稳定运行及时发现和报告设备异常。适用于自动化流程中的设备监控、故障诊断、系统维护等场景。
properties:
feedback: {}
goal:
properties: {}
required: []
type: object
result: {}
required:
- goal
title: check_status参数
type: object
type: UniLabJsonCommand
auto-extract_data_from_txt:
feedback: {}
goal: {}
goal_default:
file_path: null
handles: []
result: {}
schema:
description: 从文本文件中提取分析数据的函数。用于解析安捷伦HPLC生成的结果文件提取峰面积、保留时间、浓度等关键分析数据。支持多种文件格式的自动识别和数据结构化处理为后续数据分析和报告生成提供标准化的数据格式。适用于批量数据处理、结果验证、质量控制等分析工作流程。
properties:
feedback: {}
goal:
properties:
file_path:
type: string
required:
- file_path
type: object
result: {}
required:
- goal
title: extract_data_from_txt参数
type: object
type: UniLabJsonCommand
auto-start_sequence:
feedback: {}
goal: {}
goal_default:
params: null
resource: null
wf_name: null
handles: []
result: {}
schema:
description: 启动安捷伦HPLC分析序列的函数。用于执行预定义的分析方法序列包括样品进样、色谱分离、检测等完整的分析流程。支持参数配置、资源分配、工作流程管理等功能实现全自动的样品分析。适用于批量样品处理、标准化分析、质量检测等需要连续自动分析的应用场景。
properties:
feedback: {}
goal:
properties:
params:
type: string
resource:
type: object
wf_name:
type: string
required:
- wf_name
type: object
result: {}
required:
- goal
title: start_sequence参数
type: object
type: UniLabJsonCommand
auto-try_close_sub_device:
feedback: {}
goal: {}
goal_default:
device_name: null
handles: []
result: {}
schema:
description: 尝试关闭HPLC子设备的函数。用于安全地关闭泵、检测器、进样器等各个子模块确保设备正常断开连接并保护硬件安全。该函数提供错误处理和状态确认机制避免强制关闭可能造成的设备损坏。适用于设备维护、系统重启、紧急停机等需要安全关闭设备的场景。
properties:
feedback: {}
goal:
properties:
device_name:
type: string
required: []
type: object
result: {}
required:
- goal
title: try_close_sub_device参数
type: object
type: UniLabJsonCommand
auto-try_open_sub_device:
feedback: {}
goal: {}
goal_default:
device_name: null
handles: []
result: {}
schema:
description: 尝试打开HPLC子设备的函数。用于初始化和连接泵、检测器、进样器等各个子模块建立设备通信并进行自检。该函数提供连接验证和错误恢复机制确保子设备正常启动并准备就绪。适用于设备初始化、系统启动、设备重连等需要建立设备连接的场景。
properties:
feedback: {}
goal:
properties:
device_name:
type: string
required: []
type: object
result: {}
required:
- goal
title: try_open_sub_device参数
type: object
type: UniLabJsonCommand
execute_command_from_outer:
feedback: {}
goal:
command: command
goal_default:
command: ''
handles: []
result:
success: success
schema:
description: ''
properties:
feedback:
properties:
status:
type: string
required:
- status
title: SendCmd_Feedback
type: object
goal:
properties:
command:
type: string
required:
- command
title: SendCmd_Goal
type: object
result:
properties:
return_info:
type: string
success:
type: boolean
required:
- return_info
- success
title: SendCmd_Result
type: object
required:
- goal
title: SendCmd
type: object
type: SendCmd
module: unilabos.devices.hplc.AgilentHPLC:HPLCDriver
status_types:
could_run: bool
data_file: list
device_status: str
driver_init_ok: bool
finish_status: str
is_running: bool
status_text: str
success: bool
type: python
config_info: []
description: 安捷伦高效液相色谱HPLC分析设备用于复杂化合物的分离、检测和定量分析。该设备通过UI自动化技术控制安捷伦ChemStation软件实现全自动的样品分析流程。具备序列启动、设备状态监控、数据文件提取、结果处理等功能。支持多样品批量处理和实时状态反馈适用于药物分析、环境检测、食品安全、化学研究等需要高精度色谱分析的实验室应用。
handles: []
icon: ''
init_param_schema:
config:
properties:
driver_debug:
default: false
type: string
required: []
type: object
data:
properties:
could_run:
type: boolean
data_file:
type: array
device_status:
type: string
driver_init_ok:
type: boolean
finish_status:
type: string
is_running:
type: boolean
status_text:
type: string
success:
type: boolean
required:
- status_text
- device_status
- could_run
- driver_init_ok
- is_running
- success
- finish_status
- data_file
type: object
version: 1.0.0
raman_home_made:
category: category:
- characterization_optic - characterization_optic
class: class:

View File

@@ -1,6 +1,6 @@
gas_source.mock: gas_source.mock:
category: category:
- vacuum_and_purge - gas_handler
class: class:
action_value_mappings: action_value_mappings:
auto-is_closed: auto-is_closed:
@@ -180,6 +180,7 @@ gas_source.mock:
vacuum_pump.mock: vacuum_pump.mock:
category: category:
- vacuum_and_purge - vacuum_and_purge
- gas_handler
class: class:
action_value_mappings: action_value_mappings:
auto-is_closed: auto-is_closed:

View File

@@ -703,6 +703,8 @@ liquid_handler:
discard_tips: discard_tips:
feedback: {} feedback: {}
goal: goal:
allow_nonzero_volume: allow_nonzero_volume
offsets: offsets
use_channels: use_channels use_channels: use_channels
goal_default: goal_default:
use_channels: use_channels:
@@ -978,6 +980,8 @@ liquid_handler:
use_channels: use_channels:
- 0 - 0
handles: [] handles: []
placeholder_keys:
tip_spots: unilabos_resources
result: result:
name: name name: name
schema: schema:
@@ -6014,36 +6018,6 @@ liquid_handler.prcxi:
title: custom_delay参数 title: custom_delay参数
type: object type: object
type: UniLabJsonCommandAsync type: UniLabJsonCommandAsync
auto-discard_tips:
feedback: {}
goal: {}
goal_default:
allow_nonzero_volume: true
offsets: null
use_channels: null
handles: []
result: {}
schema:
description: discard_tips的参数schema
properties:
feedback: {}
goal:
properties:
allow_nonzero_volume:
default: true
type: boolean
offsets:
type: string
use_channels:
type: string
required: []
type: object
result: {}
required:
- goal
title: discard_tips参数
type: object
type: UniLabJsonCommandAsync
auto-iter_tips: auto-iter_tips:
feedback: {} feedback: {}
goal: {} goal: {}
@@ -6144,6 +6118,53 @@ liquid_handler.prcxi:
title: touch_tip参数 title: touch_tip参数
type: object type: object
type: UniLabJsonCommandAsync type: UniLabJsonCommandAsync
discard_tips:
feedback: {}
goal:
allow_nonzero_volume: allow_nonzero_volume
offsets: offsets
use_channels: use_channels
goal_default:
use_channels:
- 0
handles: []
result: {}
schema:
description: ''
properties:
feedback:
properties: {}
required: []
title: LiquidHandlerDiscardTips_Feedback
type: object
goal:
properties:
use_channels:
items:
maximum: 2147483647
minimum: -2147483648
type: integer
type: array
required:
- use_channels
title: LiquidHandlerDiscardTips_Goal
type: object
result:
properties:
return_info:
type: string
success:
type: boolean
required:
- return_info
- success
title: LiquidHandlerDiscardTips_Result
type: object
required:
- goal
title: LiquidHandlerDiscardTips
type: object
type: LiquidHandlerDiscardTips
dispense: dispense:
feedback: {} feedback: {}
goal: goal:
@@ -6343,7 +6364,11 @@ liquid_handler.prcxi:
type: LiquidHandlerDispense type: LiquidHandlerDispense
drop_tips: drop_tips:
feedback: {} feedback: {}
goal: {} goal:
allow_nonzero_volume: allow_nonzero_volume
offsets: offsets
tip_spots: tip_spots
use_channels: use_channels
goal_default: goal_default:
allow_nonzero_volume: false allow_nonzero_volume: false
offsets: offsets:
@@ -6373,6 +6398,8 @@ liquid_handler.prcxi:
use_channels: use_channels:
- 0 - 0
handles: [] handles: []
placeholder_keys:
tip_spots: unilabos_resources
result: {} result: {}
schema: schema:
description: '' description: ''

