mirror of
https://github.com/dptech-corp/Uni-Lab-OS.git
synced 2025-12-15 13:44:39 +00:00
496 lines
19 KiB
Python
496 lines
19 KiB
Python
import importlib
|
||
import inspect
|
||
import json
|
||
from typing import Union
|
||
import numpy as np
|
||
import networkx as nx
|
||
|
||
try:
|
||
from pylabrobot.resources.resource import Resource as ResourcePLR
|
||
except ImportError:
|
||
pass
|
||
from typing import Union, get_origin, get_args
|
||
|
||
physical_setup_graph: nx.Graph = None
|
||
|
||
|
||
def canonicalize_nodes_data(data: dict, parent_relation: dict = {}) -> dict:
|
||
for node in data.get("nodes", []):
|
||
if node.get("label") is not None:
|
||
id = node.pop("label")
|
||
node["id"] = node["name"] = id
|
||
if "id" not in node:
|
||
node["id"] = node.get("name", "NaN")
|
||
if "name" not in node:
|
||
node["name"] = node["id"]
|
||
if node.get("position") is None:
|
||
node["position"] = {
|
||
"x": node.pop("x", 0.0),
|
||
"y": node.pop("y", 0.0),
|
||
"z": node.pop("z", 0.0),
|
||
}
|
||
if node.get("config") is None:
|
||
node["config"] = {}
|
||
node["data"] = {}
|
||
for k in list(node.keys()):
|
||
if k not in [
|
||
"id",
|
||
"name",
|
||
"class",
|
||
"type",
|
||
"position",
|
||
"children",
|
||
"parent",
|
||
"config",
|
||
"data",
|
||
]:
|
||
if k in ["chemical", "current_volume"]:
|
||
if node["data"].get("liquids") is None:
|
||
node["data"]["liquids"] = [{}]
|
||
if k == "chemical":
|
||
node["data"]["liquids"][0]["liquid_name"] = node.pop(k)
|
||
elif k == "current_volume":
|
||
node["data"]["liquids"][0]["liquid_volume"] = node.pop(k)
|
||
elif k == "max_volume":
|
||
node["data"]["max_volume"] = node.pop(k)
|
||
elif k == "url":
|
||
node.pop(k)
|
||
else:
|
||
node["config"][k] = node.pop(k)
|
||
if "class" not in node:
|
||
node["class"] = None
|
||
if "type" not in node:
|
||
node["type"] = (
|
||
"container"
|
||
if node["class"] is None
|
||
else "device" if node["class"] not in ["container", "plate"] else node["class"]
|
||
)
|
||
if "children" not in node:
|
||
node["children"] = []
|
||
|
||
id2idx = {node_data["id"]: idx for idx, node_data in enumerate(data["nodes"])}
|
||
for parent, children in parent_relation.items():
|
||
data["nodes"][id2idx[parent]]["children"] = children
|
||
for child in children:
|
||
data["nodes"][id2idx[child]]["parent"] = parent
|
||
return data
|
||
|
||
|
||
def canonicalize_links_ports(data: dict) -> dict:
|
||
# 第一遍处理:将字符串类型的port转换为字典格式
|
||
for link in data.get("links", []):
|
||
port = link.get("port")
|
||
if isinstance(port, int):
|
||
port = str(port)
|
||
if isinstance(port, str):
|
||
port_str = port.strip()
|
||
if port_str.startswith("(") and port_str.endswith(")"):
|
||
# 处理格式为 "(A,B)" 的情况
|
||
content = port_str[1:-1].strip()
|
||
parts = [p.strip() for p in content.split(",", 1)]
|
||
source_port = parts[0]
|
||
dest_port = parts[1] if len(parts) > 1 else None
|
||
else:
|
||
# 处理格式为 "A" 的情况
|
||
source_port = port_str
|
||
dest_port = None
|
||
link["port"] = {link["source"]: source_port, link["target"]: dest_port}
|
||
elif not isinstance(port, dict):
|
||
# 若port既非字符串也非字典,初始化为空结构
|
||
link["port"] = {link["source"]: None, link["target"]: None}
|
||
|
||
# 构建边字典,键为(source节点, target节点),值为对应的port信息
|
||
edges = {(link["source"], link["target"]): link["port"] for link in data.get("links", [])}
|
||
|
||
# 第二遍处理:填充反向边的dest信息
|
||
delete_reverses = []
