Files
Uni-Lab-OS/unilabos/devices/workstation/bioyond_studio/reaction_station.py
Xuwznln 7c440d10ab Fix/resource UUID and doc fix (#109)
* Fix ResourceTreeSet load error

* Raise error when using unsupported type to create ResourceTreeSet

* Fix children key error

* Fix children key error

* Fix workstation resource not tracking

* Fix workstation deck & children resource dupe

* Fix workstation deck & children resource dupe

* Fix multiple resource error

* Fix resource tree update

* Fix resource tree update

* Force confirm uuid

* Tip more error log

* Refactor Bioyond workstation and experiment workflow (#105)

Refactored the Bioyond workstation classes to improve parameter handling and workflow management. Updated experiment.py to use BioyondReactionStation with deck and material mappings, and enhanced workflow step parameter mapping and execution logic. Adjusted JSON experiment configs, improved workflow sequence handling, and added UUID assignment to PLR materials. Removed unused station_config and material cache logic, and added detailed docstrings and debug output for workflow methods.

* Fix resource get.
Fix resource parent not found.
Mapping uuid for all resources.

* mount parent uuid

* Add logging configuration based on BasicConfig in main function

* fix workstation node error

* fix workstation node error

* Update boot example

* temp fix for resource get

* temp fix for resource get

* provide error info when cant find plr type

* pack repo info

* fix to plr type error

* fix to plr type error

* Update regular container method

* support no size init

* fix comprehensive_station.json

* fix comprehensive_station.json

* fix type conversion

* fix state loading for regular container

* Update deploy-docs.yml

* Update deploy-docs.yml

---------

Co-authored-by: ZiWei <131428629+ZiWei09@users.noreply.github.com>
2025-10-16 17:26:07 +08:00