File diff suppressed because it is too large Load Diff

View File

@@ -1,704 +0,0 @@
moveit.arm_slider:
category:
- moveit_config
class:
action_value_mappings:
auto-check_tf_update_actions:
feedback: {}
goal: {}
goal_default: {}
handles: []
result: {}
schema:
description: check_tf_update_actions的参数schema
properties:
feedback: {}
goal:
properties: {}
required: []
type: object
result: {}
required:
- goal
title: check_tf_update_actions参数
type: object
type: UniLabJsonCommand
auto-moveit_joint_task:
feedback: {}
goal: {}
goal_default:
joint_names: null
joint_positions: null
move_group: null
retry: 10
speed: 1
handles: []
result: {}
schema:
description: moveit_joint_task的参数schema
properties:
feedback: {}
goal:
properties:
joint_names:
type: string
joint_positions:
type: string
move_group:
type: string
retry:
default: 10
type: string
speed:
default: 1
type: string
required:
- move_group
- joint_positions
type: object
result: {}
required:
- goal
title: moveit_joint_task参数
type: object
type: UniLabJsonCommand
auto-moveit_task:
feedback: {}
goal: {}
goal_default:
cartesian: false
move_group: null
offsets:
- 0
- 0
- 0
position: null
quaternion: null
retry: 10
speed: 1
target_link: null
handles: []
result: {}
schema:
description: moveit_task的参数schema
properties:
feedback: {}
goal:
properties:
cartesian:
default: false
type: string
move_group:
type: string
offsets:
default:
- 0
- 0
- 0
type: string
position:
type: string
quaternion:
type: string
retry:
default: 10
type: string
speed:
default: 1
type: string
target_link:
type: string
required:
- move_group
- position
- quaternion
type: object
result: {}
required:
- goal
title: moveit_task参数
type: object
type: UniLabJsonCommand
auto-post_init:
feedback: {}
goal: {}
goal_default:
ros_node: null
handles: []
result: {}
schema:
description: post_init的参数schema
properties:
feedback: {}
goal:
properties:
ros_node:
type: string
required:
- ros_node
type: object
result: {}
required:
- goal
title: post_init参数
type: object
type: UniLabJsonCommand
auto-resource_manager:
feedback: {}
goal: {}
goal_default:
parent_link: null
resource: null
handles: []
result: {}
schema:
description: resource_manager的参数schema
properties:
feedback: {}
goal:
properties:
parent_link:
type: string
resource:
type: string
required:
- resource
- parent_link
type: object
result: {}
required:
- goal
title: resource_manager参数
type: object
type: UniLabJsonCommand
auto-wait_for_resource_action:
feedback: {}
goal: {}
goal_default: {}
handles: []
result: {}
schema:
description: wait_for_resource_action的参数schema
properties:
feedback: {}
goal:
properties: {}
required: []
type: object
result: {}
required:
- goal
title: wait_for_resource_action参数
type: object
type: UniLabJsonCommand
pick_and_place:
feedback: {}
goal:
command: command
goal_default:
command: ''
handles: []
result: {}
schema:
description: ''
properties:
feedback:
properties:
status:
type: string
required:
- status
title: SendCmd_Feedback
type: object
goal:
properties:
command:
type: string
required:
- command
title: SendCmd_Goal
type: object
result:
properties:
return_info:
type: string
success:
type: boolean
required:
- return_info
- success
title: SendCmd_Result
type: object
required:
- goal
title: SendCmd
type: object
type: SendCmd
set_position:
feedback: {}
goal:
command: command
goal_default:
command: ''
handles: []
result: {}
schema:
description: ''
properties:
feedback:
properties:
status:
type: string
required:
- status
title: SendCmd_Feedback
type: object
goal:
properties:
command:
type: string
required:
- command
title: SendCmd_Goal
type: object
result:
properties:
return_info:
type: string
success:
type: boolean
required:
- return_info
- success
title: SendCmd_Result
type: object
required:
- goal
title: SendCmd
type: object
type: SendCmd
set_status:
feedback: {}
goal:
command: command
goal_default:
command: ''
handles: []
result: {}
schema:
description: ''
properties:
feedback:
properties:
status:
type: string
required:
- status
title: SendCmd_Feedback
type: object
goal:
properties:
command:
type: string
required:
- command
title: SendCmd_Goal
type: object
result:
properties:
return_info:
type: string
success:
type: boolean
required:
- return_info
- success
title: SendCmd_Result
type: object
required:
- goal
title: SendCmd
type: object
type: SendCmd
module: unilabos.devices.ros_dev.moveit_interface:MoveitInterface
status_types: {}
type: python
config_info: []
description: 机械臂与滑块运动系统基于MoveIt2运动规划框架的多自由度机械臂控制设备。该系统集成机械臂和线性滑块通过ROS2和MoveIt2实现精确的轨迹规划和协调运动控制。支持笛卡尔空间和关节空间的运动规划、碰撞检测、逆运动学求解等功能。适用于复杂的pick-and-place操作、精密装配、多工位协作等需要高精度多轴协调运动的实验室自动化应用。
handles: []
icon: ''
init_param_schema:
config:
properties:
device_config:
type: string
joint_poses:
type: string
moveit_type:
type: string
rotation:
type: string
required:
- moveit_type
- joint_poses
type: object
data:
properties: {}
required: []
type: object
model:
mesh: arm_slider
type: device
version: 1.0.0
moveit.toyo_xyz:
category:
- moveit_config
class:
action_value_mappings:
auto-check_tf_update_actions:
feedback: {}
goal: {}
goal_default: {}
handles: []
result: {}
schema:
description: check_tf_update_actions的参数schema
properties:
feedback: {}
goal:
properties: {}
required: []
type: object
result: {}
required:
- goal
title: check_tf_update_actions参数
type: object
type: UniLabJsonCommand
auto-moveit_joint_task:
feedback: {}
goal: {}
goal_default:
joint_names: null
joint_positions: null
move_group: null
retry: 10
speed: 1
handles: []
result: {}
schema:
description: moveit_joint_task的参数schema
properties:
feedback: {}
goal:
properties:
joint_names:
type: string
joint_positions:
type: string
move_group:
type: string
retry:
default: 10
type: string
speed:
default: 1
type: string
required:
- move_group
- joint_positions
type: object
result: {}
required:
- goal
title: moveit_joint_task参数
type: object
type: UniLabJsonCommand
auto-moveit_task:
feedback: {}
goal: {}
goal_default:
cartesian: false
move_group: null
offsets:
- 0
- 0
- 0
position: null
quaternion: null
retry: 10
speed: 1
target_link: null
handles: []
result: {}
schema:
description: moveit_task的参数schema
properties:
feedback: {}
goal:
properties:
cartesian:
default: false
type: string
move_group:
type: string
offsets:
default:
- 0
- 0
- 0
type: string
position:
type: string
quaternion:
type: string
retry:
default: 10
type: string
speed:
default: 1
type: string
target_link:
type: string
required:
- move_group
- position
- quaternion
type: object
result: {}
required:
- goal
title: moveit_task参数
type: object
type: UniLabJsonCommand
auto-post_init:
feedback: {}
goal: {}
goal_default:
ros_node: null
handles: []
result: {}
schema:
description: post_init的参数schema
properties:
feedback: {}
goal:
properties:
ros_node:
type: string
required:
- ros_node
type: object
result: {}
required:
- goal
title: post_init参数
type: object
type: UniLabJsonCommand
auto-resource_manager:
feedback: {}
goal: {}
goal_default:
parent_link: null
resource: null
handles: []
result: {}
schema:
description: resource_manager的参数schema
properties:
feedback: {}
goal:
properties:
parent_link:
type: string
resource:
type: string
required:
- resource
- parent_link
type: object
result: {}
required:
- goal
title: resource_manager参数
type: object
type: UniLabJsonCommand
auto-wait_for_resource_action:
feedback: {}
goal: {}
goal_default: {}
handles: []
result: {}
schema:
description: wait_for_resource_action的参数schema
properties:
feedback: {}
goal:
properties: {}
required: []
type: object
result: {}
required:
- goal
title: wait_for_resource_action参数
type: object
type: UniLabJsonCommand
pick_and_place:
feedback: {}
goal:
command: command
goal_default:
command: ''
handles: []
result: {}
schema:
description: ''
properties:
feedback:
properties:
status:
type: string
required:
- status
title: SendCmd_Feedback
type: object
goal:
properties:
command:
type: string
required:
- command
title: SendCmd_Goal
type: object
result:
properties:
return_info:
type: string
success:
type: boolean
required:
- return_info
- success
title: SendCmd_Result
type: object
required:
- goal
title: SendCmd
type: object
type: SendCmd
set_position:
feedback: {}
goal:
command: command
goal_default:
command: ''
handles: []
result: {}
schema:
description: ''
properties:
feedback:
properties:
status:
type: string
required:
- status
title: SendCmd_Feedback
type: object
goal:
properties:
command:
type: string
required:
- command
title: SendCmd_Goal
type: object
result:
properties:
return_info:
type: string
success:
type: boolean
required:
- return_info
- success
title: SendCmd_Result
type: object
required:
- goal
title: SendCmd
type: object
type: SendCmd
set_status:
feedback: {}
goal:
command: command
goal_default:
command: ''
handles: []
result: {}
schema:
description: ''
properties:
feedback:
properties:
status:
type: string
required:
- status
title: SendCmd_Feedback
type: object
goal:
properties:
command:
type: string
required:
- command
title: SendCmd_Goal
type: object
result:
properties:
return_info:
type: string
success:
type: boolean
required:
- return_info
- success
title: SendCmd_Result
type: object
required:
- goal
title: SendCmd
type: object
type: SendCmd
module: unilabos.devices.ros_dev.moveit_interface:MoveitInterface
status_types: {}
type: python
config_info: []
description: 东洋XYZ三轴运动平台基于MoveIt2运动规划框架的精密定位设备。该设备通过ROS2和MoveIt2实现三维空间的精确运动控制支持复杂轨迹规划、多点定位、速度控制等功能。具备高精度定位、平稳运动、实时轨迹监控等特性。适用于精密加工、样品定位、检测扫描、自动化装配等需要高精度三维运动控制的实验室和工业应用场景。
handles: []
icon: ''
init_param_schema:
config:
properties:
device_config:
type: string
joint_poses:
type: string
moveit_type:
type: string
rotation:
type: string
required:
- moveit_type
- joint_poses
type: object
data:
properties: {}
required: []
type: object
model:
mesh: toyo_xyz
type: device
version: 1.0.0