|
||
for i, link in enumerate(data.get("links", [])):
|
||
s, t = link["source"], link["target"]
|
||
current_port = link["port"]
|
||
if current_port.get(t) is None:
|
||
reverse_key = (t, s)
|
||
reverse_port = edges.get(reverse_key)
|
||
if reverse_port:
|
||
reverse_source = reverse_port.get(s)
|
||
if reverse_source is not None:
|
||
# 设置当前边的dest为反向边的source
|
||
current_port[t] = reverse_source
|
||
delete_reverses.append(i)
|
||
else:
|
||
# 若不存在反向边,初始化为空结构
|
||
current_port[t] = current_port[s]
|
||
# 删除已被使用反向端口信息的反向边
|
||
data["links"] = [link for i, link in enumerate(data.get("links", [])) if i not in delete_reverses]
|
||
|
||
return data
|
||
|
||
|
||
def handle_communications(G: nx.Graph):
|
||
available_communication_types = ["serial", "io_device", "plc", "io"]
|
||
for e, edata in G.edges.items():
|
||
if edata.get("type", "physical") != "communication":
|
||
continue
|
||
if G.nodes[e[0]].get("class") in available_communication_types:
|
||
device_comm, device = e[0], e[1]
|
||
elif G.nodes[e[1]].get("class") in available_communication_types:
|
||
device_comm, device = e[1], e[0]
|
||
else:
|
||
continue
|
||
|
||
if G.nodes[device_comm].get("class") == "serial":
|
||
G.nodes[device]["config"]["port"] = device_comm
|
||
elif G.nodes[device_comm].get("class") == "io_device":
|
||
print(f'!!! Modify {device}\'s io_device_port to {edata["port"][device_comm]}')
|
||
G.nodes[device]["config"]["io_device_port"] = int(edata["port"][device_comm])
|
||
|
||
|
||
def read_node_link_json(json_file):
|
||
global physical_setup_graph
|
||
|
||
data = json.load(open(json_file, encoding="utf-8"))
|
||
data = canonicalize_nodes_data(data)
|
||
data = canonicalize_links_ports(data)
|
||
|
||
physical_setup_graph = nx.node_link_graph(data, multigraph=False) # edges="links" 3.6 warning
|
||
handle_communications(physical_setup_graph)
|
||
return physical_setup_graph
|
||
|
||
|
||
def read_graphml(graphml_file):
|
||
global physical_setup_graph
|
||
|
||
G = nx.read_graphml(graphml_file)
|
||
mapping = {}
|
||
parent_relation = {}
|
||
for node in G.nodes():
|
||
label = G.nodes[node].pop("label", G.nodes[node].get("id", G.nodes[node].get("name", "NaN")))
|
||
mapping[node] = label
|
||
if "::" in node:
|
||
parent = mapping[node.split("::")[0]]
|
||
if parent not in parent_relation:
|
||
parent_relation[parent] = []
|
||
parent_relation[parent].append(label)
|
||
|
||
G2 = nx.relabel_nodes(G, mapping)
|
||
data = nx.node_link_data(G2)
|
||
data = canonicalize_nodes_data(data, parent_relation=parent_relation)
|
||
data = canonicalize_links_ports(data)
|
||
|
||
physical_setup_graph = nx.node_link_graph(data, edges="links", multigraph=False) # edges="links" 3.6 warning
|
||
handle_communications(physical_setup_graph)
|
||
return physical_setup_graph
|
||
|
||
|
||
def dict_from_graph(graph: nx.Graph) -> dict:
|
||
nodes_copy = {node_id: {"id": node_id, **node} for node_id, node in graph.nodes(data=True)}
|
||
return nodes_copy
|
||
|
||
|
||
def dict_to_tree(nodes: dict, devices_only: bool = False) -> list[dict]:
|
||
# 将节点转换为字典,以便通过 ID 快速查找
|
||
nodes_list = [node for node in nodes.values() if node.get("type") == "device" or not devices_only]
|
||
|
||
# 初始化每个节点的 children 为包含节点字典的列表
|
||
for node in nodes_list:
|
||
node["children"] = [nodes[child_id] for child_id in node.get("children", [])]
|
||
|
||
# 找到根节点并返回
|
||
root_nodes = [
|
||