639 lines
26 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import json
from typing import List, Dict, Any
from unilabos.devices.workstation.bioyond_studio.station import BioyondWorkstation
from unilabos.devices.workstation.bioyond_studio.config import (
WORKFLOW_STEP_IDS,
WORKFLOW_TO_SECTION_MAP
)
class BioyondReactionStation(BioyondWorkstation):
"""Bioyond反应站类
继承自BioyondWorkstation,提供反应站特定的业务方法
"""
def __init__(self, config: dict = None, deck=None):
"""初始化反应站
Args:
config: 配置字典,应包含workflow_mappings等配置
deck: Deck对象
"""
# 如果 deck 作为独立参数传入,使用它;否则尝试从 config 中提取
if deck is None and config:
deck = config.get('deck')
# 调试信息:检查传入的config
print(f"BioyondReactionStation初始化 - config包含workflow_mappings: {'workflow_mappings' in (config or {})}")
if config and 'workflow_mappings' in config:
print(f"workflow_mappings内容: {config['workflow_mappings']}")
# 将 config 作为 bioyond_config 传递给父类
super().__init__(bioyond_config=config, deck=deck)
# 调试信息:检查初始化后的workflow_mappings
print(f"BioyondReactionStation初始化完成 - workflow_mappings: {self.workflow_mappings}")
print(f"workflow_mappings长度: {len(self.workflow_mappings)}")
# ==================== 工作流方法 ====================
def reactor_taken_out(self):
"""反应器取出"""
self.append_to_workflow_sequence('{"web_workflow_name": "reactor_taken_out"}')
reactor_taken_out_params = {"param_values": {}}
self.pending_task_params.append(reactor_taken_out_params)
print(f"成功添加反应器取出工作流")
print(f"当前队列长度: {len(self.pending_task_params)}")
return json.dumps({"suc": True})
def reactor_taken_in(
self,
assign_material_name: str,
cutoff: str = "900000",
temperature: float = -10.00
):
"""反应器放入
Args:
assign_material_name: 物料名称
cutoff: 截止参数
temperature: 温度
"""
self.append_to_workflow_sequence('{"web_workflow_name": "reactor_taken_in"}')
material_id = self.hardware_interface._get_material_id_by_name(assign_material_name)
if isinstance(temperature, str):
temperature = float(temperature)
step_id = WORKFLOW_STEP_IDS["reactor_taken_in"]["config"]
reactor_taken_in_params = {
"param_values": {
step_id: [
{"m": 0, "n": 3, "Key": "cutoff", "Value": cutoff},
{"m": 0, "n": 3, "Key": "temperature", "Value": f"{temperature:.2f}"},
{"m": 0, "n": 3, "Key": "assignMaterialName", "Value": material_id}
]
}
}
self.pending_task_params.append(reactor_taken_in_params)
print(f"成功添加反应器放入参数: material={assign_material_name}->ID:{material_id}, cutoff={cutoff}, temp={temperature:.2f}")
print(f"当前队列长度: {len(self.pending_task_params)}")
return json.dumps({"suc": True})
def solid_feeding_vials(
self,
material_id: str,
time: str = "0",
torque_variation: str = "1",
assign_material_name: str = None,
temperature: float = 25.00
):
"""固体进料小瓶
Args:
material_id: 物料ID
time: 时间
torque_variation: 扭矩变化
assign_material_name: 物料名称
temperature: 温度
"""
self.append_to_workflow_sequence('{"web_workflow_name": "Solid_feeding_vials"}')
material_id_m = self.hardware_interface._get_material_id_by_name(assign_material_name)
if isinstance(temperature, str):
temperature = float(temperature)
feeding_id = WORKFLOW_STEP_IDS["solid_feeding_vials"]["feeding"]
observe_id = WORKFLOW_STEP_IDS["solid_feeding_vials"]["observe"]
solid_feeding_vials_params = {
"param_values": {
feeding_id: [
{"m": 0, "n": 3, "Key": "materialId", "Value": material_id},
{"m": 0, "n": 3, "Key": "assignMaterialName", "Value": material_id_m}
],
observe_id: [
{"m": 1, "n": 0, "Key": "time", "Value": time},
{"m": 1, "n": 0, "Key": "torqueVariation", "Value": torque_variation},
{"m": 1, "n": 0, "Key": "temperature", "Value": f"{temperature:.2f}"}
]
}
}
self.pending_task_params.append(solid_feeding_vials_params)
print(f"成功添加固体进料小瓶参数: material_id={material_id}, time={time}min, temp={temperature:.2f}°C")
