Files
Uni-Lab-OS/unilabos/device_comms/opcua_client/client.py
Roy 5fec753fb9 Add post process station and related resources (#195)
* Add post process station and related resources

- Created JSON configuration for post_process_station and its child post_process_deck.
- Added YAML definitions for post_process_station, bottle carriers, bottles, and deck resources.
- Implemented Python classes for bottle carriers, bottles, decks, and warehouses to manage resources in the post process.
- Established a factory method for creating warehouses with customizable dimensions and layouts.
- Defined the structure and behavior of the post_process_deck and its associated warehouses.

* feat(post_process): add post_process_station and related warehouse functionality

- Introduced post_process_station.json to define the post-processing station structure.
- Implemented post_process_warehouse.py to create warehouse configurations with customizable layouts.
- Added warehouses.py for specific warehouse configurations (4x3x1).
- Updated post_process_station.yaml to reflect new module paths for OpcUaClient.
- Refactored bottle carriers and bottles YAML files to point to the new module paths.
- Adjusted deck.yaml to align with the new organizational structure for post_process_deck.
2025-12-23 18:40:09 +08:00

1782 lines
76 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import json
import time
import traceback
from typing import Any, Union, List, Dict, Callable, Optional, Tuple
from pydantic import BaseModel
from opcua import Client, ua
import pandas as pd
import os
from unilabos.device_comms.opcua_client.node.uniopcua import Base as OpcUaNodeBase
from unilabos.device_comms.opcua_client.node.uniopcua import Variable, Method, NodeType, DataType
from unilabos.device_comms.universal_driver import UniversalDriver
from unilabos.utils.log import logger
from unilabos.devices.workstation.post_process.decks import post_process_deck
class OpcUaNode(BaseModel):
name: str
node_type: NodeType
node_id: str = ""
data_type: Optional[DataType] = None
parent_node_id: Optional[str] = None
class OpcUaWorkflow(BaseModel):
name: str
actions: List[
Union[
"OpcUaWorkflow",
Callable[
[Callable[[str], OpcUaNodeBase]],
None
]]
]
class Action(BaseModel):
name: str
rw: bool # read是0 write是1
class WorkflowAction(BaseModel):
init: Optional[Callable[[Callable[[str], OpcUaNodeBase]], bool]] = None
start: Optional[Callable[[Callable[[str], OpcUaNodeBase]], bool]] = None
stop: Optional[Callable[[Callable[[str], OpcUaNodeBase]], bool]] = None
cleanup: Optional[Callable[[Callable[[str], OpcUaNodeBase]], None]] = None
class OpcUaWorkflowModel(BaseModel):
name: str
actions: List[Union["OpcUaWorkflowModel", WorkflowAction]]
parameters: Optional[List[str]] = None
description: Optional[str] = None
""" 前后端Json解析用 """
class NodeFunctionJson(BaseModel):
func_name: str
node_name: str
mode: str # read, write, call
value: Any = None
class InitFunctionJson(NodeFunctionJson):
pass
class StartFunctionJson(NodeFunctionJson):
write_functions: List[str]
condition_functions: List[str]
stop_condition_expression: str
class StopFunctionJson(NodeFunctionJson):
pass
class CleanupFunctionJson(NodeFunctionJson):
pass
class ActionJson(BaseModel):
node_function_to_create: List[NodeFunctionJson]
create_init_function: Optional[InitFunctionJson] = None
create_start_function: Optional[StartFunctionJson] = None
create_stop_function: Optional[StopFunctionJson] = None
create_cleanup_function: Optional[CleanupFunctionJson] = None
class SimplifiedActionJson(BaseModel):
"""简化的动作JSON格式直接定义节点列表和函数"""
nodes: Optional[Dict[str, Dict[str, Any]]] = None # 节点定义,格式为 {func_name: {node_name, mode, value}}
init_function: Optional[Dict[str, Any]] = None
start_function: Optional[Dict[str, Any]] = None
stop_function: Optional[Dict[str, Any]] = None
cleanup_function: Optional[Dict[str, Any]] = None
class WorkflowCreateJson(BaseModel):
name: str
action: List[Union[ActionJson, SimplifiedActionJson, 'WorkflowCreateJson', str]]
parameters: Optional[List[str]] = None
description: Optional[str] = None
class ExecuteProcedureJson(BaseModel):
register_node_list_from_csv_path: Optional[Dict[str, Any]] = None
create_flow: List[WorkflowCreateJson]
execute_flow: List[str]
class BaseClient(UniversalDriver):
client: Optional[Client] = None
_node_registry: Dict[str, OpcUaNodeBase] = {}
DEFAULT_ADDRESS_PATH = ""
_variables_to_find: Dict[str, Dict[str, Any]] = {}
_name_mapping: Dict[str, str] = {} # 英文名到中文名的映射
_reverse_mapping: Dict[str, str] = {} # 中文名到英文名的映射
# 直接缓存已找到的 ua.Node 对象,避免因字符串 NodeId 格式导致订阅失败
_found_node_objects: Dict[str, Any] = {}
def __init__(self):
super().__init__()
# 自动查找节点功能默认开启
self._auto_find_nodes = True
# 初始化名称映射字典
self._name_mapping = {}
self._reverse_mapping = {}
# 初始化线程锁(在子类中会被重新创建,这里提供默认实现)
import threading
self._client_lock = threading.RLock()
def _set_client(self, client: Optional[Client]) -> None:
if client is None:
raise ValueError('client is not valid')
self.client = client
def _connect(self) -> None:
logger.info('try to connect client...')
if self.client:
try:
self.client.connect()
logger.info('client connected!')
# 连接后开始查找节点
if self._variables_to_find:
self._find_nodes()
except Exception as e:
logger.error(f'client connect failed: {e}')
raise
else:
raise ValueError('client is not initialized')
def _find_nodes(self) -> None:
"""查找服务器中的节点"""
if not self.client:
raise ValueError('client is not connected')
logger.info(f'开始查找 {len(self._variables_to_find)} 个节点...')
try:
# 获取根节点
root = self.client.get_root_node()
objects = root.get_child(["0:Objects"])
# 记录查找前的状态
before_count = len(self._node_registry)
# 查找节点
self._find_nodes_recursive(objects)
# 记录查找后的状态
after_count = len(self._node_registry)
newly_found = after_count - before_count
logger.info(f"本次查找新增 {newly_found} 个节点,当前共 {after_count}")
# 检查是否所有节点都已找到
not_found = []
for var_name, var_info in self._variables_to_find.items():
if var_name not in self._node_registry:
not_found.append(var_name)
if not_found:
logger.warning(f"⚠ 以下 {len(not_found)} 个节点未找到: {', '.join(not_found[:10])}{'...' if len(not_found) > 10 else ''}")
logger.warning(f"提示:请检查这些节点名称是否与服务器的 BrowseName 完全匹配(包括大小写、空格等)")
# 提供一个示例来帮助调试
if not_found:
logger.info(f"尝试在服务器中查找第一个未找到的节点 '{not_found[0]}' 的相似节点...")
