import numpy as np import networkx as nx def generate_pump_protocol( G: nx.DiGraph, from_vessel: str, to_vessel: str, volume: float, flowrate: float = 0.5, transfer_flowrate: float = 0, ) -> list[dict]: """ 生成泵操作的动作序列。 :param G: 有向图, 节点为容器和注射泵, 边为流体管道, A→B边的属性为管道接A端的阀门位置 :param from_vessel: 容器A :param to_vessel: 容器B :param volume: 转移的体积 :param flowrate: 最终注入容器B时的流速 :param transfer_flowrate: 泵骨架中转移流速(若不指定,默认与注入流速相同) :return: 泵操作的动作序列 """ # 生成泵操作的动作序列 pump_action_sequence = [] # 检查节点是否存在 if from_vessel not in G.nodes: print(f"Warning: Source vessel '{from_vessel}' not found in graph. Skipping.") return [] if to_vessel not in G.nodes: print(f"Warning: Target vessel '{to_vessel}' not found in graph. Skipping.") return [] # 检查是否存在路径 try: shortest_path = nx.shortest_path(G, source=from_vessel, target=to_vessel) except nx.NetworkXNoPath: print(f"Warning: No path from '{from_vessel}' to '{to_vessel}'. Skipping.") return [] except nx.NodeNotFound as e: print(f"Warning: Node not found: {e}. Skipping.") return [] print(f"Shortest path: {shortest_path}") pump_backbone = shortest_path if not from_vessel.startswith("pump"): pump_backbone = pump_backbone[1:] if not to_vessel.startswith("pump"): pump_backbone = pump_backbone[:-1] print(f"Pump backbone: {pump_backbone}") # 修复:检查pump_backbone是否为空 if not pump_backbone: print(f"Warning: No pumps found in path from '{from_vessel}' to '{to_vessel}'. Skipping.") return [] if transfer_flowrate == 0: transfer_flowrate = flowrate # 修复:正确访问节点数据 pump_max_volumes = [] for pump in pump_backbone: # 直接使用 G.nodes[pump] 来访问节点数据 pump_data = G.nodes[pump] if pump in G.nodes else {} # 尝试多种可能的键名,并提供默认值 max_vol = pump_data.get('max_volume') or pump_data.get('max_vol') or pump_data.get('volume') if max_vol is None: # 如果是设备节点,尝试从config中获取 config = pump_data.get('config', {}) max_vol = config.get('max_volume', 25.0) pump_max_volumes.append(float(max_vol)) if pump_max_volumes: min_transfer_volume = min(pump_max_volumes) else: min_transfer_volume = 25.0 # 默认值 repeats = int(np.ceil(volume / min_transfer_volume)) if repeats > 1 and (from_vessel.startswith("pump") or to_vessel.startswith("pump")): raise ValueError("Cannot transfer volume larger than min_transfer_volume between two pumps.") volume_left = volume # 生成泵操作的动作序列 for i in range(repeats): # 单泵依次执行阀指令、活塞指令,将液体吸入与之相连的第一台泵 if not from_vessel.startswith("pump") and pump_backbone: # 修复:添加边缘数据检查 edge_data = G.get_edge_data(pump_backbone[0], from_vessel) if edge_data and "port" in edge_data: pump_action_sequence.extend([ { "device_id": pump_backbone[0], "action_name": "set_valve_position", "action_kwargs": { "command": edge_data["port"][pump_backbone[0]] } }, { "device_id": pump_backbone[0], "action_name": "set_position", "action_kwargs": { "position": float(min(volume_left, min_transfer_volume)), "max_velocity": transfer_flowrate } } ]) pump_action_sequence.append({"action_name": "wait", "action_kwargs": {"time": 5}}) else: print(f"Warning: No edge data found between {pump_backbone[0]} and {from_vessel}") # 修复:检查pump_backbone长度,避免多泵操作时出错 if len(pump_backbone) > 1: for pumpA, pumpB in zip(pump_backbone[:-1], pump_backbone[1:]): # 相邻两泵同时切换阀门至连通位置 edge_AB = G.get_edge_data(pumpA, pumpB) edge_BA = G.get_edge_data(pumpB, pumpA) if edge_AB and "port" in edge_AB and edge_BA and "port" in edge_BA: pump_action_sequence.append([ { "device_id": pumpA, "action_name": "set_valve_position", "action_kwargs": { "command": edge_AB["port"][pumpA] } }, { "device_id": pumpB, "action_name": "set_valve_position", "action_kwargs": { "command": edge_BA["port"][pumpB], } } ]) # 相邻两泵液体转移:泵A排出液体,泵B吸入液体 pump_action_sequence.append([ { "device_id": pumpA, "action_name": "set_position", "action_kwargs": { "position": 0.0, "max_velocity": transfer_flowrate } }, { "device_id": pumpB, "action_name": "set_position", "action_kwargs": { "position": float(min(volume_left, min_transfer_volume)), "max_velocity": transfer_flowrate } } ]) pump_action_sequence.append({"action_name": "wait", "action_kwargs": {"time": 5}}) else: print(f"Warning: No edge data found between {pumpA} and {pumpB}") if not to_vessel.startswith("pump") and pump_backbone: # 单泵依次执行阀指令、活塞指令,将最后一台泵液体缓慢加入容器B edge_data = G.get_edge_data(pump_backbone[-1], to_vessel) if edge_data and "port" in edge_data: pump_action_sequence.extend([ { "device_id": pump_backbone[-1], "action_name": "set_valve_position", "action_kwargs": { "command": edge_data["port"][pump_backbone[-1]] } }, { "device_id": pump_backbone[-1], "action_name": "set_position", "action_kwargs": { "position": 0.0, "max_velocity": flowrate } } ]) pump_action_sequence.append({"action_name": "wait", "action_kwargs": {"time": 5}}) else: print(f"Warning: No edge data found between {pump_backbone[-1]} and {to_vessel}") volume_left -= min_transfer_volume return pump_action_sequence # Pump protocol compilation def generate_pump_protocol_with_rinsing( G: nx.DiGraph, from_vessel: str, to_vessel: str, volume: float, amount: str = "", time: float = 0, viscous: bool = False, rinsing_solvent: str = "air", rinsing_volume: float = 5.0, rinsing_repeats: int = 2, solid: bool = False, flowrate: float = 2.5, transfer_flowrate: float = 0.5, ) -> list[dict]: """ Generates a pump protocol for transferring a specified volume between vessels, including rinsing steps with a chosen solvent. This function constructs a sequence of pump actions based on the provided parameters and the shortest path in a directed graph. Args: G (nx.DiGraph): The directed graph representing the vessels and connections. 有向图, 节点为容器和注射泵, 边为流体管道, A→B边的属性为管道接A端的阀门位置 from_vessel (str): The name of the vessel to transfer from. to_vessel (str): The name of the vessel to transfer to. volume (float): The volume to transfer. amount (str, optional): Additional amount specification (default is ""). time (float, optional): Time over which to perform the transfer (default is 0). viscous (bool, optional): Indicates if the fluid is viscous (default is False). rinsing_solvent (str, optional): The solvent to use for rinsing (default is "air"). rinsing_volume (float, optional): The volume of rinsing solvent to use (default is 5.0). rinsing_repeats (int, optional): The number of times to repeat rinsing (default is 2). solid (bool, optional): Indicates if the transfer involves a solid (default is False). flowrate (float, optional): The flow rate for the transfer (default is 2.5). 最终注入容器B时的流速 transfer_flowrate (float, optional): The flow rate for the transfer action (default is 0.5). 泵骨架中转移流速(若不指定,默认与注入流速相同) Returns: list[dict]: A sequence of pump actions to be executed for the transfer and rinsing process. 