mirror of
https://github.com/dptech-corp/Uni-Lab-OS.git
synced 2025-12-14 13:14:39 +00:00
Add workflow upload func.
This commit is contained in:
|
Before Width: | Height: | Size: 148 KiB After Width: | Height: | Size: 148 KiB |
|
Before Width: | Height: | Size: 140 KiB After Width: | Height: | Size: 140 KiB |
|
Before Width: | Height: | Size: 117 KiB After Width: | Height: | Size: 117 KiB |
35
test/workflow/merge_workflow.py
Normal file
35
test/workflow/merge_workflow.py
Normal file
@@ -0,0 +1,35 @@
|
||||
import sys
|
||||
from datetime import datetime
|
||||
from pathlib import Path
|
||||
|
||||
ROOT_DIR = Path(__file__).resolve().parents[2]
|
||||
if str(ROOT_DIR) not in sys.path:
|
||||
sys.path.insert(0, str(ROOT_DIR))
|
||||
|
||||
import pytest
|
||||
|
||||
from unilabos.workflow.convert_from_json import (
|
||||
convert_from_json,
|
||||
normalize_steps as _normalize_steps,
|
||||
normalize_labware as _normalize_labware,
|
||||
)
|
||||
from unilabos.workflow.common import draw_protocol_graph_with_ports
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"protocol_name",
|
||||
[
|
||||
"example_bio",
|
||||
# "bioyond_materials_liquidhandling_1",
|
||||
"example_prcxi",
|
||||
],
|
||||
)
|
||||
def test_build_protocol_graph(protocol_name):
|
||||
data_path = Path(__file__).with_name(f"{protocol_name}.json")
|
||||
|
||||
graph = convert_from_json(data_path, workstation_name="PRCXi")
|
||||
|
||||
timestamp = datetime.now().strftime("%Y%m%d_%H%M")
|
||||
output_path = data_path.with_name(f"{protocol_name}_graph_{timestamp}.png")
|
||||
draw_protocol_graph_with_ports(graph, str(output_path))
|
||||
print(graph)
|
||||
@@ -20,6 +20,7 @@ if unilabos_dir not in sys.path:
|
||||
from unilabos.utils.banner_print import print_status, print_unilab_banner
|
||||
from unilabos.config.config import load_config, BasicConfig, HTTPConfig
|
||||
|
||||
|
||||
def load_config_from_file(config_path):
|
||||
if config_path is None:
|
||||
config_path = os.environ.get("UNILABOS_BASICCONFIG_CONFIG_PATH", None)
|
||||
@@ -41,7 +42,7 @@ def convert_argv_dashes_to_underscores(args: argparse.ArgumentParser):
|
||||
for i, arg in enumerate(sys.argv):
|
||||
for option_string in option_strings:
|
||||
if arg.startswith(option_string):
|
||||
new_arg = arg[:2] + arg[2:len(option_string)].replace("-", "_") + arg[len(option_string):]
|
||||
new_arg = arg[:2] + arg[2 : len(option_string)].replace("-", "_") + arg[len(option_string) :]
|
||||
sys.argv[i] = new_arg
|
||||
break
|
||||
|
||||
@@ -155,14 +156,39 @@ def parse_args():
|
||||
default=False,
|
||||
help="Complete registry information",
|
||||
)
|
||||
|
||||
# label
|
||||
# workflow upload subcommand
|
||||
workflow_parser = subparsers.add_parser(
|
||||
"workflow_upload",
|
||||
aliases=["wf"],
|
||||
help="Upload workflow from xdl/json/python files",
|
||||
)
|
||||
workflow_parser.add_argument("-t", "--labeltype", default="singlepoint", type=str,
|
||||
help="QM calculation type, support 'singlepoint', 'optimize' and 'dimer' currently")
|
||||
workflow_parser.add_argument(
|
||||
"-f",
|
||||
"--workflow_file",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Path to the workflow file (JSON format)",
|
||||
)
|
||||
workflow_parser.add_argument(
|
||||
"-n",
|
||||
"--workflow_name",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Workflow name, if not provided will use the name from file or filename",
|
||||
)
|
||||
workflow_parser.add_argument(
|
||||
"--tags",
|
||||
type=str,
|
||||
nargs="*",
|
||||
default=[],
|
||||
help="Tags for the workflow (space-separated)",
|
||||
)
|
||||
workflow_parser.add_argument(
|
||||
"--published",
|
||||
action="store_true",
|
||||
default=False,
|
||||
help="Whether to publish the workflow (default: False)",
|
||||
)
|
||||
return parser
|
||||
|
||||
|
||||
@@ -173,9 +199,6 @@ def main():
|
||||
convert_argv_dashes_to_underscores(args)
|
||||
args_dict = vars(args.parse_args())
|
||||
|
||||
# 显示启动横幅
|
||||
print_unilab_banner(args_dict)
|
||||
|
||||
# 环境检查 - 检查并自动安装必需的包 (可选)
|
||||
if not args_dict.get("skip_env_check", False):
|
||||
from unilabos.utils.environment_check import check_environment
|
||||