else:
logger.info(f"✓ 所有 {len(self._variables_to_find)} 个节点均已找到并注册")
except Exception as e:
logger.error(f"查找节点失败: {e}")
traceback.print_exc()
def _find_nodes_recursive(self, node) -> None:
"""递归查找节点"""
try:
# 获取当前节点的浏览名称
browse_name = node.get_browse_name()
node_name = browse_name.Name
# 检查是否是我们要找的变量
if node_name in self._variables_to_find and node_name not in self._node_registry:
var_info = self._variables_to_find[node_name]
node_type = var_info.get("node_type")
data_type = var_info.get("data_type")
node_id_str = str(node.nodeid)
# 根据节点类型创建相应的对象
if node_type == NodeType.VARIABLE:
self._node_registry[node_name] = Variable(self.client, node_name, node_id_str, data_type)
logger.info(f"✓ 找到变量节点: '{node_name}', NodeId: {node_id_str}, DataType: {data_type}")
# 缓存真实的 ua.Node 对象用于订阅
self._found_node_objects[node_name] = node
elif node_type == NodeType.METHOD:
# 对于方法节点需要获取父节点ID
parent_node = node.get_parent()
parent_node_id = str(parent_node.nodeid)
self._node_registry[node_name] = Method(self.client, node_name, node_id_str, parent_node_id, data_type)
logger.info(f"✓ 找到方法节点: '{node_name}', NodeId: {node_id_str}, ParentId: {parent_node_id}")
# 递归处理子节点
for child in node.get_children():
self._find_nodes_recursive(child)
except Exception as e:
# 忽略处理单个节点时的错误,继续处理其他节点
pass
@classmethod
def load_csv(cls, file_path: str) -> List[OpcUaNode]:
"""
从CSV文件加载节点定义
CSV文件需包含Name,NodeType,DataType列
可选包含EnglishName和NodeLanguage列
"""
df = pd.read_csv(file_path)
df = df.drop_duplicates(subset='Name', keep='first') # 重复的数据应该报错
nodes = []
# 检查是否包含英文名称列和节点语言列
has_english_name = 'EnglishName' in df.columns
has_node_language = 'NodeLanguage' in df.columns
# 如果存在英文名称列,创建名称映射字典
name_mapping = {}
reverse_mapping = {}
for _, row in df.iterrows():
name = row.get('Name')
node_type_str = row.get('NodeType')
data_type_str = row.get('DataType')
# 获取英文名称和节点语言(如果有)
english_name = row.get('EnglishName') if has_english_name else None
node_language = row.get('NodeLanguage') if has_node_language else 'English' # 默认为英文
# 如果有英文名称,添加到映射字典
if english_name and not pd.isna(english_name) and node_language == 'Chinese':
name_mapping[english_name] = name
reverse_mapping[name] = english_name
if not name or not node_type_str:
logger.warning(f"跳过无效行: 名称或节点类型缺失")
continue
# 只支持VARIABLE和METHOD两种类型
if node_type_str not in ['VARIABLE', 'METHOD']:
logger.warning(f"不支持的节点类型: {node_type_str}仅支持VARIABLE和METHOD")
continue
try:
node_type = NodeType[node_type_str]
except KeyError:
logger.warning(f"无效的节点类型: {node_type_str}")
continue
# 对于VARIABLE节点必须指定数据类型
if node_type == NodeType.VARIABLE:
if not data_type_str or pd.isna(data_type_str):
logger.warning(f"变量节点 {name} 必须指定数据类型")
continue
try:
data_type = DataType[data_type_str]
except KeyError:
logger.warning(f"无效的数据类型: {data_type_str}")
continue
else:
# 对于METHOD节点数据类型可选
data_type = None
if data_type_str and not pd.isna(data_type_str):
try:
data_type = DataType[data_type_str]
except KeyError:
logger.warning(f"无效的数据类型: {data_type_str},将使用默认值")
# 创建节点对象节点ID留空将通过自动查找功能获取
nodes.append(OpcUaNode(
name=name,
node_type=node_type,
data_type=data_type
))
# 返回节点列表和名称映射字典
return nodes, name_mapping, reverse_mapping
def use_node(self, name: str) -> OpcUaNodeBase:
"""
获取已注册的节点
如果节点尚未找到,会尝试再次查找
支持使用英文名称访问中文节点
"""
# 检查是否使用英文名称访问中文节点
if name in self._name_mapping:
chinese_name = self._name_mapping[name]
if chinese_name in self._node_registry:
node = self._node_registry[chinese_name]
logger.debug(f"使用节点: '{name}' -> '{chinese_name}', NodeId: {node.node_id}")
return node
elif chinese_name in self._variables_to_find:
logger.warning(f"节点 {chinese_name} (英文名: {name}) 尚未找到,尝试重新查找")
if self.client:
self._find_nodes()
if chinese_name in self._node_registry:
node = self._node_registry[chinese_name]
logger.info(f"重新查找成功: '{chinese_name}', NodeId: {node.node_id}")
return node
raise ValueError(f'节点 {chinese_name} (英文名: {name}) 未注册或未找到')
# 直接使用原始名称查找
if name not in self._node_registry:
if name in self._variables_to_find:
logger.warning(f"节点 {name} 尚未找到,尝试重新查找")
if self.client:
self._find_nodes()
if name in self._node_registry:
node = self._node_registry[name]
logger.info(f"重新查找成功: '{name}', NodeId: {node.node_id}")
return node
logger.error(f"❌ 节点 '{name}' 未注册或未找到。已注册节点: {list(self._node_registry.keys())[:5]}...")
raise ValueError(f'节点 {name} 未注册或未找到')
node = self._node_registry[name]
logger.debug(f"使用节点: '{name}', NodeId: {node.node_id}")
return node
def get_node_registry(self) -> Dict[str, OpcUaNodeBase]:
return self._node_registry
def register_node_list_from_csv_path(self, path: str = None) -> "BaseClient":
"""从CSV文件注册节点"""
if path is None:
path = self.DEFAULT_ADDRESS_PATH
nodes, name_mapping, reverse_mapping = self.load_csv(path)
self._name_mapping.update(name_mapping)
self._reverse_mapping.update(reverse_mapping)
return self.register_node_list(nodes)
def register_node_list(self, node_list: List[OpcUaNode]) -> "BaseClient":
"""注册节点列表"""
if not node_list or len(node_list) == 0:
logger.warning('节点列表为空')
return self
logger.info(f'开始注册 {len(node_list)} 个节点...')
new_nodes_count = 0
for node in node_list:
if node is None:
continue
if node.name in self._node_registry:
logger.debug(f'节点 "{node.name}" 已存在于注册表')
exist = self._node_registry[node.name]
if exist.type != node.node_type:
raise ValueError(f'节点 {node.name} 类型 {node.node_type} 与已存在的类型 {exist.type} 不一致')
continue
# 将节点添加到待查找列表
self._variables_to_find[node.name] = {
"node_type": node.node_type,
"data_type": node.data_type
}
new_nodes_count += 1
logger.debug(f'添加节点 "{node.name}" ({node.node_type}) 到待查找列表')
logger.info(f'节点注册完成:新增 {new_nodes_count} 个待查找节点,总计 {len(self._variables_to_find)}')
# 如果客户端已连接,立即开始查找
if self.client:
self._find_nodes()
return self
def run_opcua_workflow(self, workflow: OpcUaWorkflow) -> None:
if not self.client:
raise ValueError('client is not connected')
logger.info(f'start to run workflow {workflow.name}...')