node for node in nodes_list if len(nodes_list) == 1 or node.get("parent", node.get("parent_name")) in [None, "", "None", np.nan]
|
||
]
|
||
|
||
# 如果存在多个根节点,返回所有根节点
|
||
return root_nodes
|
||
|
||
|
||
def dict_to_nested_dict(nodes: dict, devices_only: bool = False) -> dict:
|
||
# 将节点转换为字典,以便通过 ID 快速查找
|
||
nodes_list = [node for node in nodes.values() if node.get("type") == "device" or not devices_only]
|
||
|
||
# 初始化每个节点的 children 为包含节点字典的列表
|
||
for node in nodes_list:
|
||
node["children"] = {
|
||
child_id: nodes[child_id]
|
||
for child_id in node.get("children", [])
|
||
if nodes[child_id].get("type") == "device" or not devices_only
|
||
}
|
||
if len(node["children"]) > 0 and node["type"].lower() == "device" and devices_only:
|
||
node["config"]["children"] = node["children"]
|
||
|
||
# 找到根节点并返回
|
||
root_nodes = {
|
||
node["id"]: node
|
||
for node in nodes_list
|
||
if node.get("parent", node.get("parent_name")) in [None, "", "None", np.nan]
|
||
}
|
||
|
||
# 如果存在多个根节点,返回所有根节点
|
||
return root_nodes
|
||
|
||
|
||
def list_to_nested_dict(nodes: list[dict]) -> dict:
|
||
nodes_dict = {node["id"]: node for node in nodes}
|
||
return dict_to_nested_dict(nodes_dict)
|
||
|
||
|
||
def tree_to_list(tree: list[dict]) -> list[dict]:
|
||
def _tree_to_list(tree: list[dict], result: list[dict]):
|
||
for node_ in tree:
|
||
node = node_.copy()
|
||
result.append(node)
|
||
if node.get("children"):
|
||
_tree_to_list(node["children"], result)
|
||
node["children"] = [n["id"] for n in node["children"]]
|
||
|
||
result = []
|
||
_tree_to_list(tree, result)
|
||
return result
|
||
|
||
|
||
def nested_dict_to_list(nested_dict: dict) -> list[dict]: # FIXME 是tree?
|
||
"""
|
||
将嵌套字典转换为扁平列表
|
||
|
||
嵌套字典的层次结构将通过children属性表示
|
||
|
||
Args:
|
||
nested_dict: 嵌套的字典结构
|
||
|
||
Returns:
|
||
扁平化的字典列表
|
||
"""
|
||
result = []
|
||
|
||
# 如果输入本身是一个节点,先添加它
|
||
if "id" in nested_dict:
|
||
node = nested_dict.copy()
|
||
# 暂存子节点
|
||
children_dict = node.get("children", {})
|
||
# 如果children是字典,将其转换为键列表
|
||
if isinstance(children_dict, dict):
|
||
node["children"] = list(children_dict.keys())
|
||
elif not isinstance(children_dict, list):
|
||
node["children"] = []
|
||
result.append(node)
|
||
|
||
# 处理子节点字典
|
||
if isinstance(children_dict, dict):
|
||
for child_id, child_data in children_dict.items():
|
||
if isinstance(child_data, dict):
|
||
# 为子节点添加ID(如果不存在)
|
||
if "id" not in child_data:
|
||
child_data["id"] = child_id
|
||
# 递归处理子节点
|
||
result.extend(nested_dict_to_list(child_data))
|
||
|
||
# 处理children字段
|
||
elif "children" in nested_dict:
|
||
children_dict = nested_dict.get("children", {})
|
||
if isinstance(children_dict, dict):
|
||
for child_id, child_data in children_dict.items():
|
||
if isinstance(child_data, dict):
|
||
# 为子节点添加ID(如果不存在)
|
||
if "id" not in child_data:
|
||
child_data["id"] = child_id
|
||
# 递归处理子节点
|
||
result.extend(nested_dict_to_list(child_data))
|
||
|
||
return result
|
||
|
||
def convert_resources_to_type(
|
||
resources_list: list[dict], resource_type: type, *, plr_model: bool = False
|
||
) -> Union[list[dict], dict, None, "ResourcePLR"]:
|
||
"""
|
||
Convert resources to a given type (PyLabRobot or NestedDict) from flattened list of dictionaries.
|
||
|
||
Args:
|
||
resources: List of resources in the flattened dictionary format.
|
||
resource_type: Type of the resources to convert to.
