Files
Uni-Lab-OS/unilabos/workflow/common.py
Xuwznln 5179a7e48e workflow upload & set liquid fix & add set liquid with plate
fix upload workflow json

save class name when deserialize & protocol execute test

Support root node change pos

add unilabos_class

gather query
2026-02-02 18:26:41 +08:00

771 lines
31 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"""
工作流转换模块 - JSON 到 WorkflowGraph 的转换流程
==================== 输入格式 (JSON) ====================
{
"workflow": [
{"action": "transfer_liquid", "action_args": {"sources": "cell_lines", "targets": "Liquid_1", "asp_vol": 100.0, "dis_vol": 74.75, ...}},
...
],
"reagent": {
"cell_lines": {"slot": 4, "well": ["A1", "A3", "A5"], "labware": "DRUG + YOYO-MEDIA"},
"Liquid_1": {"slot": 1, "well": ["A4", "A7", "A10"], "labware": "rep 1"},
...
}
}
==================== 转换步骤 ====================
第一步: 按 slot 去重创建 create_resource 节点(创建板子)
--------------------------------------------------------------------------------
- 遍历所有 reagent按 slot 去重,为每个唯一的 slot 创建一个板子
- 生成参数:
res_id: plate_slot_{slot}
device_id: /PRCXI
class_name: PRCXI_BioER_96_wellplate
parent: /PRCXI/PRCXI_Deck/T{slot}
slot_on_deck: "{slot}"
- 输出端口: labware用于连接 set_liquid_from_plate
- 控制流: create_resource 之间通过 ready 端口串联
示例: slot=1, slot=4 -> 创建 2 个 create_resource 节点
第二步: 为每个 reagent 创建 set_liquid_from_plate 节点(设置液体)
--------------------------------------------------------------------------------
- 遍历所有 reagent为每个试剂创建 set_liquid_from_plate 节点
- 生成参数:
plate: [](通过连接传递,来自 create_resource 的 labware
well_names: ["A1", "A3", "A5"](来自 reagent 的 well 数组)
liquid_names: ["cell_lines", "cell_lines", "cell_lines"](与 well 数量一致)
volumes: [1e5, 1e5, 1e5](与 well 数量一致,默认体积)
- 输入连接: create_resource (labware) -> set_liquid_from_plate (input_plate)
- 输出端口: output_wells用于连接 transfer_liquid
- 控制流: set_liquid_from_plate 连接在所有 create_resource 之后,通过 ready 端口串联
第三步: 解析 workflow创建 transfer_liquid 等动作节点
--------------------------------------------------------------------------------
- 遍历 workflow 数组,为每个动作创建步骤节点
- 参数重命名: asp_vol -> asp_vols, dis_vol -> dis_vols, asp_flow_rate -> asp_flow_rates, dis_flow_rate -> dis_flow_rates
- 参数扩展: 根据 targets 的 wells 数量,将单值扩展为数组
例: asp_vol=100.0, targets 有 3 个 wells -> asp_vols=[100.0, 100.0, 100.0]
- 连接处理: 如果 sources/targets 已通过 set_liquid_from_plate 连接,参数值改为 []
- 输入连接: set_liquid_from_plate (output_wells) -> transfer_liquid (sources_identifier / targets_identifier)
- 输出端口: sources_out, targets_out用于连接下一个 transfer_liquid
==================== 连接关系图 ====================
控制流 (ready 端口串联):
create_resource_1 -> create_resource_2 -> ... -> set_liquid_1 -> set_liquid_2 -> ... -> transfer_liquid_1 -> transfer_liquid_2 -> ...