泵操作的动作序列. Raises: AssertionError: If the number of rinsing solvents does not match the number of rinsing repeats. Examples: pump_protocol = generate_pump_protocol_with_rinsing(G, "vessel_A", "vessel_B", 0.1, rinsing_solvent="water") """ # 修复:使用实际存在的节点名称 air_vessel = "flask_air" # 这个在你的配置中存在 # 寻找合适的废料容器,如果没有找到则使用空的容器作为替代 waste_vessel = None available_vessels = [node for node in G.nodes if node.startswith("flask_") and node != air_vessel] if available_vessels: # 使用第一个可用的容器作为废料容器 waste_vessel = available_vessels[0] print(f"Using {waste_vessel} as waste vessel") else: waste_vessel = "flask_1" # 备用选择 # 修复:添加路径检查 try: shortest_path = nx.shortest_path(G, source=from_vessel, target=to_vessel) pump_backbone = shortest_path[1: -1] except (nx.NetworkXNoPath, nx.NodeNotFound) as e: print(f"Warning: Cannot find path from {from_vessel} to {to_vessel}: {e}") return [] # 修复:正确访问节点数据 pump_max_volumes = [] for pump in pump_backbone: # 直接使用 G.nodes[pump] 来访问节点数据 pump_data = G.nodes[pump] if pump in G.nodes else {} # 尝试多种可能的键名,并提供默认值 max_vol = pump_data.get('max_volume') or pump_data.get('max_vol') or pump_data.get('volume') if max_vol is None: # 如果是设备节点,尝试从config中获取 config = pump_data.get('config', {}) max_vol = config.get('max_volume', 25.0) pump_max_volumes.append(float(max_vol)) if pump_max_volumes: min_transfer_volume = float(min(pump_max_volumes)) else: min_transfer_volume = 25.0 # 默认值 if time != 0: flowrate = transfer_flowrate = volume / time pump_action_sequence = generate_pump_protocol(G, from_vessel, to_vessel, float(volume), flowrate, transfer_flowrate) # 修复:只在需要清洗且相关节点存在时才执行清洗步骤 if rinsing_solvent != "air" and pump_backbone: if "," in rinsing_solvent: rinsing_solvents = rinsing_solvent.split(",") assert len(rinsing_solvents) == rinsing_repeats, "Number of rinsing solvents must match number of rinsing repeats." else: rinsing_solvents = [rinsing_solvent] * rinsing_repeats for rinsing_solvent in rinsing_solvents: solvent_vessel = f"flask_{rinsing_solvent}" # 检查溶剂容器是否存在 if solvent_vessel not in G.nodes: print(f"Warning: Solvent vessel '{solvent_vessel}' not found in graph. Skipping rinsing step.") continue # 清洗泵 - 只有当所有必需的节点都存在且pump_backbone不为空时才执行 if pump_backbone and len(pump_backbone) > 0 and waste_vessel in G.nodes: pump_action_sequence.extend( generate_pump_protocol(G, solvent_vessel, pump_backbone[0], min_transfer_volume, flowrate, transfer_flowrate) + generate_pump_protocol(G, pump_backbone[0], pump_backbone[-1], min_transfer_volume, flowrate, transfer_flowrate) + generate_pump_protocol(G, pump_backbone[-1], waste_vessel, min_transfer_volume, flowrate, transfer_flowrate) ) # 如果转移的是溶液,第一种冲洗溶剂请选用溶液的溶剂,稀释泵内、转移管道内的溶液。后续冲洗溶剂不需要此操作。 if rinsing_solvent == rinsing_solvents[0]: pump_action_sequence.extend(generate_pump_protocol(G, solvent_vessel, from_vessel, rinsing_volume, flowrate, transfer_flowrate)) pump_action_sequence.extend(generate_pump_protocol(G, solvent_vessel, to_vessel, rinsing_volume, flowrate, transfer_flowrate)) pump_action_sequence.extend(generate_pump_protocol(G, air_vessel, solvent_vessel, rinsing_volume, flowrate, transfer_flowrate)) pump_action_sequence.extend(generate_pump_protocol(G, air_vessel, waste_vessel, rinsing_volume, flowrate, transfer_flowrate)) # 最后的空气清洗 - 只有当节点存在时才执行 if air_vessel in G.nodes: pump_action_sequence.extend(generate_pump_protocol(G, air_vessel, from_vessel, rinsing_volume, flowrate, transfer_flowrate) * 2) pump_action_sequence.extend(generate_pump_protocol(G, air_vessel, to_vessel, rinsing_volume, flowrate, transfer_flowrate) * 2) return pump_action_sequence # End Protocols