for action in workflow.actions:
if isinstance(action, OpcUaWorkflow):
self.run_opcua_workflow(action)
elif callable(action):
action(self.use_node)
else:
raise ValueError(f'invalid action {action}')
def call_lifecycle_fn(
self,
workflow: OpcUaWorkflowModel,
fn: Optional[Callable[[Callable], bool]],
) -> bool:
if not fn:
raise ValueError('fn is not valid in call_lifecycle_fn')
try:
result = fn(self.use_node)
# 处理函数返回值可能是元组的情况
if isinstance(result, tuple) and len(result) == 2:
# 第二个元素是错误标志True表示出错False表示成功
value, error_flag = result
return not error_flag # 转换成True表示成功False表示失败
return result
except Exception as e:
traceback.print_exc()
logger.error(f'execute {workflow.name} lifecycle failed, err: {e}')
return False
def run_opcua_workflow_model(self, workflow: OpcUaWorkflowModel) -> bool:
if not self.client:
raise ValueError('client is not connected')
logger.info(f'start to run workflow {workflow.name}...')
for action in workflow.actions:
if isinstance(action, OpcUaWorkflowModel):
if self.run_opcua_workflow_model(action):
logger.info(f"{action.name} workflow done.")
continue
else:
logger.error(f"{action.name} workflow failed")
return False
elif isinstance(action, WorkflowAction):
init = action.init
start = action.start
stop = action.stop
cleanup = action.cleanup
if not init and not start and not stop:
raise ValueError(f'invalid action {action}')
is_err = False
try:
if init and not self.call_lifecycle_fn(workflow, init):
raise ValueError(f"{workflow.name} init action failed")
if not self.call_lifecycle_fn(workflow, start):
raise ValueError(f"{workflow.name} start action failed")
if not self.call_lifecycle_fn(workflow, stop):
raise ValueError(f"{workflow.name} stop action failed")
logger.info(f"{workflow.name} action done.")
except Exception as e:
is_err = True
traceback.print_exc()
logger.error(f"{workflow.name} action failed, err: {e}")
finally:
logger.info(f"{workflow.name} try to run cleanup")
if cleanup:
self.call_lifecycle_fn(workflow, cleanup)
else:
logger.info(f"{workflow.name} cleanup is not defined")
if is_err:
return False
return True
else:
raise ValueError(f'invalid action type {type(action)}')
return True
function_name: Dict[str, Callable[[Callable[[str], OpcUaNodeBase]], bool]] = {}
def create_node_function(self, func_name: str = None, node_name: str = None, mode: str = None, value: Any = None, **kwargs) -> Callable[[Callable[[str], OpcUaNodeBase]], bool]:
def execute_node_function(use_node: Callable[[str], OpcUaNodeBase]) -> Union[bool, Tuple[Any, bool]]:
target_node = use_node(node_name)
# 检查是否有对应的参数值可用
current_value = value
if hasattr(self, '_workflow_params') and func_name in self._workflow_params:
current_value = self._workflow_params[func_name]
print(f"使用参数值 {func_name} = {current_value}")
else:
print(f"执行 {node_name}, {type(target_node).__name__}, {target_node.node_id}, {mode}, {current_value}")
if mode == 'read':
result_str = self.read_node(node_name)
try:
# 将字符串转换为字典
result_str = result_str.replace("'", '"') # 替换单引号为双引号以便JSON解析
result_dict = json.loads(result_str)
# 从字典获取值和错误标志
val = result_dict.get("value")
err = result_dict.get("error")
print(f"读取 {node_name} 返回值 = {val} (类型: {type(val).__name__}, 错误 = {err}")
return val, err
except Exception as e:
print(f"解析读取结果失败: {e}, 原始结果: {result_str}")
return None, True
elif mode == 'write':
# 构造完整的JSON输入包含node_name和value
input_json = json.dumps({"node_name": node_name, "value": current_value})
result_str = self.write_node(input_json)
try:
# 解析返回的字符串为字典
result_str = result_str.replace("'", '"') # 替换单引号为双引号以便JSON解析
result = json.loads(result_str)
success = result.get("success", False)
print(f"写入 {node_name} = {current_value}, 结果 = {success}")
return success
except Exception as e:
print(f"解析写入结果失败: {e}, 原始结果: {result_str}")
return False
elif mode == 'call' and hasattr(target_node, 'call'):
args = current_value if isinstance(current_value, list) else [current_value]
result = target_node.call(*args)
print(f"调用方法 {node_name} 参数 = {args}, 返回值 = {result}")
return result
return False
if func_name is None:
func_name = f"{node_name}_{mode}_{str(value)}"
print(f"创建 node function: {mode}, {func_name}")
self.function_name[func_name] = execute_node_function
return execute_node_function
def create_init_function(self, func_name: str = None, write_nodes: Union[Dict[str, Any], List[str]] = None):
"""
创建初始化函数
参数:
func_name: 函数名称
write_nodes: 写节点配置,可以是节点名列表[节点1,节点2]或节点值映射{节点1:值1,节点2:值2}
值可以是具体值也可以是参数名称字符串将从_workflow_params中查找
"""
if write_nodes is None:
raise ValueError("必须提供write_nodes参数")
def execute_init_function(use_node: Callable[[str], OpcUaNodeBase]) -> bool:
"""根据 _workflow_params 为各节点写入真实数值。
约定:
- write_nodes 为 list 时: 节点名 == 参数名,从 _workflow_params[node_name] 取值;
- write_nodes 为 dict 时:
* value 为字符串且在 _workflow_params 中: 当作参数名去取值;
* 否则 value 视为常量直接写入。
"""
params = getattr(self, "_workflow_params", {}) or {}
if isinstance(write_nodes, list):
# 节点列表形式: 节点名与参数名一致
for node_name in write_nodes:
if node_name not in params:
print(f"初始化函数: 参数中未找到 {node_name}, 跳过写入")
continue
current_value = params[node_name]
print(f"初始化函数: 写入节点 {node_name} = {current_value}")
input_json = json.dumps({"node_name": node_name, "value": current_value})
result_str = self.write_node(input_json)
try:
result_str = result_str.replace("'", '"')
result = json.loads(result_str)
success = result.get("success", False)
print(f"初始化函数: 写入结果 = {success}")
except Exception as e:
print(f"初始化函数: 解析写入结果失败: {e}, 原始结果: {result_str}")
elif isinstance(write_nodes, dict):
# 映射形式: 节点名 -> 参数名或常量
for node_name, node_value in write_nodes.items():
if isinstance(node_value, str) and node_value in params:
current_value = params[node_value]
print(f"初始化函数: 从参数获取值 {node_value} = {current_value}")
else:
current_value = node_value
print(f"初始化函数: 使用常量值 写入 {node_name} = {current_value}")
print(f"初始化函数: 写入节点 {node_name} = {current_value}")
input_json = json.dumps({"node_name": node_name, "value": current_value})
result_str = self.write_node(input_json)