print(f"当前队列长度: {len(self.pending_task_params)}")
return json.dumps({"suc": True})
def liquid_feeding_vials_non_titration(
self,
volumeFormula: str,
assign_material_name: str,
titration_type: str = "1",
time: str = "0",
torque_variation: str = "1",
temperature: float = 25.00
):
"""液体进料小瓶(非滴定)
Args:
volumeFormula: 体积公式
assign_material_name: 物料名称
titration_type: 滴定类型
time: 时间
torque_variation: 扭矩变化
temperature: 温度
"""
self.append_to_workflow_sequence('{"web_workflow_name": "Liquid_feeding_vials(non-titration)"}')
material_id = self.hardware_interface._get_material_id_by_name(assign_material_name)
if isinstance(temperature, str):
temperature = float(temperature)
liquid_id = WORKFLOW_STEP_IDS["liquid_feeding_vials_non_titration"]["liquid"]
observe_id = WORKFLOW_STEP_IDS["liquid_feeding_vials_non_titration"]["observe"]
params = {
"param_values": {
liquid_id: [
{"m": 0, "n": 3, "Key": "volumeFormula", "Value": volumeFormula},
{"m": 0, "n": 3, "Key": "assignMaterialName", "Value": material_id},
{"m": 0, "n": 3, "Key": "titrationType", "Value": titration_type}
],
observe_id: [
{"m": 1, "n": 0, "Key": "time", "Value": time},
{"m": 1, "n": 0, "Key": "torqueVariation", "Value": torque_variation},
{"m": 1, "n": 0, "Key": "temperature", "Value": f"{temperature:.2f}"}
]
}
}
self.pending_task_params.append(params)
print(f"成功添加液体进料小瓶(非滴定)参数: volume={volumeFormula}μL, material={assign_material_name}->ID:{material_id}")
print(f"当前队列长度: {len(self.pending_task_params)}")
return json.dumps({"suc": True})
def liquid_feeding_solvents(
self,
assign_material_name: str,
volume: str,
titration_type: str = "1",
time: str = "360",
torque_variation: str = "2",
temperature: float = 25.00
):
"""液体进料溶剂
Args:
assign_material_name: 物料名称
volume: 体积
titration_type: 滴定类型
time: 时间
torque_variation: 扭矩变化
temperature: 温度
"""
self.append_to_workflow_sequence('{"web_workflow_name": "Liquid_feeding_solvents"}')
material_id = self.hardware_interface._get_material_id_by_name(assign_material_name)
if isinstance(temperature, str):
temperature = float(temperature)
liquid_id = WORKFLOW_STEP_IDS["liquid_feeding_solvents"]["liquid"]
observe_id = WORKFLOW_STEP_IDS["liquid_feeding_solvents"]["observe"]
params = {
"param_values": {
liquid_id: [
{"m": 0, "n": 1, "Key": "titrationType", "Value": titration_type},
{"m": 0, "n": 1, "Key": "volume", "Value": volume},
{"m": 0, "n": 1, "Key": "assignMaterialName", "Value": material_id}
],
observe_id: [
{"m": 1, "n": 0, "Key": "time", "Value": time},
{"m": 1, "n": 0, "Key": "torqueVariation", "Value": torque_variation},
{"m": 1, "n": 0, "Key": "temperature", "Value": f"{temperature:.2f}"}
]
}
}
self.pending_task_params.append(params)
print(f"成功添加液体进料溶剂参数: material={assign_material_name}->ID:{material_id}, volume={volume}μL")
print(f"当前队列长度: {len(self.pending_task_params)}")
return json.dumps({"suc": True})
def liquid_feeding_titration(
self,
volume_formula: str,
assign_material_name: str,
titration_type: str = "1",
time: str = "90",
torque_variation: int = 2,
temperature: float = 25.00
):
"""液体进料(滴定)
Args:
volume_formula: 体积公式
assign_material_name: 物料名称
titration_type: 滴定类型
time: 时间
torque_variation: 扭矩变化
temperature: 温度
"""
self.append_to_workflow_sequence('{"web_workflow_name": "Liquid_feeding(titration)"}')
material_id = self.hardware_interface._get_material_id_by_name(assign_material_name)
if isinstance(temperature, str):
temperature = float(temperature)
liquid_id = WORKFLOW_STEP_IDS["liquid_feeding_titration"]["liquid"]
observe_id = WORKFLOW_STEP_IDS["liquid_feeding_titration"]["observe"]
params = {
"param_values": {
liquid_id: [