物料流:
[create_resource] --labware--> [set_liquid_from_plate] --output_wells--> [transfer_liquid] --sources_out/targets_out--> [下一个 transfer_liquid]
(slot=1) (cell_lines) (input_plate) (sources_identifier) (sources_identifier)
(slot=4) (Liquid_1) (targets_identifier) (targets_identifier)
==================== 端口映射 ====================
create_resource:
输出: labware
set_liquid_from_plate:
输入: input_plate
输出: output_plate, output_wells
transfer_liquid:
输入: sources -> sources_identifier, targets -> targets_identifier
输出: sources -> sources_out, targets -> targets_out
==================== 校验规则 ====================
- 检查 sources/targets 是否在 reagent 中定义
- 检查 sources 和 targets 的 wells 数量是否匹配
- 检查参数数组长度是否与 wells 数量一致
- 如有问题,在 footer 中添加 [WARN: ...] 标记
"""
import re
import uuid
import networkx as nx
from networkx.drawing.nx_agraph import to_agraph
import matplotlib.pyplot as plt
from typing import Dict, List, Any, Tuple, Optional
Json = Dict[str, Any]
# ==================== 默认配置 ====================
# create_resource 节点默认参数
CREATE_RESOURCE_DEFAULTS = {
"device_id": "/PRCXI",
"parent_template": "/PRCXI/PRCXI_Deck/T{slot}", # {slot} 会被替换为实际的 slot 值
"class_name": "PRCXI_BioER_96_wellplate",
}
# 默认液体体积 (uL)
DEFAULT_LIQUID_VOLUME = 1e5
# 参数重命名映射:单数 -> 复数(用于 transfer_liquid 等动作)
PARAM_RENAME_MAPPING = {
"asp_vol": "asp_vols",
"dis_vol": "dis_vols",
"asp_flow_rate": "asp_flow_rates",
"dis_flow_rate": "dis_flow_rates",
}
# ---------------- Graph ----------------
class WorkflowGraph:
"""简单的有向图实现:使用 params 单层参数inputs 内含连线;支持 node-link 导出"""
def __init__(self):
self.nodes: Dict[str, Dict[str, Any]] = {}
self.edges: List[Dict[str, Any]] = []
def add_node(self, node_id: str, **attrs):
self.nodes[node_id] = attrs
def add_edge(self, source: str, target: str, **attrs):
# 将 source_port/target_port 映射为服务端期望的 source_handle_key/target_handle_key
source_handle_key = attrs.pop("source_port", "") or attrs.pop("source_handle_key", "")
target_handle_key = attrs.pop("target_port", "") or attrs.pop("target_handle_key", "")
edge = {
"source": source,
"target": target,
"source_node_uuid": source,
"target_node_uuid": target,
"source_handle_key": source_handle_key,
"source_handle_io": attrs.pop("source_handle_io", "source"),
"target_handle_key": target_handle_key,
"target_handle_io": attrs.pop("target_handle_io", "target"),
**attrs,
}
self.edges.append(edge)
def _materialize_wiring_into_inputs(
self,
obj: Any,
inputs: Dict[str, Any],
variable_sources: Dict[str, Dict[str, Any]],
target_node_id: str,
base_path: List[str],
):
has_var = False
def walk(node: Any, path: List[str]):
nonlocal has_var
if isinstance(node, dict):
if "__var__" in node:
has_var = True
varname = node["__var__"]
placeholder = f"${{{varname}}}"
src = variable_sources.get(varname)
if src:
key = ".".join(path) # e.g. "params.foo.bar.0"
inputs[key] = {"node": src["node_id"], "output": src.get("output_name", "result")}
self.add_edge(
str(src["node_id"]),
target_node_id,
source_handle_io=src.get("output_name", "result"),
target_handle_io=key,
)
return placeholder
return {k: walk(v, path + [k]) for k, v in node.items()}
if isinstance(node, list):
return [walk(v, path + [str(i)]) for i, v in enumerate(node)]
return node
replaced = walk(obj, base_path[:])
return replaced, has_var
def add_workflow_node(
self,
node_id: int,
*,
device_key: Optional[str] = None, # 实例名,如 "ser"
resource_name: Optional[str] = None, # registry key原 device_class
module: Optional[str] = None,
template_name: Optional[str] = None, # 动作/模板名(原 action_key
params: Dict[str, Any],
variable_sources: Dict[str, Dict[str, Any]],
add_ready_if_no_vars: bool = True,
prev_node_id: Optional[int] = None,
**extra_attrs,
) -> None:
"""添加工作流节点params 单层;自动变量连线与 ready 串联;支持附加属性"""