try:
result_str = result_str.replace("'", '"')
result = json.loads(result_str)
success = result.get("success", False)
print(f"初始化函数: 写入结果 = {success}")
except Exception as e:
print(f"初始化函数: 解析写入结果失败: {e}, 原始结果: {result_str}")
return True
if func_name is None:
func_name = f"init_function_{str(time.time())}"
print(f"创建初始化函数: {func_name}")
self.function_name[func_name] = execute_init_function
return execute_init_function
def create_stop_function(self, func_name: str = None, write_nodes: Union[Dict[str, Any], List[str]] = None):
"""
创建停止函数
参数:
func_name: 函数名称
write_nodes: 写节点配置,可以是节点名列表[节点1,节点2]或节点值映射{节点1:值1,节点2:值2}
"""
if write_nodes is None:
raise ValueError("必须提供write_nodes参数")
def execute_stop_function(use_node: Callable[[str], OpcUaNodeBase]) -> bool:
if isinstance(write_nodes, list):
# 处理节点列表默认值都是False
for node_name in write_nodes:
# 直接写入False
print(f"停止函数: 写入节点 {node_name} = False")
input_json = json.dumps({"node_name": node_name, "value": False})
result_str = self.write_node(input_json)
try:
result_str = result_str.replace("'", '"')
result = json.loads(result_str)
success = result.get("success", False)
print(f"停止函数: 写入结果 = {success}")
except Exception as e:
print(f"停止函数: 解析写入结果失败: {e}, 原始结果: {result_str}")
elif isinstance(write_nodes, dict):
# 处理节点字典,使用指定的值
for node_name, node_value in write_nodes.items():
print(f"停止函数: 写入节点 {node_name} = {node_value}")
input_json = json.dumps({"node_name": node_name, "value": node_value})
result_str = self.write_node(input_json)
try:
result_str = result_str.replace("'", '"')
result = json.loads(result_str)
success = result.get("success", False)
print(f"停止函数: 写入结果 = {success}")
except Exception as e:
print(f"停止函数: 解析写入结果失败: {e}, 原始结果: {result_str}")
return True
if func_name is None:
func_name = f"stop_function_{str(time.time())}"
print(f"创建停止函数: {func_name}")
self.function_name[func_name] = execute_stop_function
return execute_stop_function
def create_cleanup_function(self, func_name: str = None, write_nodes: Union[Dict[str, Any], List[str]] = None):
"""
创建清理函数
参数:
func_name: 函数名称
write_nodes: 写节点配置,可以是节点名列表[节点1,节点2]或节点值映射{节点1:值1,节点2:值2}
"""
if write_nodes is None:
raise ValueError("必须提供write_nodes参数")
def execute_cleanup_function(use_node: Callable[[str], OpcUaNodeBase]) -> bool:
if isinstance(write_nodes, list):
# 处理节点列表默认值都是False
for node_name in write_nodes:
# 直接写入False
print(f"清理函数: 写入节点 {node_name} = False")
input_json = json.dumps({"node_name": node_name, "value": False})
result_str = self.write_node(input_json)
try:
result_str = result_str.replace("'", '"')
result = json.loads(result_str)
success = result.get("success", False)
print(f"清理函数: 写入结果 = {success}")
except Exception as e:
print(f"清理函数: 解析写入结果失败: {e}, 原始结果: {result_str}")
elif isinstance(write_nodes, dict):
# 处理节点字典,使用指定的值
for node_name, node_value in write_nodes.items():
print(f"清理函数: 写入节点 {node_name} = {node_value}")
input_json = json.dumps({"node_name": node_name, "value": node_value})
result_str = self.write_node(input_json)
try:
result_str = result_str.replace("'", '"')
result = json.loads(result_str)
success = result.get("success", False)
print(f"清理函数: 写入结果 = {success}")
except Exception as e:
print(f"清理函数: 解析写入结果失败: {e}, 原始结果: {result_str}")
return True
if func_name is None:
func_name = f"cleanup_function_{str(time.time())}"
print(f"创建清理函数: {func_name}")
self.function_name[func_name] = execute_cleanup_function
return execute_cleanup_function
def create_start_function(self, func_name: str, stop_condition_expression: str = "True", write_nodes: Union[Dict[str, Any], List[str]] = None, condition_nodes: Union[Dict[str, str], List[str]] = None):
"""
创建开始函数
参数:
func_name: 函数名称
stop_condition_expression: 停止条件表达式,可直接引用节点名称
write_nodes: 写节点配置,可以是节点名列表[节点1,节点2]或节点值映射{节点1:值1,节点2:值2}
condition_nodes: 条件节点列表 [节点名1, 节点名2]
"""
def execute_start_function(use_node: Callable[[str], OpcUaNodeBase]) -> bool:
"""开始函数: 写入触发节点, 然后轮询条件节点直到满足停止条件。"""
params = getattr(self, "_workflow_params", {}) or {}
# 先处理写入节点(触发位等)
if write_nodes:
if isinstance(write_nodes, list):
# 列表形式: 节点名与参数名一致, 若无参数则直接写 True
for node_name in write_nodes:
if node_name in params:
current_value = params[node_name]
else:
current_value = True
print(f"直接写入节点 {node_name} = {current_value}")
input_json = json.dumps({"node_name": node_name, "value": current_value})
result_str = self.write_node(input_json)
try:
result_str = result_str.replace("'", '"')
result = json.loads(result_str)
success = result.get("success", False)
print(f"直接写入 {node_name} = {current_value}, 结果: {success}")
except Exception as e:
print(f"解析直接写入结果失败: {e}, 原始结果: {result_str}")
elif isinstance(write_nodes, dict):
# 字典形式: 节点名 -> 常量值(如 True/False)
for node_name, node_value in write_nodes.items():
if node_name in params:
current_value = params[node_name]
else:
current_value = node_value
print(f"直接写入节点 {node_name} = {current_value}")
input_json = json.dumps({"node_name": node_name, "value": current_value})
result_str = self.write_node(input_json)
try:
result_str = result_str.replace("'", '"')
result = json.loads(result_str)
success = result.get("success", False)
print(f"直接写入 {node_name} = {current_value}, 结果: {success}")
except Exception as e:
print(f"解析直接写入结果失败: {e}, 原始结果: {result_str}")
# 如果没有条件节点,立即返回
if not condition_nodes:
return True
# 处理条件检查和等待
while True:
next_loop = False
condition_source = {}
# 直接读取条件节点
if isinstance(condition_nodes, list):
# 处理节点列表
for i, node_name in enumerate(condition_nodes):
# 直接读取节点
result_str = self.read_node(node_name)
try:
time.sleep(1)
result_str = result_str.replace("'", '"')
result_dict = json.loads(result_str)
read_res = result_dict.get("value")
read_err = result_dict.get("error", False)
print(f"直接读取 {node_name} 返回值 = {read_res}, 错误 = {read_err}")
if read_err:
next_loop = True
break
# 将节点值存入条件源字典,使用节点名称作为键
condition_source[node_name] = read_res
# 为了向后兼容也保留read_i格式
condition_source[f"read_{i}"] = read_res
except Exception as e:
print(f"解析直接读取结果失败: {e}, 原始结果: {result_str}")