{"m": 0, "n": 3, "Key": "volumeFormula", "Value": volume_formula},
{"m": 0, "n": 3, "Key": "titrationType", "Value": titration_type},
{"m": 0, "n": 3, "Key": "assignMaterialName", "Value": material_id}
],
observe_id: [
{"m": 1, "n": 0, "Key": "time", "Value": time},
{"m": 1, "n": 0, "Key": "torqueVariation", "Value": str(torque_variation)},
{"m": 1, "n": 0, "Key": "temperature", "Value": f"{temperature:.2f}"}
]
}
}
self.pending_task_params.append(params)
print(f"成功添加液体进料滴定参数: volume={volume_formula}μL, material={assign_material_name}->ID:{material_id}")
print(f"当前队列长度: {len(self.pending_task_params)}")
return json.dumps({"suc": True})
def liquid_feeding_beaker(
self,
volume: str = "35000",
assign_material_name: str = "BAPP",
time: str = "0",
torque_variation: str = "1",
titrationType: str = "1",
temperature: float = 25.00
):
"""液体进料烧杯
Args:
volume: 体积
assign_material_name: 物料名称
time: 时间
torque_variation: 扭矩变化
titrationType: 滴定类型
temperature: 温度
"""
self.append_to_workflow_sequence('{"web_workflow_name": "liquid_feeding_beaker"}')
material_id = self.hardware_interface._get_material_id_by_name(assign_material_name)
if isinstance(temperature, str):
temperature = float(temperature)
liquid_id = WORKFLOW_STEP_IDS["liquid_feeding_beaker"]["liquid"]
observe_id = WORKFLOW_STEP_IDS["liquid_feeding_beaker"]["observe"]
params = {
"param_values": {
liquid_id: [
{"m": 0, "n": 2, "Key": "volume", "Value": volume},
{"m": 0, "n": 2, "Key": "assignMaterialName", "Value": material_id},
{"m": 0, "n": 2, "Key": "titrationType", "Value": titrationType}
],
observe_id: [
{"m": 1, "n": 0, "Key": "time", "Value": time},
{"m": 1, "n": 0, "Key": "torqueVariation", "Value": torque_variation},
{"m": 1, "n": 0, "Key": "temperature", "Value": f"{temperature:.2f}"}
]
}
}
self.pending_task_params.append(params)
print(f"成功添加液体进料烧杯参数: volume={volume}μL, material={assign_material_name}->ID:{material_id}")
print(f"当前队列长度: {len(self.pending_task_params)}")
return json.dumps({"suc": True})
# ==================== 工作流管理方法 ====================
def get_workflow_sequence(self) -> List[str]:
"""获取当前工作流执行顺序
Returns:
工作流名称列表
"""
id_to_name = {workflow_id: name for name, workflow_id in self.workflow_mappings.items()}
workflow_names = []
for workflow_id in self.workflow_sequence:
workflow_names.append(id_to_name.get(workflow_id, workflow_id))
return workflow_names
def workflow_step_query(self, workflow_id: str) -> dict:
"""查询工作流步骤参数
Args:
workflow_id: 工作流ID
Returns:
工作流步骤参数字典
"""
return self.hardware_interface.workflow_step_query(workflow_id)
def create_order(self, json_str: str) -> dict:
"""创建订单
Args:
json_str: 订单参数的JSON字符串
Returns:
创建结果
"""
return self.hardware_interface.create_order(json_str)
# ==================== 工作流执行核心方法 ====================
# 发布任务
def process_and_execute_workflow(self, workflow_name: str, task_name: str) -> dict:
web_workflow_list = self.get_workflow_sequence()
workflow_name = workflow_name
pending_params_backup = self.pending_task_params.copy()
print(f"保存pending_task_params副本{len(pending_params_backup)}个参数")
# 1. 处理网页工作流列表
print(f"处理网页工作流列表: {web_workflow_list}")
web_workflow_json = json.dumps({"web_workflow_list": web_workflow_list})
workflows_result = self.process_web_workflows(web_workflow_json)
if not workflows_result:
error_msg = "处理网页工作流列表失败"
print(error_msg)
result = str({"success": False, "error": f"process_and_execute_workflow:{error_msg}", "method": "process_and_execute_workflow", "step": "process_web_workflows"})
return result
# 2. 合并工作流序列
print(f"合并工作流序列,名称: {workflow_name}")
merge_json = json.dumps({"name": workflow_name})
merged_workflow = self.merge_sequence_workflow(merge_json)