node_id_str = str(node_id)
inputs: Dict[str, Any] = {}
params, has_var = self._materialize_wiring_into_inputs(
params, inputs, variable_sources, node_id_str, base_path=["params"]
)
if add_ready_if_no_vars and not has_var:
last_id = str(prev_node_id) if prev_node_id is not None else "-1"
inputs["ready"] = {"node": int(last_id), "output": "ready"}
self.add_edge(last_id, node_id_str, source_handle_io="ready", target_handle_io="ready")
node_obj = {
"device_key": device_key,
"resource_name": resource_name, # ✅ 新名字
"module": module,
"template_name": template_name, # ✅ 新名字
"params": params,
"inputs": inputs,
}
node_obj.update(extra_attrs or {})
self.add_node(node_id_str, parameters=node_obj)
# 顺序工作流导出(连线在 inputs不返回 edges
def to_dict(self) -> List[Dict[str, Any]]:
result = []
for node_id, attrs in self.nodes.items():
node = {"uuid": node_id}
params = dict(attrs.get("parameters", {}) or {})
flat = {k: v for k, v in attrs.items() if k != "parameters"}
flat.update(params)
node.update(flat)
result.append(node)
return sorted(result, key=lambda n: int(n["uuid"]) if str(n["uuid"]).isdigit() else n["uuid"])
# node-link 导出(含 edges
def to_node_link_dict(self) -> Dict[str, Any]:
nodes_list = []
for node_id, attrs in self.nodes.items():
node_attrs = attrs.copy()
params = node_attrs.pop("parameters", {}) or {}
node_attrs.update(params)
nodes_list.append({"uuid": node_id, **node_attrs})
return {
"directed": True,
"multigraph": False,
"graph": {},
"nodes": nodes_list,
"edges": self.edges,
"links": self.edges,
}
def refactor_data(
data: List[Dict[str, Any]],
action_resource_mapping: Optional[Dict[str, str]] = None,
) -> List[Dict[str, Any]]:
"""统一的数据重构函数,根据操作类型自动选择模板
Args:
data: 原始步骤数据列表
action_resource_mapping: action 到 resource_name 的映射字典,可选
"""
refactored_data = []
# 定义操作映射,包含生物实验和有机化学的所有操作
OPERATION_MAPPING = {
# 生物实验操作
"transfer_liquid": "transfer_liquid",
"transfer": "transfer",
"incubation": "incubation",
"move_labware": "move_labware",
"oscillation": "oscillation",
# 有机化学操作
"HeatChillToTemp": "HeatChillProtocol",
"StopHeatChill": "HeatChillStopProtocol",
"StartHeatChill": "HeatChillStartProtocol",
"HeatChill": "HeatChillProtocol",
"Dissolve": "DissolveProtocol",
"Transfer": "TransferProtocol",
"Evaporate": "EvaporateProtocol",
"Recrystallize": "RecrystallizeProtocol",
"Filter": "FilterProtocol",
"Dry": "DryProtocol",
"Add": "AddProtocol",
}
UNSUPPORTED_OPERATIONS = ["Purge", "Wait", "Stir", "ResetHandling"]
for step in data:
operation = step.get("action")
if not operation or operation in UNSUPPORTED_OPERATIONS:
continue
# 处理重复操作
if operation == "Repeat":
times = step.get("times", step.get("parameters", {}).get("times", 1))
sub_steps = step.get("steps", step.get("parameters", {}).get("steps", []))
for i in range(int(times)):
sub_data = refactor_data(sub_steps, action_resource_mapping)
refactored_data.extend(sub_data)
continue
# 获取模板名称
template_name = OPERATION_MAPPING.get(operation)
if not template_name:
# 自动推断模板类型
if operation.lower() in ["transfer", "incubation", "move_labware", "oscillation"]:
template_name = f"biomek-{operation}"
else:
template_name = f"{operation}Protocol"
# 获取 resource_name
resource_name = f"device.{operation.lower()}"
if action_resource_mapping:
resource_name = action_resource_mapping.get(operation, resource_name)
# 获取步骤编号,生成 name 字段
step_number = step.get("step_number")
name = f"Step {step_number}" if step_number is not None else None
# 创建步骤数据
step_data = {
"template_name": template_name,
"resource_name": resource_name,
"description": step.get("description", step.get("purpose", f"{operation} operation")),
"lab_node_type": "Device",
"param": step.get("parameters", step.get("action_args", {})),
"footer": f"{template_name}-{resource_name}",