read_res, read_err = None, True
next_loop = True
break
elif isinstance(condition_nodes, dict):
# 处理节点字典
for condition_func, node_name in condition_nodes.items():
# 直接读取节点
result_str = self.read_node(node_name)
try:
result_str = result_str.replace("'", '"')
result_dict = json.loads(result_str)
read_res = result_dict.get("value")
read_err = result_dict.get("error", False)
print(f"直接读取 {node_name} 返回值 = {read_res}, 错误 = {read_err}")
if read_err:
next_loop = True
break
# 将节点值存入条件源字典
condition_source[node_name] = read_res
# 也保存使用函数名作为键
condition_source[condition_func] = read_res
except Exception as e:
print(f"解析直接读取结果失败: {e}, 原始结果: {result_str}")
next_loop = True
break
if not next_loop:
if stop_condition_expression:
# 添加调试信息
print(f"条件源数据: {condition_source}")
condition_source["__RESULT"] = None
# 确保安全地执行条件表达式
try:
# 先尝试使用eval更安全的方式计算表达式
result = eval(stop_condition_expression, {}, condition_source)
condition_source["__RESULT"] = result
except Exception as e:
print(f"使用eval执行表达式失败: {e}")
try:
# 回退到exec方式
exec(f"__RESULT = {stop_condition_expression}", {}, condition_source)
except Exception as e2:
print(f"使用exec执行表达式也失败: {e2}")
condition_source["__RESULT"] = False
res = condition_source["__RESULT"]
print(f"取得计算结果: {res}, 条件表达式: {stop_condition_expression}")
if res:
print("满足停止条件,结束工作流")
break
else:
# 如果没有停止条件,直接退出
break
else:
time.sleep(0.3)
return True
self.function_name[func_name] = execute_start_function
return execute_start_function
create_action_from_json = None
def create_action_from_json(self, data: Union[Dict, Any]) -> WorkflowAction:
"""
从JSON配置创建工作流动作
参数:
data: 动作JSON数据
返回:
WorkflowAction对象
"""
# 初始化所需变量
start_function = None
write_nodes = {}
condition_nodes = []
stop_function = None
init_function = None
cleanup_function = None
# 提取start_function相关信息
if hasattr(data, "start_function") and data.start_function:
start_function = data.start_function
if "write_nodes" in start_function:
write_nodes = start_function["write_nodes"]
if "condition_nodes" in start_function:
condition_nodes = start_function["condition_nodes"]
elif isinstance(data, dict) and data.get("start_function"):
start_function = data.get("start_function")
if "write_nodes" in start_function:
write_nodes = start_function["write_nodes"]
if "condition_nodes" in start_function:
condition_nodes = start_function["condition_nodes"]
# 提取stop_function信息
if hasattr(data, "stop_function") and data.stop_function:
stop_function = data.stop_function
elif isinstance(data, dict) and data.get("stop_function"):
stop_function = data.get("stop_function")
# 提取init_function信息
if hasattr(data, "init_function") and data.init_function:
init_function = data.init_function
elif isinstance(data, dict) and data.get("init_function"):
init_function = data.get("init_function")
# 提取cleanup_function信息
if hasattr(data, "cleanup_function") and data.cleanup_function:
cleanup_function = data.cleanup_function
elif isinstance(data, dict) and data.get("cleanup_function"):
cleanup_function = data.get("cleanup_function")
# 创建工作流动作组件
init = None
start = None
stop = None
cleanup = None
# 处理init function
if init_function:
init_params = {"func_name": init_function.get("func_name")}
if "write_nodes" in init_function:
init_params["write_nodes"] = init_function["write_nodes"]
else:
# 如果没有write_nodes创建一个空字典
init_params["write_nodes"] = {}
init = self.create_init_function(**init_params)
# 处理start function
if start_function:
start_params = {
"func_name": start_function.get("func_name"),
"stop_condition_expression": start_function.get("stop_condition_expression", "True"),
"write_nodes": write_nodes,
"condition_nodes": condition_nodes
}
start = self.create_start_function(**start_params)
# 处理stop function
if stop_function:
stop_params = {
"func_name": stop_function.get("func_name"),
"write_nodes": stop_function.get("write_nodes", {})
}
stop = self.create_stop_function(**stop_params)
# 处理cleanup function
if cleanup_function:
cleanup_params = {
"func_name": cleanup_function.get("func_name"),
"write_nodes": cleanup_function.get("write_nodes", {})
}
cleanup = self.create_cleanup_function(**cleanup_params)
return WorkflowAction(init=init, start=start, stop=stop, cleanup=cleanup)
workflow_name: Dict[str, OpcUaWorkflowModel] = {}
def create_workflow_from_json(self, data: List[Dict]) -> None:
"""
从JSON配置创建工作流程序
参数:
data: 工作流配置列表
"""
for ind, flow_dict in enumerate(data):
print(f"正在创建 workflow {ind}, {flow_dict['name']}")
actions = []
for i in flow_dict["action"]:
if isinstance(i, str):
print(f"沿用已有 workflow 作为 action: {i}")
action = self.workflow_name[i]
else:
print("创建 action")
# 直接将字典转换为SimplifiedActionJson对象或直接使用字典
action = self.create_action_from_json(i)
actions.append(action)
# 获取参数
parameters = flow_dict.get("parameters", [])
flow_instance = OpcUaWorkflowModel(
name=flow_dict["name"],
actions=actions,
parameters=parameters,
description=flow_dict.get("description", "")
)
print(f"创建完成 workflow: {flow_dict['name']}")
self.workflow_name[flow_dict["name"]] = flow_instance
def execute_workflow_from_json(self, data: List[str]) -> None:
for i in data:
print(f"正在执行 workflow: {i}")
self.run_opcua_workflow_model(self.workflow_name[i])
def execute_procedure_from_json(self, data: Union[ExecuteProcedureJson, Dict]) -> None:
"""从JSON配置执行工作流程序"""
if isinstance(data, dict):
# 处理字典类型
register_params = data.get("register_node_list_from_csv_path")
create_flow = data.get("create_flow", [])
execute_flow = data.get("execute_flow", [])
else:
# 处理Pydantic模型类型
register_params = data.register_node_list_from_csv_path
create_flow = data.create_flow
execute_flow = data.execute_flow if hasattr(data, "execute_flow") else []
# 注册节点
if register_params:
print(f"注册节点 csv: {register_params}")
self.register_node_list_from_csv_path(**register_params)
# 创建工作流
print("创建工作流")
self.create_workflow_from_json(create_flow)
# 注册工作流为实例方法
self.register_workflows_as_methods()
# 如果存在execute_flow字段则执行指定的工作流向后兼容
if execute_flow:
print("执行工作流")