View File

@@ -1,3 +1,355 @@
robotic_arm.SCARA_with_slider.virtual:
category:
- robot_arm
class:
action_value_mappings:
auto-check_tf_update_actions:
feedback: {}
goal: {}
goal_default: {}
handles: []
result: {}
schema:
description: check_tf_update_actions的参数schema
properties:
feedback: {}
goal:
properties: {}
required: []
type: object
result: {}
required:
- goal
title: check_tf_update_actions参数
type: object
type: UniLabJsonCommand
auto-moveit_joint_task:
feedback: {}
goal: {}
goal_default:
joint_names: null
joint_positions: null
move_group: null
retry: 10
speed: 1
handles: []
result: {}
schema:
description: moveit_joint_task的参数schema
properties:
feedback: {}
goal:
properties:
joint_names:
type: string
joint_positions:
type: string
move_group:
type: string
retry:
default: 10
type: string
speed:
default: 1
type: string
required:
- move_group
- joint_positions
type: object
result: {}
required:
- goal
title: moveit_joint_task参数
type: object
type: UniLabJsonCommand
auto-moveit_task:
feedback: {}
goal: {}
goal_default:
cartesian: false
move_group: null
offsets:
- 0
- 0
- 0
position: null
quaternion: null
retry: 10
speed: 1
target_link: null
handles: []
result: {}
schema:
description: moveit_task的参数schema
properties:
feedback: {}
goal:
properties:
cartesian:
default: false
type: string
move_group:
type: string
offsets:
default:
- 0
- 0
- 0
type: string
position:
type: string
quaternion:
type: string
retry:
default: 10
type: string
speed:
default: 1
type: string
target_link:
type: string
required:
- move_group
- position
- quaternion
type: object
result: {}
required:
- goal
title: moveit_task参数
type: object
type: UniLabJsonCommand
auto-post_init:
feedback: {}
goal: {}
goal_default:
ros_node: null
handles: []
result: {}
schema:
description: post_init的参数schema
properties:
feedback: {}
goal:
properties:
ros_node:
type: string
required:
- ros_node
type: object
result: {}
required:
- goal
title: post_init参数
type: object
type: UniLabJsonCommand
auto-resource_manager:
feedback: {}
goal: {}
goal_default:
parent_link: null
resource: null
handles: []
result: {}
schema:
description: resource_manager的参数schema
properties:
feedback: {}
goal:
properties:
parent_link:
type: string
resource:
type: string
required:
- resource
- parent_link
type: object
result: {}
required:
- goal
title: resource_manager参数
type: object
type: UniLabJsonCommand
auto-wait_for_resource_action:
feedback: {}
goal: {}
goal_default: {}
handles: []
result: {}
schema:
description: wait_for_resource_action的参数schema
properties:
feedback: {}
goal:
properties: {}
required: []
type: object
result: {}
required:
- goal
title: wait_for_resource_action参数
type: object
type: UniLabJsonCommand
pick_and_place:
feedback: {}
goal:
command: command
goal_default:
command: ''
handles: []
result: {}
schema:
description: ''
properties:
feedback:
properties:
status:
type: string
required:
- status
title: SendCmd_Feedback
type: object
goal:
properties:
command:
type: string
required:
- command
title: SendCmd_Goal
type: object
result:
properties:
return_info:
type: string
success:
type: boolean
required:
- return_info
- success
title: SendCmd_Result
type: object
required:
- goal
title: SendCmd
type: object
type: SendCmd
set_position:
feedback: {}
goal:
command: command
goal_default:
command: ''
handles: []
result: {}
schema:
description: ''
properties:
feedback:
properties:
status:
type: string
required:
- status
title: SendCmd_Feedback
type: object
goal:
properties:
command:
type: string
required:
- command
title: SendCmd_Goal
type: object
result:
properties:
return_info:
type: string
success:
type: boolean
required:
- return_info
- success
title: SendCmd_Result
type: object
required:
- goal
title: SendCmd
type: object
type: SendCmd
set_status:
feedback: {}
goal:
command: command
goal_default:
command: ''
handles: []
result: {}
schema:
description: ''
properties:
feedback:
properties:
status:
type: string
required:
- status
title: SendCmd_Feedback
type: object
goal:
properties:
command:
type: string
required:
- command
title: SendCmd_Goal
type: object
result:
properties:
return_info:
type: string
success:
type: boolean
required:
- return_info
- success
title: SendCmd_Result
type: object
required:
- goal
title: SendCmd
type: object
type: SendCmd
module: unilabos.devices.ros_dev.moveit_interface:MoveitInterface
status_types: {}
type: python
config_info: []
description: 机械臂与滑块运动系统基于MoveIt2运动规划框架的多自由度机械臂控制设备。该系统集成机械臂和线性滑块通过ROS2和MoveIt2实现精确的轨迹规划和协调运动控制。支持笛卡尔空间和关节空间的运动规划、碰撞检测、逆运动学求解等功能。适用于复杂的pick-and-place操作、精密装配、多工位协作等需要高精度多轴协调运动的实验室自动化应用。
handles: []
icon: ''
init_param_schema:
config:
properties:
device_config:
type: string
joint_poses:
type: string
moveit_type:
type: string
rotation:
type: string
required:
- moveit_type
- joint_poses
type: object
data:
properties: {}
required: []
type: object
model:
mesh: arm_slider
type: device
version: 1.0.0
robotic_arm.UR: robotic_arm.UR:
category: category:
- robot_arm - robot_arm