}
if name:
step_data["name"] = name
refactored_data.append(step_data)
return refactored_data
def build_protocol_graph(
labware_info: Dict[str, Dict[str, Any]],
protocol_steps: List[Dict[str, Any]],
workstation_name: str,
action_resource_mapping: Optional[Dict[str, str]] = None,
) -> WorkflowGraph:
"""统一的协议图构建函数,根据设备类型自动选择构建逻辑
Args:
labware_info: labware 信息字典,格式为 {name: {slot, well, labware, ...}, ...}
protocol_steps: 协议步骤列表
workstation_name: 工作站名称
action_resource_mapping: action 到 resource_name 的映射字典,可选
"""
G = WorkflowGraph()
resource_last_writer = {} # reagent_name -> "node_id:port"
slot_to_create_resource = {} # slot -> create_resource node_id
protocol_steps = refactor_data(protocol_steps, action_resource_mapping)
# ==================== 第一步:按 slot 去重创建 create_resource 节点 ====================
# 收集所有唯一的 slot
slots_info = {} # slot -> {labware, res_id}
for labware_id, item in labware_info.items():
slot = str(item.get("slot", ""))
if slot and slot not in slots_info:
res_id = f"plate_slot_{slot}"
slots_info[slot] = {
"labware": item.get("labware", ""),
"res_id": res_id,
}
# 为每个唯一的 slot 创建 create_resource 节点
res_index = 0
last_create_resource_id = None
for slot, info in slots_info.items():
node_id = str(uuid.uuid4())
res_id = info["res_id"]
res_index += 1
G.add_node(
node_id,
template_name="create_resource",
resource_name="host_node",
name=f"Plate {res_index}",
description=f"Create plate on slot {slot}",
lab_node_type="Labware",
footer="create_resource-host_node",
param={
"res_id": res_id,
"device_id": CREATE_RESOURCE_DEFAULTS["device_id"],
"class_name": CREATE_RESOURCE_DEFAULTS["class_name"],
"parent": CREATE_RESOURCE_DEFAULTS["parent_template"].format(slot=slot),
"bind_locations": {"x": 0.0, "y": 0.0, "z": 0.0},
"slot_on_deck": slot,
},
)
slot_to_create_resource[slot] = node_id
# create_resource 之间通过 ready 串联
if last_create_resource_id is not None:
G.add_edge(last_create_resource_id, node_id, source_port="ready", target_port="ready")
last_create_resource_id = node_id
# ==================== 第二步:为每个 reagent 创建 set_liquid_from_plate 节点 ====================
set_liquid_index = 0
last_set_liquid_id = last_create_resource_id # set_liquid_from_plate 连接在 create_resource 之后
for labware_id, item in labware_info.items():
# 跳过 Tip/Rack 类型
if "Rack" in str(labware_id) or "Tip" in str(labware_id):
continue
if item.get("type") == "hardware":
continue
slot = str(item.get("slot", ""))
wells = item.get("well", [])
if not wells or not slot:
continue
# res_id 不能有空格
res_id = str(labware_id).replace(" ", "_")
well_count = len(wells)
node_id = str(uuid.uuid4())
set_liquid_index += 1
G.add_node(
node_id,
template_name="set_liquid_from_plate",
resource_name="liquid_handler.prcxi",
name=f"SetLiquid {set_liquid_index}",
description=f"Set liquid: {labware_id}",
lab_node_type="Reagent",
footer="set_liquid_from_plate-liquid_handler.prcxi",
param={
"plate": [], # 通过连接传递
"well_names": wells, # 孔位名数组,如 ["A1", "A3", "A5"]
"liquid_names": [res_id] * well_count,
"volumes": [DEFAULT_LIQUID_VOLUME] * well_count,
},
)
# ready 连接:上一个节点 -> set_liquid_from_plate
if last_set_liquid_id is not None:
G.add_edge(last_set_liquid_id, node_id, source_port="ready", target_port="ready")
last_set_liquid_id = node_id
# 物料流create_resource 的 labware -> set_liquid_from_plate 的 input_plate
create_res_node_id = slot_to_create_resource.get(slot)
if create_res_node_id:
G.add_edge(create_res_node_id, node_id, source_port="labware", target_port="input_plate")
# set_liquid_from_plate 的输出 output_wells 用于连接 transfer_liquid
resource_last_writer[labware_id] = f"{node_id}:output_wells"
last_control_node_id = last_set_liquid_id
# 端口名称映射JSON 字段名 -> 实际 handle key
INPUT_PORT_MAPPING = {