self.execute_workflow_from_json(execute_flow)
def register_workflows_as_methods(self) -> None:
"""将工作流注册为实例方法"""
for workflow_name, workflow in self.workflow_name.items():
# 获取工作流的参数信息(如果存在)
workflow_params = getattr(workflow, 'parameters', []) or []
workflow_desc = getattr(workflow, 'description', None) or f"执行工作流: {workflow_name}"
# 创建执行工作流的方法
def create_workflow_method(wf_name=workflow_name, wf=workflow, params=workflow_params):
def workflow_method(*args, **kwargs):
logger.info(f"执行工作流: {wf_name}, 参数: {args}, {kwargs}")
# 处理传入的参数
if params and (args or kwargs):
# 将位置参数转换为关键字参数
params_dict = {}
for i, param_name in enumerate(params):
if i < len(args):
params_dict[param_name] = args[i]
# 合并关键字参数
params_dict.update(kwargs)
# 保存参数,供节点函数使用
self._workflow_params = params_dict
else:
self._workflow_params = {}
# 执行工作流
result = self.run_opcua_workflow_model(wf)
# 清理参数
self._workflow_params = {}
return result
# 设置方法的文档字符串
workflow_method.__doc__ = workflow_desc
if params:
param_doc = ", ".join(params)
workflow_method.__doc__ += f"\n参数: {param_doc}"
return workflow_method
# 注册为实例方法
method = create_workflow_method()
setattr(self, workflow_name, method)
logger.info(f"已将工作流 '{workflow_name}' 注册为实例方法")
def read_node(self, node_name: str) -> Dict[str, Any]:
"""
读取节点值的便捷方法
返回包含result字段的字典
"""
# 使用锁保护客户端访问
with self._client_lock:
try:
node = self.use_node(node_name)
value, error = node.read()
# 创建结果字典
result = {
"value": value,
"error": error,
"node_name": node_name,
"timestamp": time.time()
}
# 返回JSON字符串
return json.dumps(result)
except Exception as e:
logger.error(f"读取节点 {node_name} 失败: {e}")
# 创建错误结果字典
result = {
"value": None,
"error": True,
"node_name": node_name,
"error_message": str(e),
"timestamp": time.time()
}
return json.dumps(result)
def write_node(self, json_input: str) -> str:
"""
写入节点值的便捷方法
接受单个JSON格式的字符串作为输入包含节点名称和值
eg:'{\"node_name\":\"反应罐号码\",\"value\":\"2\"}'
返回JSON格式的字符串包含操作结果
"""
# 使用锁保护客户端访问
with self._client_lock:
try:
# 解析JSON格式的输入
if not isinstance(json_input, str):
json_input = str(json_input)
try:
input_data = json.loads(json_input)
if not isinstance(input_data, dict):
return json.dumps({"error": True, "error_message": "输入必须是包含node_name和value的JSON对象", "success": False})
# 从JSON中提取节点名称和值
node_name = input_data.get("node_name")
value = input_data.get("value")
if node_name is None:
return json.dumps({"error": True, "error_message": "JSON中缺少node_name字段", "success": False})
except json.JSONDecodeError as e:
return json.dumps({"error": True, "error_message": f"JSON解析错误: {str(e)}", "success": False})
node = self.use_node(node_name)
error = node.write(value)
# 创建结果字典
result = {
"value": value,
"error": error,
"node_name": node_name,
"timestamp": time.time(),
"success": not error
}
return json.dumps(result)
except Exception as e:
logger.error(f"写入节点失败: {e}")
result = {
"error": True,
"error_message": str(e),
"timestamp": time.time(),
"success": False
}
return json.dumps(result)
def call_method(self, node_name: str, *args) -> Tuple[Any, bool]:
"""
调用方法节点的便捷方法
返回 (返回值, 是否出错)
"""
try:
node = self.use_node(node_name)
if hasattr(node, 'call'):
return node.call(*args)
else:
logger.error(f"节点 {node_name} 不是方法节点")
return None, True
except Exception as e:
logger.error(f"调用方法 {node_name} 失败: {e}")
return None, True
class OpcUaClient(BaseClient):
def __init__(
self,
url: str,
deck: Optional[Union[post_process_deck, Dict[str, Any]]] = None,
config_path: str = None,
username: str = None,
password: str = None,
use_subscription: bool = True,
cache_timeout: float = 5.0,
subscription_interval: int = 500,
*args,
**kwargs,
):
# 降低OPCUA库的日志级别
import logging
logging.getLogger("opcua").setLevel(logging.WARNING)
super().__init__()
# ===== 关键修改:参照 BioyondWorkstation 处理 deck =====
super().__init__()
# 处理 deck 参数
if deck is None:
self.deck = post_process_deck(setup=True)
elif isinstance(deck, dict):
self.deck = post_process_deck(setup=True)
elif hasattr(deck, 'children'):
self.deck = deck
else:
raise ValueError(f"deck 参数类型不支持: {type(deck)}")
if self.deck is None:
raise ValueError("Deck 配置不能为空")
# 统计仓库信息
warehouse_count = 0
if hasattr(self.deck, 'children'):
warehouse_count = len(self.deck.children)
logger.info(f"Deck 初始化完成,加载 {warehouse_count} 个资源")
# OPC UA 客户端初始化
client = Client(url)
if username and password:
client.set_user(username)
client.set_password(password)
self._set_client(client)
# 订阅相关属性
self._use_subscription = use_subscription
self._subscription = None
self._subscription_handles = {}
self._subscription_interval = subscription_interval
# 缓存相关属性
self._node_values = {} # 修改为支持时间戳的缓存结构
self._cache_timeout = cache_timeout
# 连接状态监控
self._connection_check_interval = 30.0 # 连接检查间隔(秒)
self._connection_monitor_running = False
self._connection_monitor_thread = None
# 添加线程锁保护OPC UA客户端的并发访问
import threading
self._client_lock = threading.RLock()
# 连接到服务器
self._connect()
# 如果提供了配置文件路径,则加载配置并注册工作流
if config_path:
self.load_config(config_path)
# 启动连接监控
self._start_connection_monitor()
def _connect(self) -> None:
"""连接到OPC UA服务器"""
logger.info('尝试连接到 OPC UA 服务器...')
if self.client:
try:
self.client.connect()
logger.info('✓ 客户端已连接!')
# 连接后开始查找节点
if self._variables_to_find:
self._find_nodes()
# 如果启用订阅模式,设置订阅
if self._use_subscription:
self._setup_subscriptions()
else:
logger.info("订阅模式已禁用,将使用按需读取模式")
except Exception as e:
logger.error(f'客户端连接失败: {e}')
raise
else:
raise ValueError('客户端未初始化')
class SubscriptionHandler:
"""freeopcua订阅处理器必须实现 datachange_notification 方法"""
def __init__(self, outer):
self.outer = outer
def datachange_notification(self, node, val, data):
# 委托给外层类的处理函数
try:
self.outer._on_subscription_datachange(node, val, data)
except Exception as e:
logger.error(f"订阅数据回调处理失败: {e}")
# 可选:事件通知占位,避免库调用时报缺失
def event_notification(self, event):
pass
def _setup_subscriptions(self):
"""设置 OPC UA 订阅"""
if not self.client or not self._use_subscription:
return
with self._client_lock:
try:
logger.info(f"开始设置订阅 (发布间隔: {self._subscription_interval}ms)...")