View File

@@ -470,6 +470,358 @@ linear_motion.grbl:
- spindle_speed - spindle_speed
type: object type: object
version: 1.0.0 version: 1.0.0
linear_motion.toyo_xyz.sim:
category:
- robot_linear_motion
class:
action_value_mappings:
auto-check_tf_update_actions:
feedback: {}
goal: {}
goal_default: {}
handles: []
result: {}
schema:
description: check_tf_update_actions的参数schema
properties:
feedback: {}
goal:
properties: {}
required: []
type: object
result: {}
required:
- goal
title: check_tf_update_actions参数
type: object
type: UniLabJsonCommand
auto-moveit_joint_task:
feedback: {}
goal: {}
goal_default:
joint_names: null
joint_positions: null
move_group: null
retry: 10
speed: 1
handles: []
result: {}
schema:
description: moveit_joint_task的参数schema
properties:
feedback: {}
goal:
properties:
joint_names:
type: string
joint_positions:
type: string
move_group:
type: string
retry:
default: 10
type: string
speed:
default: 1
type: string
required:
- move_group
- joint_positions
type: object
result: {}
required:
- goal
title: moveit_joint_task参数
type: object
type: UniLabJsonCommand
auto-moveit_task:
feedback: {}
goal: {}
goal_default:
cartesian: false
move_group: null
offsets:
- 0
- 0
- 0
position: null
quaternion: null
retry: 10
speed: 1
target_link: null
handles: []
result: {}
schema:
description: moveit_task的参数schema
properties:
feedback: {}
goal:
properties:
cartesian:
default: false
type: string
move_group:
type: string
offsets:
default:
- 0
- 0
- 0
type: string
position:
type: string
quaternion:
type: string
retry:
default: 10
type: string
speed:
default: 1
type: string
target_link:
type: string
required:
- move_group
- position
- quaternion
type: object
result: {}
required:
- goal
title: moveit_task参数
type: object
type: UniLabJsonCommand
auto-post_init:
feedback: {}
goal: {}
goal_default:
ros_node: null
handles: []
result: {}
schema:
description: post_init的参数schema
properties:
feedback: {}
goal:
properties:
ros_node:
type: string
required:
- ros_node
type: object
result: {}
required:
- goal
title: post_init参数
type: object
type: UniLabJsonCommand
auto-resource_manager:
feedback: {}
goal: {}
goal_default:
parent_link: null
resource: null
handles: []
result: {}
schema:
description: resource_manager的参数schema
properties:
feedback: {}
goal:
properties:
parent_link:
type: string
resource:
type: string
required:
- resource
- parent_link
type: object
result: {}
required:
- goal
title: resource_manager参数
type: object
type: UniLabJsonCommand
auto-wait_for_resource_action:
feedback: {}
goal: {}
goal_default: {}
handles: []
result: {}
schema:
description: wait_for_resource_action的参数schema
properties:
feedback: {}
goal:
properties: {}
required: []
type: object
result: {}
required:
- goal
title: wait_for_resource_action参数
type: object
type: UniLabJsonCommand
pick_and_place:
feedback: {}
goal:
command: command
goal_default:
command: ''
handles: []
result: {}
schema:
description: ''
properties:
feedback:
properties:
status:
type: string
required:
- status
title: SendCmd_Feedback
type: object
goal:
properties:
command:
type: string
required:
- command
title: SendCmd_Goal
type: object
result:
properties:
return_info:
type: string
success:
type: boolean
required:
- return_info
- success
title: SendCmd_Result
type: object
required:
- goal
title: SendCmd
type: object
type: SendCmd
set_position:
feedback: {}
goal:
command: command
goal_default:
command: ''
handles: []
result: {}
schema:
description: ''
properties:
feedback:
properties:
status:
type: string
required:
- status
title: SendCmd_Feedback
type: object
goal:
properties:
command:
type: string
required:
- command
title: SendCmd_Goal
type: object
result:
properties:
return_info:
type: string
success:
type: boolean
required:
- return_info
- success
title: SendCmd_Result
type: object
required:
- goal
title: SendCmd
type: object
type: SendCmd
set_status:
feedback: {}
goal:
command: command
goal_default:
command: ''
handles: []
result: {}
schema:
description: ''
properties:
feedback:
properties:
status:
type: string
required:
- status
title: SendCmd_Feedback
type: object
goal:
properties:
command:
type: string
required:
- command
title: SendCmd_Goal
type: object
result:
properties:
return_info:
type: string
success:
type: boolean
required:
- return_info
- success
title: SendCmd_Result
type: object
required:
- goal
title: SendCmd
type: object
type: SendCmd
module: unilabos.devices.ros_dev.moveit_interface:MoveitInterface
status_types: {}
type: python
config_info: []
description: 东洋XYZ三轴运动平台基于MoveIt2运动规划框架的精密定位设备。该设备通过ROS2和MoveIt2实现三维空间的精确运动控制支持复杂轨迹规划、多点定位、速度控制等功能。具备高精度定位、平稳运动、实时轨迹监控等特性。适用于精密加工、样品定位、检测扫描、自动化装配等需要高精度三维运动控制的实验室和工业应用场景。
handles: []
icon: ''
init_param_schema:
config:
properties:
device_config:
type: string
joint_poses:
type: string
moveit_type:
type: string
rotation:
type: string
required:
- moveit_type
- joint_poses
type: object
data:
properties: {}
required: []
type: object
model:
mesh: toyo_xyz
type: device
version: 1.0.0
motor.iCL42: motor.iCL42:
category: category:
- robot_linear_motion - robot_linear_motion

View File

@@ -1,315 +0,0 @@
lh_joint_publisher:
category:
- sim_nodes
class:
action_value_mappings:
auto-check_tf_update_actions:
feedback: {}
goal: {}
goal_default: {}
handles: []
result: {}
schema:
description: check_tf_update_actions的参数schema
properties:
feedback: {}
goal:
properties: {}
required: []
type: object
result: {}
required:
- goal
title: check_tf_update_actions参数
type: object
type: UniLabJsonCommand
auto-find_resource_parent:
feedback: {}
goal: {}
goal_default:
resource_id: null
handles: []
result: {}
schema:
description: find_resource_parent的参数schema
properties:
feedback: {}
goal:
properties:
resource_id:
type: string
required:
- resource_id
type: object
result: {}
required:
- goal
title: find_resource_parent参数
type: object
type: UniLabJsonCommand
auto-inverse_kinematics:
feedback: {}
goal: {}
goal_default:
parent_id: null
x: null
x_joint: null
y: null
y_joint: null
z: null
z_joint: null
handles: []
result: {}
schema:
description: inverse_kinematics的参数schema
properties:
feedback: {}
goal:
properties:
parent_id:
type: string
x:
type: string
x_joint:
type: object
y:
type: string
y_joint:
type: object
z:
type: string
z_joint:
type: object
required:
- x
- y
- z
- parent_id
- x_joint
- y_joint
- z_joint
type: object
result: {}
required:
- goal
title: inverse_kinematics参数
type: object
type: UniLabJsonCommand
auto-lh_joint_action_callback:
feedback: {}
goal: {}
goal_default:
goal_handle: null
handles: []
result: {}
schema:
description: lh_joint_action_callback的参数schema
properties:
feedback: {}
goal:
properties:
goal_handle:
type: string
required:
- goal_handle
type: object
result: {}
required:
- goal
title: lh_joint_action_callback参数
type: object
type: UniLabJsonCommand
auto-lh_joint_pub_callback:
feedback: {}
goal: {}
goal_default: {}
handles: []
result: {}
schema:
description: lh_joint_pub_callback的参数schema
properties:
feedback: {}
goal:
properties: {}
required: []
type: object
result: {}
required:
- goal
title: lh_joint_pub_callback参数
type: object
type: UniLabJsonCommand
auto-move_joints:
feedback: {}
goal: {}
goal_default:
option: null
resource_names: null
speed: 0.1
x: null
x_joint: null
y: null
y_joint: null
z: null
z_joint: null
handles: []
result: {}
schema:
description: move_joints的参数schema
properties:
feedback: {}
goal:
properties:
option:
type: string
resource_names:
type: string
speed:
default: 0.1
type: string
x:
type: string
x_joint:
type: string
y:
type: string
y_joint:
type: string
z:
type: string
z_joint:
type: string
required:
- resource_names
- x
- y
- z
- option
type: object
result: {}
required:
- goal
title: move_joints参数
type: object
type: UniLabJsonCommand
auto-move_to:
feedback: {}
goal: {}
goal_default:
joint_positions: null
parent_id: null
speed: null
handles: []
result: {}
schema:
description: move_to的参数schema
properties:
feedback: {}
goal:
properties:
joint_positions:
type: string
parent_id:
type: string
speed:
type: string
required:
- joint_positions
- speed
- parent_id
type: object
result: {}
required:
- goal
title: move_to参数
type: object
type: UniLabJsonCommand
auto-resource_move:
feedback: {}
goal: {}
goal_default:
channels: null
link_name: null
resource_id: null
handles: []
result: {}
schema:
description: resource_move的参数schema
properties:
feedback: {}
goal:
properties:
channels:
type: array
link_name:
type: string
resource_id:
type: string
required:
- resource_id
- link_name
- channels
type: object
result: {}
required:
- goal
title: resource_move参数
type: object
type: UniLabJsonCommand
auto-send_resource_action:
feedback: {}
goal: {}
goal_default:
link_name: null
resource_id_list: null
handles: []
result: {}
schema:
description: send_resource_action的参数schema
properties:
feedback: {}
goal:
properties:
link_name:
type: string
resource_id_list:
type: array
required:
- resource_id_list
- link_name
type: object
result: {}
required:
- goal
title: send_resource_action参数
type: object
type: UniLabJsonCommand
module: unilabos.devices.ros_dev.liquid_handler_joint_publisher:LiquidHandlerJointPublisher
status_types: {}
type: ros2
config_info: []
description: 液体处理器关节发布器用于ROS2仿真系统中的液体处理设备运动控制。该节点通过发布关节状态驱动仿真模型中的机械臂运动支持三维坐标到关节空间的逆运动学转换、多关节协调控制、资源跟踪和TF变换。具备精确的位置控制、速度调节、pick-and-place操作等功能。适用于液体处理系统的虚拟仿真、运动规划验证、系统集成测试等应用场景。
handles: []
icon: ''
init_param_schema:
config:
properties:
device_id:
default: lh_joint_publisher
type: string
rate:
default: 50
type: string
resource_tracker:
type: string
resources_config:
type: array
required:
- resources_config
- resource_tracker
type: object
data:
properties: {}
required: []
type: object
version: 1.0.0