"sources": "sources_identifier",
"targets": "targets_identifier",
"vessel": "vessel",
"to_vessel": "to_vessel",
"from_vessel": "from_vessel",
"reagent": "reagent",
"solvent": "solvent",
"compound": "compound",
}
OUTPUT_PORT_MAPPING = {
"sources": "sources_out", # 输出端口是 xxx_out
"targets": "targets_out", # 输出端口是 xxx_out
"vessel": "vessel_out",
"to_vessel": "to_vessel_out",
"from_vessel": "from_vessel_out",
"filtrate_vessel": "filtrate_out",
"reagent": "reagent",
"solvent": "solvent",
"compound": "compound",
}
# 需要根据 wells 数量扩展的参数列表(复数形式)
EXPAND_BY_WELLS_PARAMS = ["asp_vols", "dis_vols", "asp_flow_rates", "dis_flow_rates"]
# 处理协议步骤
for step in protocol_steps:
node_id = str(uuid.uuid4())
params = step.get("param", {}).copy() # 复制一份,避免修改原数据
connected_params = set() # 记录被连接的参数
warnings = [] # 收集警告信息
# 参数重命名:单数 -> 复数
for old_name, new_name in PARAM_RENAME_MAPPING.items():
if old_name in params:
params[new_name] = params.pop(old_name)
# 处理输入连接
for param_key, target_port in INPUT_PORT_MAPPING.items():
resource_name = params.get(param_key)
if resource_name and resource_name in resource_last_writer:
source_node, source_port = resource_last_writer[resource_name].split(":")
G.add_edge(source_node, node_id, source_port=source_port, target_port=target_port)
connected_params.add(param_key)
elif resource_name and resource_name not in resource_last_writer:
# 资源名在 labware_info 中不存在
warnings.append(f"{param_key}={resource_name} 未找到")
# 获取 targets 对应的 wells 数量,用于扩展参数
targets_name = params.get("targets")
sources_name = params.get("sources")
targets_wells_count = 1
sources_wells_count = 1
if targets_name and targets_name in labware_info:
target_wells = labware_info[targets_name].get("well", [])
targets_wells_count = len(target_wells) if target_wells else 1
elif targets_name:
warnings.append(f"targets={targets_name} 未在 reagent 中定义")
if sources_name and sources_name in labware_info:
source_wells = labware_info[sources_name].get("well", [])
sources_wells_count = len(source_wells) if source_wells else 1
elif sources_name:
warnings.append(f"sources={sources_name} 未在 reagent 中定义")
# 检查 sources 和 targets 的 wells 数量是否匹配
if targets_wells_count != sources_wells_count and targets_name and sources_name:
warnings.append(f"wells 数量不匹配: sources={sources_wells_count}, targets={targets_wells_count}")
# 使用 targets 的 wells 数量来扩展参数
wells_count = targets_wells_count
# 扩展单值参数为数组(根据 targets 的 wells 数量)
for expand_param in EXPAND_BY_WELLS_PARAMS:
if expand_param in params:
value = params[expand_param]
# 如果是单个值,扩展为数组
if not isinstance(value, list):
params[expand_param] = [value] * wells_count
# 如果已经是数组但长度不对,记录警告
elif len(value) != wells_count:
warnings.append(f"{expand_param} 数量({len(value)})与 wells({wells_count})不匹配")
# 如果 sources/targets 已通过连接传递,将参数值改为空数组
for param_key in connected_params:
if param_key in params:
params[param_key] = []
# 更新 step 的 param 和 footer
step_copy = step.copy()
step_copy["param"] = params
# 如果有警告,修改 footer 添加警告标记(警告放前面)
if warnings:
original_footer = step.get("footer", "")
step_copy["footer"] = f"[WARN: {'; '.join(warnings)}] {original_footer}"
G.add_node(node_id, **step_copy)
# 控制流
if last_control_node_id is not None:
G.add_edge(last_control_node_id, node_id, source_port="ready", target_port="ready")
last_control_node_id = node_id
# 处理输出:更新 resource_last_writer
for param_key, output_port in OUTPUT_PORT_MAPPING.items():
resource_name = step.get("param", {}).get(param_key) # 使用原始参数值
if resource_name:
resource_last_writer[resource_name] = f"{node_id}:{output_port}"
return G
def draw_protocol_graph(protocol_graph: WorkflowGraph, output_path: str):
"""
(辅助功能) 使用 networkx 和 matplotlib 绘制协议工作流图,用于可视化。
"""
if not protocol_graph:
print("Cannot draw graph: Graph object is empty.")