# 创建订阅
handler = OpcUaClient.SubscriptionHandler(self)
self._subscription = self.client.create_subscription(
self._subscription_interval,
handler
)
# 为所有变量节点创建监控项
subscribed_count = 0
skipped_count = 0
for node_name, node in self._node_registry.items():
# 只为变量节点创建订阅
if node.type == NodeType.VARIABLE and node.node_id:
try:
# 优先使用在查找阶段缓存的真实 ua.Node 对象
ua_node = self._found_node_objects.get(node_name)
if ua_node is None:
ua_node = self.client.get_node(node.node_id)
handle = self._subscription.subscribe_data_change(ua_node)
self._subscription_handles[node_name] = handle
subscribed_count += 1
logger.debug(f"✓ 已订阅节点: {node_name}")
except Exception as e:
skipped_count += 1
logger.warning(f"✗ 订阅节点 {node_name} 失败: {e}")
else:
skipped_count += 1
logger.info(f"订阅设置完成: 成功 {subscribed_count} 个, 跳过 {skipped_count}")
except Exception as e:
logger.error(f"设置订阅失败: {e}")
traceback.print_exc()
# 订阅失败时回退到按需读取模式
self._use_subscription = False
logger.warning("订阅模式设置失败,已自动切换到按需读取模式")
def _on_subscription_datachange(self, node, val, data):
"""订阅数据变化处理器(供内部 SubscriptionHandler 调用)"""
try:
node_id = str(node.nodeid)
current_time = time.time()
# 查找对应的节点名称
for node_name, node_obj in self._node_registry.items():
if node_obj.node_id == node_id:
self._node_values[node_name] = {
'value': val,
'timestamp': current_time,
'source': 'subscription'
}
logger.debug(f"订阅更新: {node_name} = {val}")
break
except Exception as e:
logger.error(f"处理订阅数据失败: {e}")
def get_node_value(self, name, use_cache=True, force_read=False):
"""
获取节点值(智能缓存版本)
参数:
name: 节点名称(支持中文名或英文名)
use_cache: 是否使用缓存
force_read: 是否强制从服务器读取(忽略缓存)
"""
# 处理名称映射
if name in self._name_mapping:
chinese_name = self._name_mapping[name]
elif name in self._node_registry:
chinese_name = name
else:
raise ValueError(f"未找到名称为 '{name}' 的节点")
# 如果强制读取,直接从服务器读取
if force_read:
with self._client_lock:
value, _ = self.use_node(chinese_name).read()
# 更新缓存
self._node_values[chinese_name] = {
'value': value,
'timestamp': time.time(),
'source': 'forced_read'
}
return value
# 检查缓存
if use_cache and chinese_name in self._node_values:
cache_entry = self._node_values[chinese_name]
cache_age = time.time() - cache_entry['timestamp']
# 如果是订阅模式,缓存永久有效(由订阅更新)
# 如果是按需读取模式,检查缓存超时
if cache_entry.get('source') == 'subscription' or cache_age < self._cache_timeout:
logger.debug(f"从缓存读取: {chinese_name} = {cache_entry['value']} (age: {cache_age:.2f}s, source: {cache_entry.get('source', 'unknown')})")
return cache_entry['value']
# 缓存过期或不存在,从服务器读取
with self._client_lock:
try:
value, error = self.use_node(chinese_name).read()
if not error:
# 更新缓存
self._node_values[chinese_name] = {
'value': value,
'timestamp': time.time(),
'source': 'on_demand_read'
}
return value
else:
logger.warning(f"读取节点 {chinese_name} 失败")
return None
except Exception as e:
logger.error(f"读取节点 {chinese_name} 出错: {e}")
return None
def set_node_value(self, name, value):
"""
设置节点值
写入成功后会立即更新本地缓存
"""
# 处理名称映射
if name in self._name_mapping:
chinese_name = self._name_mapping[name]
elif name in self._node_registry:
chinese_name = name
else:
raise ValueError(f"未找到名称为 '{name}' 的节点")
with self._client_lock:
try:
node = self.use_node(chinese_name)
error = node.write(value)
if not error:
# 写入成功,立即更新缓存
self._node_values[chinese_name] = {
'value': value,
'timestamp': time.time(),
'source': 'write'
}
logger.debug(f"写入成功: {chinese_name} = {value}")
return True
else:
logger.warning(f"写入节点 {chinese_name} 失败")
return False
except Exception as e:
logger.error(f"写入节点 {chinese_name} 出错: {e}")
return False
def _check_connection(self) -> bool:
"""检查连接状态"""
try:
with self._client_lock:
if self.client:
# 尝试获取命名空间数组来验证连接
self.client.get_namespace_array()
return True
except Exception as e:
logger.warning(f"连接检查失败: {e}")
return False
return False
def _connection_monitor_worker(self):
"""连接监控线程工作函数"""
self._connection_monitor_running = True
logger.info(f"连接监控线程已启动 (检查间隔: {self._connection_check_interval}秒)")
reconnect_attempts = 0
max_reconnect_attempts = 5
while self._connection_monitor_running:
try:
# 检查连接状态
if not self._check_connection():
logger.warning("检测到连接断开,尝试重新连接...")
reconnect_attempts += 1
if reconnect_attempts <= max_reconnect_attempts:
try:
# 尝试重新连接
with self._client_lock:
if self.client:
try:
self.client.disconnect()
except:
pass
self.client.connect()
logger.info("✓ 重新连接成功")
# 重新设置订阅
if self._use_subscription:
self._setup_subscriptions()
reconnect_attempts = 0
except Exception as e:
logger.error(f"重新连接失败 (尝试 {reconnect_attempts}/{max_reconnect_attempts}): {e}")
time.sleep(5) # 重连失败后等待5秒
else:
logger.error(f"达到最大重连次数 ({max_reconnect_attempts}),停止重连")
self._connection_monitor_running = False
else:
# 连接正常,重置重连计数
reconnect_attempts = 0
except Exception as e:
logger.error(f"连接监控出错: {e}")
# 等待下次检查
time.sleep(self._connection_check_interval)
def _start_connection_monitor(self):
"""启动连接监控线程"""
if self._connection_monitor_thread is not None and self._connection_monitor_thread.is_alive():
logger.warning("连接监控线程已在运行")
return
import threading
self._connection_monitor_thread = threading.Thread(
target=self._connection_monitor_worker,
daemon=True,
name="OpcUaConnectionMonitor"
)
self._connection_monitor_thread.start()
def _stop_connection_monitor(self):
"""停止连接监控线程"""
self._connection_monitor_running = False
if self._connection_monitor_thread and self._connection_monitor_thread.is_alive():
self._connection_monitor_thread.join(timeout=2.0)
logger.info("连接监控线程已停止")
def read_node(self, node_name: str) -> str:
"""
读取节点值的便捷方法(使用缓存)
返回JSON格式字符串
"""
try:
# 使用get_node_value方法自动处理缓存
value = self.get_node_value(node_name, use_cache=True)
# 获取缓存信息
chinese_name = self._name_mapping.get(node_name, node_name)
cache_info = self._node_values.get(chinese_name, {})
result = {
"value": value,
"error": False,
"node_name": node_name,
"timestamp": time.time(),
"cache_age": time.time() - cache_info.get('timestamp', time.time()),