View File

@@ -1,6 +1,6 @@
laiyu_add_solid: solid_dispenser.laiyu:
category: category:
- laiyu_add_solid - solid_dispenser
class: class:
action_value_mappings: action_value_mappings:
add_powder_tube: add_powder_tube:

View File

@@ -2239,6 +2239,14 @@ virtual_multiway_valve:
io_type: source io_type: source
label: '7' label: '7'
side: WEST side: WEST
- data_key: fluid_port_8
data_source: executor
data_type: fluid
description: 八通阀门端口8-特殊输入
handler_key: '8'
io_type: target
label: '8'
side: WEST
- data_key: fluid_port_8 - data_key: fluid_port_8
data_source: executor data_source: executor
data_type: fluid data_type: fluid
@@ -3983,14 +3991,6 @@ virtual_separator:
io_type: source io_type: source
label: bottom_phase_out label: bottom_phase_out
side: SOUTH side: SOUTH
- data_key: top_outlet
data_source: executor
data_type: fluid
description: 上相(轻相)液体输出口
handler_key: topphaseout
io_type: source
label: top_phase_out
side: EAST
- data_key: mechanical_port - data_key: mechanical_port
data_source: handle data_source: handle
data_type: mechanical data_type: mechanical

View File

@@ -1262,6 +1262,11 @@ workstation:
data_type: resource data_type: resource
handler_key: solvent handler_key: solvent
label: Solvent label: Solvent
- data_key: reagent
data_source: handle
data_type: resource
handler_key: reagent
label: Reagent
output: output:
- data_key: vessel - data_key: vessel
data_source: executor data_source: executor
@@ -1798,13 +1803,13 @@ workstation:
- data_key: vessel - data_key: vessel
data_source: handle data_source: handle
data_type: resource data_type: resource
handler_key: vessel handler_key: Vessel
label: Evaporation Vessel label: Evaporation Vessel
output: output:
- data_key: vessel - data_key: vessel
data_source: handle data_source: handle
data_type: resource data_type: resource
handler_key: vessel_out handler_key: VesselOut
label: Evaporation Vessel label: Evaporation Vessel
placeholder_keys: placeholder_keys:
vessel: unilabos_nodes vessel: unilabos_nodes
@@ -2031,7 +2036,7 @@ workstation:
- data_key: filtrate_vessel - data_key: filtrate_vessel
data_source: handle data_source: handle
data_type: resource data_type: resource
handler_key: filtrate_vessel handler_key: FiltrateVessel
label: Filtrate Vessel label: Filtrate Vessel
output: output:
- data_key: vessel - data_key: vessel
@@ -2042,7 +2047,7 @@ workstation:
- data_key: filtrate_vessel - data_key: filtrate_vessel
data_source: executor data_source: executor
data_type: resource data_type: resource
handler_key: filtrate_out handler_key: FiltrateOut
label: Filtrate Vessel label: Filtrate Vessel
placeholder_keys: placeholder_keys:
filtrate_vessel: unilabos_resources filtrate_vessel: unilabos_resources

View File

@@ -1,183 +0,0 @@
zhida_hplc:
category:
- zhida_hplc
class:
action_value_mappings:
abort:
feedback: {}
goal: {}
goal_default: {}
handles: []
result: {}
schema:
description: ''
properties:
feedback:
properties: {}
required: []
title: EmptyIn_Feedback
type: object
goal:
properties: {}
required: []
title: EmptyIn_Goal
type: object
result:
properties:
return_info:
type: string
required:
- return_info
title: EmptyIn_Result
type: object
required:
- goal
title: EmptyIn
type: object
type: EmptyIn
auto-close:
feedback: {}
goal: {}
goal_default: {}
handles: []
result: {}
schema:
description: HPLC设备连接关闭函数。安全地断开与智达HPLC设备的TCP socket连接释放网络资源。该函数确保连接的正确关闭避免网络资源泄露。通常在设备使用完毕或系统关闭时调用。
properties:
feedback: {}
goal:
properties: {}
required: []
type: object
result: {}
required:
- goal
title: close参数
type: object
type: UniLabJsonCommand
auto-connect:
feedback: {}
goal: {}
goal_default: {}
handles: []
result: {}
schema:
description: HPLC设备连接建立函数。与智达HPLC设备建立TCP socket通信连接配置通信超时参数。该函数是设备使用前的必要步骤建立成功后可进行状态查询、方法获取、任务启动等操作。连接失败时会抛出异常。
properties:
feedback: {}
goal:
properties: {}
required: []
type: object
result: {}
required:
- goal
title: connect参数
type: object
type: UniLabJsonCommand
get_methods:
feedback: {}
goal: {}
goal_default: {}
handles: []
result: {}
schema:
description: ''
properties:
feedback:
properties: {}
required: []
title: EmptyIn_Feedback
type: object
goal:
properties: {}
required: []
title: EmptyIn_Goal
type: object
result:
properties:
return_info:
type: string
required:
- return_info
title: EmptyIn_Result
type: object
required:
- goal
title: EmptyIn
type: object
type: EmptyIn
start:
feedback: {}
goal:
string: string
goal_default:
string: ''
handles: []
result: {}
schema:
description: ''
properties:
feedback:
properties: {}
required: []
title: StrSingleInput_Feedback
type: object
goal:
properties:
string:
type: string
required:
- string
title: StrSingleInput_Goal
type: object
result:
properties:
return_info:
type: string
success:
type: boolean
required:
- return_info
- success
title: StrSingleInput_Result
type: object
required:
- goal
title: StrSingleInput
type: object
type: StrSingleInput
module: unilabos.devices.zhida_hplc.zhida:ZhidaClient
status_types:
methods: dict
status: dict
type: python
config_info: []
description: 智达高效液相色谱HPLC分析设备用于实验室样品的分离、检测和定量分析。该设备通过TCP socket与HPLC控制系统通信支持远程控制和状态监控。具备自动进样、梯度洗脱、多检测器数据采集等功能可执行复杂的色谱分析方法。适用于化学分析、药物检测、环境监测、生物样品分析等需要高精度分离分析的实验室应用场景。
handles: []
icon: ''
init_param_schema:
config:
properties:
host:
default: 192.168.1.47
type: string
port:
default: 5792
type: string
timeout:
default: 10.0
type: string
required: []
type: object
data:
properties:
methods:
type: object
status:
type: object
required:
- status
- methods
type: object
version: 1.0.0