return
G = nx.DiGraph()
for node_id, attrs in protocol_graph.nodes.items():
label = attrs.get("description", attrs.get("template_name", node_id[:8]))
G.add_node(node_id, label=label, **attrs)
for edge in protocol_graph.edges:
G.add_edge(edge["source"], edge["target"])
plt.figure(figsize=(20, 15))
try:
pos = nx.nx_agraph.graphviz_layout(G, prog="dot")
except Exception:
pos = nx.shell_layout(G) # Fallback layout
node_labels = {node: data["label"] for node, data in G.nodes(data=True)}
nx.draw(
G,
pos,
with_labels=False,
node_size=2500,
node_color="skyblue",
node_shape="o",
edge_color="gray",
width=1.5,
arrowsize=15,
)
nx.draw_networkx_labels(G, pos, labels=node_labels, font_size=8, font_weight="bold")
plt.title("Chemical Protocol Workflow Graph", size=15)
plt.savefig(output_path, dpi=300, bbox_inches="tight")
plt.close()
print(f" - Visualization saved to '{output_path}'")
COMPASS = {"n", "e", "s", "w", "ne", "nw", "se", "sw", "c"}
def _is_compass(port: str) -> bool:
return isinstance(port, str) and port.lower() in COMPASS
def draw_protocol_graph_with_ports(protocol_graph, output_path: str, rankdir: str = "LR"):
"""
使用 Graphviz 端口语法绘制协议工作流图。
- 若边上的 source_port/target_port 是 compassn/e/s/w/...),直接用 compass。
- 否则自动为节点创建 record 形状并定义命名端口 <portname>。
最终由 PyGraphviz 渲染并输出到 output_path后缀决定格式如 .png/.svg/.pdf
"""
if not protocol_graph:
print("Cannot draw graph: Graph object is empty.")
return
# 1) 先用 networkx 搭建有向图,保留端口属性
G = nx.DiGraph()
for node_id, attrs in protocol_graph.nodes.items():
label = attrs.get("description", attrs.get("template_name", node_id[:8]))
# 保留一个干净的“中心标签”,用于放在 record 的中间槽
G.add_node(node_id, _core_label=str(label), **{k: v for k, v in attrs.items() if k not in ("label",)})
edges_data = []
in_ports_by_node = {} # 收集命名输入端口
out_ports_by_node = {} # 收集命名输出端口
for edge in protocol_graph.edges:
u = edge["source"]
v = edge["target"]
sp = edge.get("source_handle_key") or edge.get("source_port")
tp = edge.get("target_handle_key") or edge.get("target_port")
# 记录到图里(保留原始端口信息)
G.add_edge(u, v, source_handle_key=sp, target_handle_key=tp)
edges_data.append((u, v, sp, tp))
# 如果不是 compass就按“命名端口”先归类等会儿给节点造 record
if sp and not _is_compass(sp):
out_ports_by_node.setdefault(u, set()).add(str(sp))
if tp and not _is_compass(tp):
in_ports_by_node.setdefault(v, set()).add(str(tp))
# 2) 转为 AGraph使用 Graphviz 渲染
A = to_agraph(G)
A.graph_attr.update(rankdir=rankdir, splines="true", concentrate="false", fontsize="10")
A.node_attr.update(
shape="box", style="rounded,filled", fillcolor="lightyellow", color="#999999", fontname="Helvetica"
)
A.edge_attr.update(arrowsize="0.8", color="#666666")
# 3) 为需要命名端口的节点设置 record 形状与 label
# 左列 = 输入端口;中间 = 核心标签;右列 = 输出端口
for n in A.nodes():
node = A.get_node(n)
core = G.nodes[n].get("_core_label", n)
in_ports = sorted(in_ports_by_node.get(n, []))
out_ports = sorted(out_ports_by_node.get(n, []))
# 如果该节点涉及命名端口,则用 record否则保留原 box
if in_ports or out_ports:
def port_fields(ports):
if not ports:
return " " # 必须留一个空槽占位
# 每个端口一个小格子,<p> name
return "|".join(f"<{re.sub(r'[^A-Za-z0-9_:.|-]', '_', p)}> {p}" for p in ports)
left = port_fields(in_ports)
right = port_fields(out_ports)
# 三栏:左(入) | 中(节点名) | 右(出)
record_label = f"{{ {left} | {core} | {right} }}"
node.attr.update(shape="record", label=record_label)
else:
# 没有命名端口:普通盒子,显示核心标签
node.attr.update(label=str(core))
# 4) 给边设置 headport / tailport
# - 若端口为 compass直接用 compasse.g., headport="e"
# - 若端口为命名端口:使用在 record 中定义的 <port> 名(同名即可)
for u, v, sp, tp in edges_data:
e = A.get_edge(u, v)
# Graphviz 属性tail 是源head 是目标
if sp:
if _is_compass(sp):
e.attr["tailport"] = sp.lower()
else:
# 与 record label 中 <port> 名一致;特殊字符已在 label 中做了清洗
e.attr["tailport"] = re.sub(r"[^A-Za-z0-9_:.|-]", "_", str(sp))
if tp:
if _is_compass(tp):
e.attr["headport"] = tp.lower()
else:
e.attr["headport"] = re.sub(r"[^A-Za-z0-9_:.|-]", "_", str(tp))
# 可选:若想让边更贴边缘,可设置 constraint/spline 等
# e.attr["arrowhead"] = "vee"
# 5) 输出
A.draw(output_path, prog="dot")
print(f" - Port-aware workflow rendered to '{output_path}'")
# ---------------- Registry Adapter ----------------
class RegistryAdapter:
"""根据 module 的类名(冒号右侧)反查 registry 的 resource_name原 device_class并抽取参数顺序"""
def __init__(self, device_registry: Dict[str, Any]):
self.device_registry = device_registry or {}
self.module_class_to_resource = self._build_module_class_index()
def _build_module_class_index(self) -> Dict[str, str]:
idx = {}
for resource_name, info in self.device_registry.items():
module = info.get("module")
if isinstance(module, str) and ":" in module:
cls = module.split(":")[-1]
idx[cls] = resource_name
idx[cls.lower()] = resource_name
return idx
def resolve_resource_by_classname(self, class_name: str) -> Optional[str]:
if not class_name:
return None
return self.module_class_to_resource.get(class_name) or self.module_class_to_resource.get(class_name.lower())
def get_device_module(self, resource_name: Optional[str]) -> Optional[str]:
if not resource_name:
return None
return self.device_registry.get(resource_name, {}).get("module")
def get_actions(self, resource_name: Optional[str]) -> Dict[str, Any]:
if not resource_name:
return {}
return (self.device_registry.get(resource_name, {}).get("class", {}).get("action_value_mappings", {})) or {}
def get_action_schema(self, resource_name: Optional[str], template_name: str) -> Optional[Json]:
return (self.get_actions(resource_name).get(template_name) or {}).get("schema")
def get_action_goal_default(self, resource_name: Optional[str], template_name: str) -> Json:
return (self.get_actions(resource_name).get(template_name) or {}).get("goal_default", {}) or {}
def get_action_input_keys(self, resource_name: Optional[str], template_name: str) -> List[str]:
schema = self.get_action_schema(resource_name, template_name) or {}
goal = (schema.get("properties") or {}).get("goal") or {}
props = goal.get("properties") or {}
required = goal.get("required") or []
return list(dict.fromkeys(required + list(props.keys())))