"source": cache_info.get('source', 'unknown')
}
return json.dumps(result)
except Exception as e:
logger.error(f"读取节点 {node_name} 失败: {e}")
result = {
"value": None,
"error": True,
"node_name": node_name,
"error_message": str(e),
"timestamp": time.time()
}
return json.dumps(result)
def get_cache_stats(self) -> Dict[str, Any]:
"""获取缓存统计信息"""
current_time = time.time()
stats = {
'total_cached_nodes': len(self._node_values),
'subscription_nodes': 0,
'on_demand_nodes': 0,
'expired_nodes': 0,
'cache_timeout': self._cache_timeout,
'using_subscription': self._use_subscription
}
for node_name, cache_entry in self._node_values.items():
source = cache_entry.get('source', 'unknown')
cache_age = current_time - cache_entry['timestamp']
if source == 'subscription':
stats['subscription_nodes'] += 1
elif source in ['on_demand_read', 'forced_read', 'write']:
stats['on_demand_nodes'] += 1
if cache_age > self._cache_timeout:
stats['expired_nodes'] += 1
return stats
def print_cache_stats(self):
"""打印缓存统计信息"""
stats = self.get_cache_stats()
print("\n" + "="*80)
print("缓存统计信息")
print("="*80)
print(f"总缓存节点数: {stats['total_cached_nodes']}")
print(f"订阅模式: {'启用' if stats['using_subscription'] else '禁用'}")
print(f" - 订阅更新节点: {stats['subscription_nodes']}")
print(f" - 按需读取节点: {stats['on_demand_nodes']}")
print(f" - 已过期节点: {stats['expired_nodes']}")
print(f"缓存超时时间: {stats['cache_timeout']}")
print("="*80 + "\n")
def load_config(self, config_path: str) -> None:
"""从JSON配置文件加载并注册工作流"""
try:
with open(config_path, 'r', encoding='utf-8') as f:
config_data = json.load(f)
# 处理节点注册
if "register_node_list_from_csv_path" in config_data:
config_dir = os.path.dirname(os.path.abspath(config_path))
if "path" in config_data["register_node_list_from_csv_path"]:
csv_path = config_data["register_node_list_from_csv_path"]["path"]
if not os.path.isabs(csv_path):
csv_path = os.path.join(config_dir, csv_path)
config_data["register_node_list_from_csv_path"]["path"] = csv_path
self.register_node_list_from_csv_path(**config_data["register_node_list_from_csv_path"])
if self.client and self._variables_to_find:
logger.info("CSV加载完成开始查找服务器节点...")
self._find_nodes()
# 处理工作流创建
if "create_flow" in config_data:
self.create_workflow_from_json(config_data["create_flow"])
self.register_workflows_as_methods()
# 将所有节点注册为属性
self._register_nodes_as_attributes()
# 打印统计信息
found_count = len(self._node_registry)
total_count = len(self._variables_to_find)
if found_count < total_count:
logger.warning(f"节点查找完成:找到 {found_count}/{total_count} 个节点")
else:
logger.info(f"✓ 节点查找完成:所有 {found_count} 个节点均已找到")
# 如果使用订阅模式,重新设置订阅(确保新节点被订阅)
if self._use_subscription and found_count > 0:
self._setup_subscriptions()
logger.info(f"成功从 {config_path} 加载配置")
except Exception as e:
logger.error(f"加载配置文件 {config_path} 失败: {e}")
traceback.print_exc()
def disconnect(self):
"""断开连接并清理资源"""
logger.info("正在断开连接...")
# 停止连接监控
self._stop_connection_monitor()
# 删除订阅
if self._subscription:
try:
with self._client_lock:
self._subscription.delete()
logger.info("订阅已删除")
except Exception as e:
logger.warning(f"删除订阅失败: {e}")
# 断开客户端连接
if self.client:
try:
with self._client_lock:
self.client.disconnect()
logger.info("✓ OPC UA 客户端已断开连接")
except Exception as e:
logger.error(f"断开连接失败: {e}")
def _register_nodes_as_attributes(self):
"""将所有节点注册为实例属性"""
for node_name, node in self._node_registry.items():
if not node.node_id or node.node_id == "":
logger.warning(f"⚠ 节点 '{node_name}' 的 node_id 为空,跳过注册为属性")
continue
eng_name = self._reverse_mapping.get(node_name)
attr_name = eng_name if eng_name else node_name.replace(' ', '_').replace('-', '_')
def create_property_getter(node_key):
def getter(self):
return self.get_node_value(node_key, use_cache=True)
return getter
setattr(OpcUaClient, attr_name, property(create_property_getter(node_name)))
logger.debug(f"已注册节点 '{node_name}' 为属性 '{attr_name}'")
def post_init(self, ros_node):
"""ROS2 节点就绪后的初始化"""
if not (hasattr(self, 'deck') and self.deck):
return
if not (hasattr(ros_node, 'resource_tracker') and ros_node.resource_tracker):
logger.warning("resource_tracker 不存在,无法注册 deck")
return
# 1. 本地注册(必需)
ros_node.resource_tracker.add_resource(self.deck)
# 2. 上传云端
try:
from unilabos.ros.nodes.base_device_node import ROS2DeviceNode
ROS2DeviceNode.run_async_func(
ros_node.update_resource,
True,
resources=[self.deck]
)
logger.info("Deck 已上传到云端")
except Exception as e:
logger.error(f"上传失败: {e}")
if __name__ == '__main__':
# 示例用法
# 使用配置文件创建客户端并自动注册工作流
import os
current_dir = os.path.dirname(os.path.abspath(__file__))
config_path = os.path.join(current_dir, "opcua_huairou.json")
# 创建OPC UA客户端并加载配置
try:
client = OpcUaClient(
url="opc.tcp://192.168.1.88:4840/freeopcua/server/", # 替换为实际的OPC UA服务器地址
config_path="D:\\Uni-Lab-OS\\unilabos\\device_comms\\opcua_client\\opcua_huairou.json" # 传入配置文件路径
)
# 列出所有已注册的工作流
print("\n已注册的工作流:")
for workflow_name in client.workflow_name:
print(f" - {workflow_name}")
# 测试trigger_grab_action工作流 - 使用英文参数名
print("\n测试trigger_grab_action工作流 - 使用英文参数名:")
client.trigger_grab_action(reaction_tank_number=2, raw_tank_number=2)
# client.set_node_value("reaction_tank_number", 2)
# 读取节点值 - 使用英文节点名
grab_complete = client.get_node_value("grab_complete")
reaction_tank = client.get_node_value("reaction_tank_number")
raw_tank = client.get_node_value("raw_tank_number")
print(f"\n执行后状态检查 (使用英文节点名):")
print(f" - 抓取完成状态: {grab_complete}")
print(f" - 当前反应罐号码: {reaction_tank}")
print(f" - 当前原料罐号码: {raw_tank}")
# 测试节点值写入 - 使用英文节点名
print("\n测试节点值写入 (使用英文节点名):")
success = client.set_node_value("atomization_fast_speed", 150.5)
print(f" - 写入搅拌浆雾化快速 = 150.5, 结果: {success}")
# 读取写入的值
atomization_speed = client.get_node_value("atomization_fast_speed")
print(f" - 读取搅拌浆雾化快速: {atomization_speed}")
# 断开连接
client.disconnect()
except Exception as e:
print(f"错误: {e}")
traceback.print_exc()