View File

@@ -152,11 +152,11 @@ class Registry:
} }
} }
) )
logger.debug(f"[UniLab Registry] ----------Setup----------") logger.trace(f"[UniLab Registry] ----------Setup----------")
self.registry_paths = [Path(path).absolute() for path in self.registry_paths] self.registry_paths = [Path(path).absolute() for path in self.registry_paths]
for i, path in enumerate(self.registry_paths): for i, path in enumerate(self.registry_paths):
sys_path = path.parent sys_path = path.parent
logger.debug(f"[UniLab Registry] Path {i+1}/{len(self.registry_paths)}: {sys_path}") logger.trace(f"[UniLab Registry] Path {i+1}/{len(self.registry_paths)}: {sys_path}")
sys.path.append(str(sys_path)) sys.path.append(str(sys_path))
self.load_device_types(path, complete_registry) self.load_device_types(path, complete_registry)
if BasicConfig.enable_resource_load: if BasicConfig.enable_resource_load:
@@ -215,7 +215,7 @@ class Registry:
yaml.dump(complete_data, f, allow_unicode=True, default_flow_style=False, Dumper=NoAliasDumper) yaml.dump(complete_data, f, allow_unicode=True, default_flow_style=False, Dumper=NoAliasDumper)
self.resource_type_registry.update(data) self.resource_type_registry.update(data)
logger.debug( logger.trace(
f"[UniLab Registry] Resource-{current_resource_number} File-{i+1}/{len(files)} " f"[UniLab Registry] Resource-{current_resource_number} File-{i+1}/{len(files)} "
+ f"Add {list(data.keys())}" + f"Add {list(data.keys())}"
) )
@@ -402,7 +402,7 @@ class Registry:
devices_path = abs_path / "devices" devices_path = abs_path / "devices"
device_comms_path = abs_path / "device_comms" device_comms_path = abs_path / "device_comms"
files = list(devices_path.glob("*.yaml")) + list(device_comms_path.glob("*.yaml")) files = list(devices_path.glob("*.yaml")) + list(device_comms_path.glob("*.yaml"))
logger.debug( logger.trace(
f"[UniLab Registry] devices: {devices_path.exists()}, device_comms: {device_comms_path.exists()}, " f"[UniLab Registry] devices: {devices_path.exists()}, device_comms: {device_comms_path.exists()}, "
+ f"total: {len(files)}" + f"total: {len(files)}"
) )
@@ -447,6 +447,8 @@ class Registry:
if complete_registry: if complete_registry:
device_config["class"]["status_types"].clear() device_config["class"]["status_types"].clear()
enhanced_info = get_enhanced_class_info(device_config["class"]["module"], use_dynamic=True) enhanced_info = get_enhanced_class_info(device_config["class"]["module"], use_dynamic=True)
if not enhanced_info.get("dynamic_import_success", False):
continue
device_config["class"]["status_types"].update( device_config["class"]["status_types"].update(
{k: v["return_type"] for k, v in enhanced_info["status_methods"].items()} {k: v["return_type"] for k, v in enhanced_info["status_methods"].items()}
) )
@@ -565,7 +567,7 @@ class Registry:
} }
device_config["file_path"] = str(file.absolute()).replace("\\", "/") device_config["file_path"] = str(file.absolute()).replace("\\", "/")
device_config["registry_type"] = "device" device_config["registry_type"] = "device"
logger.debug( logger.trace(
f"[UniLab Registry] Device-{current_device_number} File-{i+1}/{len(files)} Add {device_id} " f"[UniLab Registry] Device-{current_device_number} File-{i+1}/{len(files)} Add {device_id} "
+ f"[{data[device_id].get('name', '未命名设备')}]" + f"[{data[device_id].get('name', '未命名设备')}]"
) )

View File

@@ -28,7 +28,7 @@ container:
handler_key: bind handler_key: bind
io_type: target io_type: target
label: bind label: bind
side: SOUTH side: WEST
icon: Flask.webp icon: Flask.webp
init_param_schema: {} init_param_schema: {}
registry_type: resource registry_type: resource

View File

@@ -52,7 +52,7 @@ def main(
visual: str = "disable", visual: str = "disable",
resources_mesh_config: dict = {}, resources_mesh_config: dict = {},
rclpy_init_args: List[str] = ["--log-level", "debug"], rclpy_init_args: List[str] = ["--log-level", "debug"],
discovery_interval: float = 5.0, discovery_interval: float = 15.0,
) -> None: ) -> None:
"""主函数""" """主函数"""