|
||
plr_model: 是否有plr_model类型
|
||
|
||
Returns:
|
||
List of resources in the given type.
|
||
"""
|
||
if resource_type == dict:
|
||
return list_to_nested_dict(resources_list)
|
||
elif isinstance(resource_type, type) and issubclass(resource_type, ResourcePLR):
|
||
if isinstance(resources_list, dict):
|
||
return resource_ulab_to_plr(resources_list, plr_model)
|
||
resources_tree = dict_to_tree({r["id"]: r for r in resources_list})
|
||
return resource_ulab_to_plr(resources_tree[0], plr_model)
|
||
elif isinstance(resource_type, list) :
|
||
if all((get_origin(t) is Union) for t in resource_type):
|
||
resources_tree = dict_to_tree({r["id"]: r for r in resources_list})
|
||
return [resource_ulab_to_plr(r, plr_model) for r in resources_tree]
|
||
elif all(issubclass(t, ResourcePLR) for t in resource_type):
|
||
resources_tree = dict_to_tree({r["id"]: r for r in resources_list})
|
||
return [resource_ulab_to_plr(r, plr_model) for r in resources_tree]
|
||
|
||
|
||
else:
|
||
return None
|
||
|
||
|
||
def convert_resources_from_type(resources_list, resource_type: type) -> Union[list[dict], dict, None, "ResourcePLR"]:
|
||
"""
|
||
Convert resources from a given type (PyLabRobot or NestedDict) to flattened list of dictionaries.
|
||
|
||
Args:
|
||
resources_list: List of resources in the given type.
|
||
resource_type: Type of the resources to convert from.
|
||
|
||
Returns:
|
||
List of resources in the flattened dictionary format.
|
||
"""
|
||
if resource_type == dict:
|
||
return nested_dict_to_list(resources_list)
|
||
elif isinstance(resource_type, type) and issubclass(resource_type, ResourcePLR):
|
||
resources_tree = [resource_plr_to_ulab(resources_list)]
|
||
return tree_to_list(resources_tree)
|
||
elif isinstance(resource_type, list) :
|
||
if all((get_origin(t) is Union) for t in resource_type):
|
||
resources_tree = [resource_plr_to_ulab(r) for r in resources_list]
|
||
return tree_to_list(resources_tree)
|
||
elif all(issubclass(t, ResourcePLR) for t in resource_type):
|
||
resources_tree = [resource_plr_to_ulab(r) for r in resources_list]
|
||
return tree_to_list(resources_tree)
|
||
else:
|
||
return None
|
||
|
||
|
||
def resource_ulab_to_plr(resource: dict, plr_model=False) -> "ResourcePLR":
|
||
"""
|
||
Resource有model字段,但是Deck下没有,这个plr由外面判断传入
|
||
"""
|
||
if ResourcePLR is None:
|
||
raise ImportError("pylabrobot not found")
|
||
|
||
all_states = {resource["id"]: resource["data"]}
|
||
|
||
def resource_ulab_to_plr_inner(resource: dict):
|
||
all_states[resource["name"]] = resource["data"]
|
||
d = {
|
||
"name": resource["name"],
|
||
"type": resource["type"],
|
||
"size_x": resource["config"].get("size_x", 0),
|
||
"size_y": resource["config"].get("size_y", 0),
|
||
"size_z": resource["config"].get("size_z", 0),
|
||
"location": {**resource["position"], "type": "Coordinate"},
|
||
"rotation": {"x": 0, "y": 0, "z": 0, "type": "Rotation"}, # Resource如果没有rotation,是plr版本太低
|
||
"category": resource["type"],
|
||
"model": resource["config"].get("model", None), # resource中deck没有model
|
||
"children": (
|
||
[resource_ulab_to_plr_inner(child) for child in resource["children"]]
|
||
if isinstance(resource["children"], list)
|
||
else [resource_ulab_to_plr_inner(child) for child_id, child in resource["children"].items()]
|
||
),
|
||
"parent_name": resource["parent"] if resource["parent"] is not None else None,
|
||
**resource["config"],
|
||
}
|
||
if not plr_model:
|
||
d.pop("model")
|
||
return d
|
||
|
||
d = resource_ulab_to_plr_inner(resource)
|
||
"""无法通过Resource进行反序列化,例如TipSpot必须内部序列化好,直接用TipSpot序列化会多参数,导致出错"""
|
||
from pylabrobot.utils.object_parsing import find_subclass
|
||
sub_cls = find_subclass(d["type"], ResourcePLR)
|
||
spect = inspect.signature(sub_cls)
|
||
if "category" not in spect.parameters:
|
||
d.pop("category")
|
||
resource_plr = sub_cls.deserialize(d, allow_marshal=True)
|
||
resource_plr.load_all_state(all_states)
|
||
return resource_plr
|
||
|
||
|
||
def resource_plr_to_ulab(resource_plr: "ResourcePLR", parent_name: str = None):
|
||
def resource_plr_to_ulab_inner(d: dict, all_states: dict) -> dict:
|
||
r = {
|
||
"id": d["name"],
|
||
"name": d["name"],
|
||
"sample_id": None,
|
||
"children": [resource_plr_to_ulab_inner(child, all_states) for child in d["children"]],
|
||
"parent": d["parent_name"] if d["parent_name"] else parent_name if parent_name else None,
|
||
"type": "device", # FIXME plr自带的type是python class name
|
||
"class": d.get("class", ""),
|
||
"position": (
|
||
{"x": d["location"]["x"], "y": d["location"]["y"], "z": d["location"]["z"]}
|
||
if d["location"]
|
||
else {"x": 0, "y": 0, "z": 0}
|
||
),
|
||
"config": {k: v for k, v in d.items() if k not in ["name", "children", "parent_name", "location"]},
|
||
"data": all_states[d["name"]],
|
||
}
|
||
return r
|
||
|
||
d = resource_plr.serialize()
|
||
all_states = resource_plr.serialize_all_state()
|
||
r = resource_plr_to_ulab_inner(d, all_states)
|
||
|
||
return r
|
||
|
||
|
||
def initialize_resource(resource_config: dict, lab_registry: dict) -> list[dict]:
|
||
"""Initializes a resource based on its configuration.
|
||
|
||
If the config is detailed, then do nothing;
|
||
If it is a string, then import the appropriate class and create an instance of it.
|
||
|
||
Args:
|
||
resource_config (dict): The configuration dictionary for the resource, which includes the class type and other parameters.
|
||
|
||
Returns:
|
||
None
|
||
"""
|
||
resource_class_config = resource_config.get("class", None)
|
||
if resource_class_config is None:
|
||
return [resource_config]
|
||
elif type(resource_class_config) == str:
|
||
# Allow special resource class names to be used
|
||
if resource_class_config not in lab_registry.resource_type_registry:
|
||
return [resource_config]
|
||
# If the resource class is a string, look up the class in the
|
||
# resource_type_registry and import it
|
||
resource_class_config = resource_config["class"] = lab_registry.resource_type_registry[resource_class_config][
|
||
"class"
|
||
]
|
||
if type(resource_class_config) == dict:
|
||
module = importlib.import_module(resource_class_config["module"].split(":")[0])
|
||
mclass = resource_class_config["module"].split(":")[1]
|
||
RESOURCE = getattr(module, mclass)
|
||
|
||
if resource_class_config["type"] == "pylabrobot":
|
||
resource_plr = RESOURCE(name=resource_config["name"])
|
||
r = resource_plr_to_ulab(resource_plr=resource_plr, parent_name=resource_config.get("parent", None))
|
||
# r = resource_plr_to_ulab(resource_plr=resource_plr)
|
||
if resource_config.get("position") is not None:
|
||
r["position"] = resource_config["position"]
|
||
r = tree_to_list([r])
|
||
elif isinstance(RESOURCE, dict):
|
||
r = [RESOURCE.copy()]
|
||
|
||
return r
|
||
|
||
|
||
def initialize_resources(resources_config) -> list[dict]:
|
||
"""Initializes a list of resources based on their configuration.
|
||
|
||
If the config is detailed, then do nothing;
|
||
If it is a string, then import the appropriate class and create an instance of it.
|
||
|
||
Args:
|
||
resources_config (list[dict]): The configuration dictionary for the resources, which includes the class type and other parameters.
|
||
|
||
Returns:
|
||
None
|
||
"""
|
||
|
||
from unilabos.registry.registry import lab_registry
|
||
resources = []
|
||
for resource_config in resources_config:
|
||
if resource_config["parent"] == "tip_rack" or resource_config["parent"] == "plate_well":
|
||
continue
|
||
resources.extend(initialize_resource(resource_config, lab_registry))
|
||
|
||
return resources
|