print(f"合并工作流序列结果: {merged_workflow}")
if not merged_workflow:
error_msg = "合并工作流序列失败"
print(error_msg)
result = str({"success": False, "error": f"process_and_execute_workflow:{error_msg}", "method": "process_and_execute_workflow", "step": "merge_sequence_workflow"})
return result
# 3. 合并所有参数并创建任务
# 新API只返回状态信息需要适配处理
if isinstance(merged_workflow, dict) and merged_workflow.get("code") == 1:
# 新API返回格式{code: 1, message: "", timestamp: 0}
# 使用传入的工作流名称和生成的临时ID
final_workflow_name = workflow_name
workflow_id = f"merged_{workflow_name}_{self.hardware_interface.get_current_time_iso8601().replace('-', '').replace('T', '').replace(':', '').replace('.', '')[:14]}"
print(f"新API合并成功使用工作流创建任务: {final_workflow_name} (临时ID: {workflow_id})")
else:
# 旧API返回格式包含详细工作流信息
final_workflow_name = merged_workflow.get("name", workflow_name)
workflow_id = merged_workflow.get("subWorkflows", [{}])[0].get("id", "")
print(f"旧API格式使用工作流创建任务: {final_workflow_name} (ID: {workflow_id})")
if not workflow_id:
error_msg = "无法获取工作流ID"
print(error_msg)
result = str({"success": False, "error": f"process_and_execute_workflow:{error_msg}", "method": "process_and_execute_workflow", "step": "get_workflow_id"})
return result
workflow_query_json = json.dumps({"workflow_id": workflow_id})
workflow_params_structure = self.workflow_step_query(workflow_query_json)
self.pending_task_params = pending_params_backup
print(f"恢复pending_task_params{len(self.pending_task_params)}个参数")
param_values = self.generate_task_param_values(workflow_params_structure)
task_params = [{
"orderCode": f"BSO{self.hardware_interface.get_current_time_iso8601().replace('-', '').replace('T', '').replace(':', '').replace('.', '')[:14]}",
"orderName": f"实验-{self.hardware_interface.get_current_time_iso8601()[:10].replace('-', '')}",
"workFlowId": workflow_id,
"borderNumber": 1,
"paramValues": param_values,
"extendProperties": ""
}]
task_json = json.dumps(task_params)
print(f"创建任务参数: {type(task_json)}")
result = self.create_order(task_json)
if not result:
error_msg = "创建任务失败"
print(error_msg)
result = str({"success": False, "error": f"process_and_execute_workflow:{error_msg}", "method": "process_and_execute_workflow", "step": "create_order"})
return result
print(f"任务创建成功: {result}")
self.pending_task_params.clear()
print("已清空pending_task_params")
return {
"success": True,
"workflow": {"name": final_workflow_name, "id": workflow_id},
"task": result,
"method": "process_and_execute_workflow"
}
def merge_sequence_workflow(self, json_str: str) -> dict:
"""合并当前工作流序列
Args:
json_str: 包含name等参数的JSON字符串
Returns:
合并结果
"""
try:
data = json.loads(json_str)
name = data.get("name", "合并工作流")
step_parameters = data.get("stepParameters", {})
variables = data.get("variables", {})
except json.JSONDecodeError:
return {}
if not self.workflow_sequence:
print("工作流序列为空,无法合并")
return {}
# 将工作流ID列表转换为新API要求的格式
workflows = [{"id": workflow_id} for workflow_id in self.workflow_sequence]
# 构建新的API参数格式
params = {
"name": name,
"workflows": workflows,
"stepParameters": step_parameters,
"variables": variables
}
# 使用新的API接口
response = self.hardware_interface.post(
url=f'{self.hardware_interface.host}/api/lims/workflow/merge-workflow-with-parameters',
params={
"apiKey": self.hardware_interface.api_key,
"requestTime": self.hardware_interface.get_current_time_iso8601(),
"data": params,
})
if not response or response['code'] != 1:
return {}
return response.get("data", {})
def generate_task_param_values(self, workflow_params_structure: dict) -> dict:
"""生成任务参数值
根据工作流参数结构和待处理的任务参数,生成最终的任务参数值
Args:
workflow_params_structure: 工作流参数结构
Returns:
任务参数值字典
"""
if not workflow_params_structure:
print("workflow_params_structure为空")
return {}
data = workflow_params_structure
# 从pending_task_params中提取实际参数值,按DisplaySectionName和Key组织
pending_params_by_section = {}
print(f"开始处理pending_task_params,共{len(self.pending_task_params)}个任务参数组")
# 获取工作流执行顺序,用于按顺序匹配参数
workflow_sequence = self.get_workflow_sequence()
print(f"工作流执行顺序: {workflow_sequence}")
workflow_index = 0
# 遍历所有待处理的任务参数
for i, task_param in enumerate(self.pending_task_params):
if 'param_values' in task_param:
print(f"处理第{i+1}个任务参数组,包含{len(task_param['param_values'])}个步骤")
if workflow_index < len(workflow_sequence):
current_workflow = workflow_sequence[workflow_index]
section_name = WORKFLOW_TO_SECTION_MAP.get(current_workflow)
print(f" 匹配到工作流: {current_workflow} -> {section_name}")
workflow_index += 1
else:
print(f" 警告: 参数组{i+1}超出了工作流序列范围")
continue
if not section_name:
print(f" 警告: 工作流{current_workflow}没有对应的DisplaySectionName")
continue
if section_name not in pending_params_by_section:
pending_params_by_section[section_name] = {}
# 处理每个步骤的参数
for step_id, param_list in task_param['param_values'].items():
print(f" 步骤ID: {step_id},参数数量: {len(param_list)}")
for param_item in param_list:
key = param_item.get('Key', '')
value = param_item.get('Value', '')
m = param_item.get('m', 0)
n = param_item.get('n', 0)
print(f" 参数: {key} = {value} (m={m}, n={n}) -> 分组到{section_name}")
param_key = f"{section_name}.{key}"
if param_key not in pending_params_by_section[section_name]:
pending_params_by_section[section_name][param_key] = []
pending_params_by_section[section_name][param_key].append({
'value': value,
'm': m,
'n': n
})
print(f"pending_params_by_section构建完成,包含{len(pending_params_by_section)}个分组")
# 收集所有参数,过滤TaskDisplayable为0的项
filtered_params = []
for step_id, step_info in data.items():
if isinstance(step_info, list):
for step_item in step_info:
param_list = step_item.get("parameterList", [])
for param in param_list:
if param.get("TaskDisplayable") == 0:
continue
param_with_step = param.copy()
param_with_step['step_id'] = step_id
param_with_step['step_name'] = step_item.get("name", "")
param_with_step['step_m'] = step_item.get("m", 0)
param_with_step['step_n'] = step_item.get("n", 0)
filtered_params.append(param_with_step)
# 按DisplaySectionIndex排序
filtered_params.sort(key=lambda x: x.get('DisplaySectionIndex', 0))
# 生成参数映射
param_mapping = {}
step_params = {}
for param in filtered_params:
step_id = param['step_id']
if step_id not in step_params:
step_params[step_id] = []
step_params[step_id].append(param)
# 为每个步骤生成参数
for step_id, params in step_params.items():
param_list = []
for param in params:
key = param.get('Key', '')
display_section_index = param.get('DisplaySectionIndex', 0)
step_m = param.get('step_m', 0)
step_n = param.get('step_n', 0)
section_name = param.get('DisplaySectionName', '')
param_key = f"{section_name}.{key}"
if section_name in pending_params_by_section and param_key in pending_params_by_section[section_name]:
pending_param_list = pending_params_by_section[section_name][param_key]
if pending_param_list:
pending_param = pending_param_list[0]
value = pending_param['value']
m = step_m
n = step_n
print(f" 匹配成功: {section_name}.{key} = {value} (m={m}, n={n})")
pending_param_list.pop(0)
else:
value = "1"
m = step_m
n = step_n
print(f" 匹配失败: {section_name}.{key},参数列表为空,使用默认值 = {value}")
else:
value = "1"
m = display_section_index
n = step_n
print(f" 匹配失败: {section_name}.{key},使用默认值 = {value} (m={m}, n={n})")
param_item = {
"m": m,
"n": n,
"key": key,
"value": str(value).strip()
}
param_list.append(param_item)
if param_list:
param_mapping[step_id] = param_list
print(f"生成任务参数值,包含 {len(param_mapping)} 个步骤")
return param_mapping