View File

@@ -51,7 +51,7 @@ from unilabos.ros.nodes.resource_tracker import DeviceNodeResourceTracker
from unilabos.ros.x.rclpyx import get_event_loop from unilabos.ros.x.rclpyx import get_event_loop
from unilabos.ros.utils.driver_creator import ProtocolNodeCreator, PyLabRobotCreator, DeviceClassCreator from unilabos.ros.utils.driver_creator import ProtocolNodeCreator, PyLabRobotCreator, DeviceClassCreator
from unilabos.utils.async_util import run_async_func from unilabos.utils.async_util import run_async_func
from unilabos.utils.log import info, debug, warning, error, critical, logger from unilabos.utils.log import info, debug, warning, error, critical, logger, trace
from unilabos.utils.type_check import get_type_class, TypeEncoder, serialize_result_info from unilabos.utils.type_check import get_type_class, TypeEncoder, serialize_result_info
T = TypeVar("T") T = TypeVar("T")
@@ -82,6 +82,7 @@ class ROSLoggerAdapter:
self.level_2_logger_func = { self.level_2_logger_func = {
"info": info, "info": info,
"debug": debug, "debug": debug,
"trace": trace,
"warning": warning, "warning": warning,
"error": error, "error": error,
"critical": critical, "critical": critical,
@@ -96,6 +97,10 @@ class ROSLoggerAdapter:
ros_log_func(msg) ros_log_func(msg)
self.level_2_logger_func[level](msg, *args, stack_level=1, **kwargs) self.level_2_logger_func[level](msg, *args, stack_level=1, **kwargs)
def trace(self, msg, *args, **kwargs):
"""记录TRACE级别日志"""
self._log("trace", msg, *args, **kwargs)
def debug(self, msg, *args, **kwargs): def debug(self, msg, *args, **kwargs):
"""记录DEBUG级别日志""" """记录DEBUG级别日志"""
self._log("debug", msg, *args, **kwargs) self._log("debug", msg, *args, **kwargs)
@@ -175,47 +180,46 @@ class PropertyPublisher:
self.timer = node.create_timer(self.timer_period, self.publish_property) self.timer = node.create_timer(self.timer_period, self.publish_property)
self.__loop = get_event_loop() self.__loop = get_event_loop()
str_msg_type = str(msg_type)[8:-2] str_msg_type = str(msg_type)[8:-2]
self.node.lab_logger().debug(f"发布属性: {name}, 类型: {str_msg_type}, 周期: {initial_period}") self.node.lab_logger().trace(f"发布属性: {name}, 类型: {str_msg_type}, 周期: {initial_period}")
def get_property(self): def get_property(self):
if asyncio.iscoroutinefunction(self.get_method): if asyncio.iscoroutinefunction(self.get_method):
# 如果是异步函数,运行事件循环并等待结果 # 如果是异步函数,运行事件循环并等待结果
self.node.get_logger().debug(f"【PropertyPublisher.get_property】获取异步属性: {self.name}") self.node.lab_logger().trace(f"【PropertyPublisher.get_property】获取异步属性: {self.name}")
loop = self.__loop loop = self.__loop
if loop: if loop:
future = asyncio.run_coroutine_threadsafe(self.get_method(), loop) future = asyncio.run_coroutine_threadsafe(self.get_method(), loop)
self._value = future.result() self._value = future.result()
return self._value return self._value
else: else:
self.node.get_logger().error(f"【PropertyPublisher.get_property】事件循环未初始化") self.node.lab_logger().error(f"【PropertyPublisher.get_property】事件循环未初始化")
return None return None
else: else:
# 如果是同步函数,直接调用并返回结果 # 如果是同步函数,直接调用并返回结果
self.node.get_logger().debug(f"【PropertyPublisher.get_property】获取同步属性: {self.name}") self.node.lab_logger().trace(f"【PropertyPublisher.get_property】获取同步属性: {self.name}")
self._value = self.get_method() self._value = self.get_method()
return self._value return self._value
async def get_property_async(self): async def get_property_async(self):
try: try:
# 获取异步属性值 # 获取异步属性值
self.node.get_logger().debug(f"【PropertyPublisher.get_property_async】异步获取属性: {self.name}") self.node.lab_logger().trace(f"【PropertyPublisher.get_property_async】异步获取属性: {self.name}")
self._value = await self.get_method() self._value = await self.get_method()
except Exception as e: except Exception as e:
self.node.get_logger().error(f"【PropertyPublisher.get_property_async】获取异步属性出错: {str(e)}") self.node.lab_logger().error(f"【PropertyPublisher.get_property_async】获取异步属性出错: {str(e)}")
def publish_property(self): def publish_property(self):
try: try:
self.node.get_logger().debug(f"【PropertyPublisher.publish_property】开始发布属性: {self.name}") self.node.lab_logger().trace(f"【PropertyPublisher.publish_property】开始发布属性: {self.name}")
value = self.get_property() value = self.get_property()
if self.print_publish: if self.print_publish:
self.node.get_logger().info(f"【PropertyPublisher.publish_property】发布 {self.msg_type}: {value}") self.node.lab_logger().trace(f"【PropertyPublisher.publish_property】发布 {self.msg_type}: {value}")
if value is not None: if value is not None:
msg = convert_to_ros_msg(self.msg_type, value) msg = convert_to_ros_msg(self.msg_type, value)
self.publisher_.publish(msg) self.publisher_.publish(msg)
self.node.get_logger().debug(f"【PropertyPublisher.publish_property】属性 {self.name} 发布成功") self.node.lab_logger().trace(f"【PropertyPublisher.publish_property】属性 {self.name} 发布成功")
except Exception as e: except Exception as e:
traceback.print_exc() self.node.lab_logger().error(f"【PropertyPublisher.publish_property】发布属性 {self.publisher_.topic} 出错: {str(e)}\n{traceback.format_exc()}")
self.node.get_logger().error(f"【PropertyPublisher.publish_property】发布属性出错: {str(e)}")
def change_frequency(self, period): def change_frequency(self, period):
# 动态改变定时器频率 # 动态改变定时器频率
@@ -607,7 +611,7 @@ class BaseROS2DeviceNode(Node, Generic[T]):
callback_group=ReentrantCallbackGroup(), callback_group=ReentrantCallbackGroup(),
) )
self.lab_logger().debug(f"发布动作: {action_name}, 类型: {str_action_type}") self.lab_logger().trace(f"发布动作: {action_name}, 类型: {str_action_type}")
def get_real_function(self, instance, attr_name): def get_real_function(self, instance, attr_name):
if hasattr(instance.__class__, attr_name): if hasattr(instance.__class__, attr_name):

View File

@@ -1,3 +1,4 @@
import collections
import copy import copy
import json import json
import threading import threading
@@ -254,7 +255,7 @@ class HostNode(BaseROS2DeviceNode):
检测ROS2网络中的所有设备节点并为它们创建ActionClient 检测ROS2网络中的所有设备节点并为它们创建ActionClient
同时检测设备离线情况 同时检测设备离线情况
""" """
self.lab_logger().debug("[Host Node] Discovering devices in the network...") self.lab_logger().trace("[Host Node] Discovering devices in the network...")
# 获取当前所有设备 # 获取当前所有设备
nodes_and_names = self.get_node_names_and_namespaces() nodes_and_names = self.get_node_names_and_namespaces()
@@ -303,7 +304,7 @@ class HostNode(BaseROS2DeviceNode):
# 更新在线设备列表 # 更新在线设备列表
self._online_devices = current_devices self._online_devices = current_devices
self.lab_logger().debug(f"[Host Node] Total online devices: {len(self._online_devices)}") self.lab_logger().trace(f"[Host Node] Total online devices: {len(self._online_devices)}")
def _discovery_devices_callback(self) -> None: def _discovery_devices_callback(self) -> None:
""" """
@@ -335,7 +336,7 @@ class HostNode(BaseROS2DeviceNode):
self._action_clients[action_id] = ActionClient( self._action_clients[action_id] = ActionClient(
self, action_type, action_id, callback_group=self.callback_group self, action_type, action_id, callback_group=self.callback_group
) )
self.lab_logger().debug(f"[Host Node] Created ActionClient (Discovery): {action_id}") self.lab_logger().trace(f"[Host Node] Created ActionClient (Discovery): {action_id}")
action_name = action_id[len(namespace) + 1 :] action_name = action_id[len(namespace) + 1 :]
edge_device_id = namespace[9:] edge_device_id = namespace[9:]
# from unilabos.app.mq import mqtt_client # from unilabos.app.mq import mqtt_client
@@ -476,7 +477,7 @@ class HostNode(BaseROS2DeviceNode):
if action_id not in self._action_clients: if action_id not in self._action_clients:
action_type = action_value_mapping["type"] action_type = action_value_mapping["type"]
self._action_clients[action_id] = ActionClient(self, action_type, action_id) self._action_clients[action_id] = ActionClient(self, action_type, action_id)
self.lab_logger().debug( self.lab_logger().trace(
f"[Host Node] Created ActionClient (Local): {action_id}" f"[Host Node] Created ActionClient (Local): {action_id}"
) # 子设备再创建用的是Discover发现的 ) # 子设备再创建用的是Discover发现的
# from unilabos.app.mq import mqtt_client # from unilabos.app.mq import mqtt_client
@@ -521,7 +522,7 @@ class HostNode(BaseROS2DeviceNode):
self.device_status_timestamps[device_id] = {} self.device_status_timestamps[device_id] = {}
# 默认初始化属性值为 None # 默认初始化属性值为 None
self.device_status[device_id][property_name] = None self.device_status[device_id] = collections.defaultdict()
self.device_status_timestamps[device_id][property_name] = 0 # 初始化时间戳 self.device_status_timestamps[device_id][property_name] = 0 # 初始化时间戳
# 动态创建订阅 # 动态创建订阅
@@ -539,7 +540,7 @@ class HostNode(BaseROS2DeviceNode):
) )
# 标记为已订阅 # 标记为已订阅
self._subscribed_topics.add(topic) self._subscribed_topics.add(topic)
self.lab_logger().debug(f"[Host Node] Subscribed to new topic: {topic}") self.lab_logger().trace(f"[Host Node] Subscribed to new topic: {topic}")
except (NameError, SyntaxError) as e: except (NameError, SyntaxError) as e:
self.lab_logger().error(f"[Host Node] Failed to create subscription for topic {topic}: {e}") self.lab_logger().error(f"[Host Node] Failed to create subscription for topic {topic}: {e}")
@@ -557,10 +558,15 @@ class HostNode(BaseROS2DeviceNode):
# 更新设备状态字典 # 更新设备状态字典
if hasattr(msg, "data"): if hasattr(msg, "data"):
bChange = False bChange = False
bCreate = False
if isinstance(msg.data, (float, int, str)): if isinstance(msg.data, (float, int, str)):
if self.device_status[device_id][property_name] != msg.data: if property_name not in self.device_status[device_id]:
bCreate = True
bChange = True bChange = True
self.device_status[device_id][property_name] = msg.data self.device_status[device_id][property_name] = msg.data
elif self.device_status[device_id][property_name] != msg.data:
bChange = True
self.device_status[device_id][property_name] = msg.data
# 更新时间戳 # 更新时间戳
self.device_status_timestamps[device_id][property_name] = time.time() self.device_status_timestamps[device_id][property_name] = time.time()
else: else:
@@ -573,9 +579,14 @@ class HostNode(BaseROS2DeviceNode):
for bridge in self.bridges: for bridge in self.bridges:
if hasattr(bridge, "publish_device_status"): if hasattr(bridge, "publish_device_status"):
bridge.publish_device_status(self.device_status, device_id, property_name) bridge.publish_device_status(self.device_status, device_id, property_name)
self.lab_logger().debug( if bCreate:
f"[Host Node] Status updated: {device_id}.{property_name} = {msg.data}" self.lab_logger().trace(
) f"Status created: {device_id}.{property_name} = {msg.data}"
)
else:
self.lab_logger().debug(
f"Status updated: {device_id}.{property_name} = {msg.data}"
)
def send_goal( def send_goal(
self, self,

View File

@@ -88,6 +88,9 @@ class ROS2ProtocolNode(BaseROS2DeviceNode):
if device_config.get("type", "device") != "device": if device_config.get("type", "device") != "device":
continue continue
# 设置硬件接口代理 # 设置硬件接口代理
if device_id not in self.sub_devices:
self.lab_logger().error(f"[Protocol Node] {device_id} 还没有正确初始化,跳过...")
continue
d = self.sub_devices[device_id] d = self.sub_devices[device_id]
if d: if d:
hardware_interface = d.ros_node_instance._hardware_interface hardware_interface = d.ros_node_instance._hardware_interface
@@ -151,7 +154,7 @@ class ROS2ProtocolNode(BaseROS2DeviceNode):
except Exception as ex: except Exception as ex:
self.lab_logger().error(f"创建动作客户端失败: {action_id}, 错误: {ex}") self.lab_logger().error(f"创建动作客户端失败: {action_id}, 错误: {ex}")
continue continue
self.lab_logger().debug(f"为子设备 {device_id} 创建动作客户端: {action_name}") self.lab_logger().trace(f"为子设备 {device_id} 创建动作客户端: {action_name}")
return d return d
def create_ros_action_server(self, action_name, action_value_mapping): def create_ros_action_server(self, action_name, action_value_mapping):
@@ -171,7 +174,7 @@ class ROS2ProtocolNode(BaseROS2DeviceNode):
callback_group=ReentrantCallbackGroup(), callback_group=ReentrantCallbackGroup(),
) )
self.lab_logger().debug(f"发布动作: {action_name}, 类型: {str_action_type}") self.lab_logger().trace(f"发布动作: {action_name}, 类型: {str_action_type}")
def _create_protocol_execute_callback(self, protocol_name, protocol_steps_generator): def _create_protocol_execute_callback(self, protocol_name, protocol_steps_generator):
async def execute_protocol(goal_handle: ServerGoalHandle): async def execute_protocol(goal_handle: ServerGoalHandle):

View File

@@ -7,6 +7,10 @@ import atexit
import inspect import inspect
from typing import Tuple, cast from typing import Tuple, cast
# 添加TRACE级别到logging模块
TRACE_LEVEL = 5
logging.addLevelName(TRACE_LEVEL, "TRACE")
class CustomRecord: class CustomRecord:
custom_stack_info: Tuple[str, int, str, str] custom_stack_info: Tuple[str, int, str, str]
@@ -44,11 +48,13 @@ class ColoredFormatter(logging.Formatter):
"GRAY": "\033[37m", # 灰色 "GRAY": "\033[37m", # 灰色
"WHITE": "\033[97m", # 白色 "WHITE": "\033[97m", # 白色
"BLACK": "\033[30m", # 黑色 "BLACK": "\033[30m", # 黑色
"TRACE_LEVEL": "\033[1;90m", # 加粗深灰色
"DEBUG_LEVEL": "\033[1;36m", # 加粗青色 "DEBUG_LEVEL": "\033[1;36m", # 加粗青色
"INFO_LEVEL": "\033[1;32m", # 加粗绿色 "INFO_LEVEL": "\033[1;32m", # 加粗绿色
"WARNING_LEVEL": "\033[1;33m", # 加粗黄色 "WARNING_LEVEL": "\033[1;33m", # 加粗黄色
"ERROR_LEVEL": "\033[1;31m", # 加粗红色 "ERROR_LEVEL": "\033[1;31m", # 加粗红色
"CRITICAL_LEVEL": "\033[1;35m", # 加粗紫色 "CRITICAL_LEVEL": "\033[1;35m", # 加粗紫色
"TRACE_TEXT": "\033[90m", # 深灰色
"DEBUG_TEXT": "\033[37m", # 灰色 "DEBUG_TEXT": "\033[37m", # 灰色
"INFO_TEXT": "\033[97m", # 白色 "INFO_TEXT": "\033[97m", # 白色
"WARNING_TEXT": "\033[33m", # 黄色 "WARNING_TEXT": "\033[33m", # 黄色
@@ -148,8 +154,8 @@ def configure_logger(loglevel=None):
"""配置日志记录器 """配置日志记录器
Args: Args:
loglevel: 日志级别,可以是字符串('DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL' loglevel: 日志级别,可以是字符串('TRACE', 'DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'
或logging模块的常量如logging.DEBUG 或logging模块的常量如logging.DEBUG或TRACE_LEVEL
""" """
# 获取根日志记录器 # 获取根日志记录器
root_logger = logging.getLogger() root_logger = logging.getLogger()
@@ -158,10 +164,13 @@ def configure_logger(loglevel=None):
if loglevel is not None: if loglevel is not None:
if isinstance(loglevel, str): if isinstance(loglevel, str):
# 将字符串转换为logging级别 # 将字符串转换为logging级别
numeric_level = getattr(logging, loglevel.upper(), None) if loglevel.upper() == "TRACE":
if not isinstance(numeric_level, int): numeric_level = TRACE_LEVEL
print(f"警告: 无效的日志级别 '{loglevel}',使用默认级别 DEBUG") else:
numeric_level = logging.DEBUG numeric_level = getattr(logging, loglevel.upper(), None)
if not isinstance(numeric_level, int):
print(f"警告: 无效的日志级别 '{loglevel}',使用默认级别 DEBUG")
numeric_level = logging.DEBUG
else: else:
numeric_level = loglevel numeric_level = loglevel
root_logger.setLevel(numeric_level) root_logger.setLevel(numeric_level)
@@ -318,9 +327,29 @@ def critical(msg, *args, stack_level=0, **kwargs):
logger.critical(msg, *args, **kwargs) logger.critical(msg, *args, **kwargs)
def trace(msg, *args, stack_level=0, **kwargs):
"""
记录TRACE级别日志比DEBUG级别更低
Args:
msg: 日志消息
stack_level: 堆栈回溯级别,用于定位日志的实际调用位置
*args, **kwargs: 传递给logger.log的其他参数
"""
if stack_level > 0:
caller_info = _get_caller_info(stack_level)
extra = kwargs.get("extra", {})
extra["custom_stack_info"] = caller_info
kwargs["extra"] = extra
logger.log(TRACE_LEVEL, msg, *args, **kwargs)
logger.trace = trace
# 测试日志输出(如果直接运行此文件) # 测试日志输出(如果直接运行此文件)
if __name__ == "__main__": if __name__ == "__main__":
print("测试不同日志级别的颜色输出:") print("测试不同日志级别的颜色输出:")
trace("这是一条跟踪日志 (TRACE级别显示为深灰色其他文本也为深灰色)")
debug("这是一条调试日志 (DEBUG级别显示为蓝色其他文本为灰色)") debug("这是一条调试日志 (DEBUG级别显示为蓝色其他文本为灰色)")
info("这是一条信息日志 (INFO级别显示为绿色其他文本为白色)") info("这是一条信息日志 (INFO级别显示为绿色其他文本为白色)")
warning("这是一条警告日志 (WARNING级别显示为黄色其他文本也为黄色)") warning("这是一条警告日志 (WARNING级别显示为黄色其他文本也为黄色)")