@@ -254,18 +277,10 @@ def main():
|
||||
print_status("传入了sk参数,优先采用传入参数!", "info")
|
||||
BasicConfig.working_dir = working_dir
|
||||
|
||||
# 显示启动横幅
|
||||
print_unilab_banner(args_dict)
|
||||
workflow_upload = args_dict.get("command") in ("workflow_upload", "wf")
|
||||
|
||||
#####################################
|
||||
######## 启动设备接入端(主入口) ########
|
||||
#####################################
|
||||
launch(args_dict)
|
||||
|
||||
|
||||
def launch(args_dict: Dict[str, Any]):
|
||||
# 使用远程资源启动
|
||||
if args_dict["use_remote_resource"]:
|
||||
if not workflow_upload and args_dict["use_remote_resource"]:
|
||||
print_status("使用远程资源启动", "info")
|
||||
from unilabos.app.web import http_client
|
||||
|
||||
@@ -301,11 +316,36 @@ def launch(args_dict: Dict[str, Any]):
|
||||
from unilabos.resources.graphio import modify_to_backend_format
|
||||
from unilabos.ros.nodes.resource_tracker import ResourceTreeSet, ResourceDict
|
||||
|
||||
# 显示启动横幅
|
||||
print_unilab_banner(args_dict)
|
||||
|
||||
# 注册表
|
||||
lab_registry = build_registry(
|
||||
args_dict["registry_path"], args_dict.get("complete_registry", False), args_dict["upload_registry"]
|
||||
args_dict["registry_path"], args_dict.get("complete_registry", False), BasicConfig.upload_registry
|
||||
)
|
||||
|
||||
if BasicConfig.upload_registry:
|
||||
# 设备注册到服务端 - 需要 ak 和 sk
|
||||
if BasicConfig.ak and BasicConfig.sk:
|
||||
print_status("开始注册设备到服务端...", "info")
|
||||
try:
|
||||
register_devices_and_resources(lab_registry)
|
||||
print_status("设备注册完成", "info")
|
||||
except Exception as e:
|
||||
print_status(f"设备注册失败: {e}", "error")
|
||||
else:
|
||||
print_status("未提供 ak 和 sk,跳过设备注册", "info")
|
||||
else:
|
||||
print_status("本次启动注册表不报送云端,如果您需要联网调试,请在启动命令增加--upload_registry", "warning")
|
||||
|
||||
# 处理 workflow_upload 子命令
|
||||
if workflow_upload:
|
||||
from unilabos.workflow.wf_utils import handle_workflow_upload_command
|
||||
|
||||
handle_workflow_upload_command(args_dict)
|
||||
print_status("工作流上传完成,程序退出", "info")
|
||||
os._exit(0)
|
||||
|
||||
if not BasicConfig.ak or not BasicConfig.sk:
|
||||
print_status("后续运行必须拥有一个实验室,请前往 https://uni-lab.bohrium.com 注册实验室!", "warning")
|
||||
os._exit(1)
|
||||
@@ -382,20 +422,6 @@ def launch(args_dict: Dict[str, Any]):
|
||||
args_dict["devices_config"] = resource_tree_set
|
||||
args_dict["graph"] = graph_res.physical_setup_graph
|
||||
|
||||
if BasicConfig.upload_registry:
|
||||
# 设备注册到服务端 - 需要 ak 和 sk
|
||||
if BasicConfig.ak and BasicConfig.sk:
|
||||
print_status("开始注册设备到服务端...", "info")
|
||||
try:
|
||||
register_devices_and_resources(lab_registry)
|
||||
print_status("设备注册完成", "info")
|
||||
except Exception as e:
|
||||
print_status(f"设备注册失败: {e}", "error")
|
||||
else:
|
||||
print_status("未提供 ak 和 sk,跳过设备注册", "info")
|
||||
else:
|
||||
print_status("本次启动注册表不报送云端,如果您需要联网调试,请在启动命令增加--upload_registry", "warning")
|
||||
|
||||
if args_dict["controllers"] is not None:
|
||||
args_dict["controllers_config"] = yaml.safe_load(open(args_dict["controllers"], encoding="utf-8"))
|
||||
else:
|
||||
@@ -410,6 +436,7 @@ def launch(args_dict: Dict[str, Any]):
|
||||
comm_client = get_communication_client()
|
||||
if "websocket" in args_dict["app_bridges"]:
|
||||
args_dict["bridges"].append(comm_client)
|
||||
|
||||
def _exit(signum, frame):
|
||||
comm_client.stop()
|
||||
sys.exit(0)
|
||||
@@ -451,16 +478,13 @@ def launch(args_dict: Dict[str, Any]):
|
||||
resource_visualization.start()
|
||||
except OSError as e:
|
||||
if "AMENT_PREFIX_PATH" in str(e):
|
||||
print_status(
|
||||
f"ROS 2环境未正确设置,跳过3D可视化启动。错误详情: {e}",
|
||||
"warning"
|
||||
)
|
||||
print_status(f"ROS 2环境未正确设置,跳过3D可视化启动。错误详情: {e}", "warning")
|
||||
print_status(
|
||||
"建议解决方案:\n"
|
||||
"1. 激活Conda环境: conda activate unilab\n"
|
||||
"2. 或使用 --backend simple 参数\n"
|
||||
"3. 或使用 --visual disable 参数禁用可视化",
|
||||
"info"
|
||||
"info",
|
||||
)
|
||||
else:
|
||||
raise
|
||||
|
||||
@@ -76,7 +76,8 @@ class HTTPClient:
|
||||
Dict[str, str]: 旧UUID到新UUID的映射关系 {old_uuid: new_uuid}
|
||||
"""
|
||||
with open(os.path.join(BasicConfig.working_dir, "req_resource_tree_add.json"), "w", encoding="utf-8") as f:
|
||||
f.write(json.dumps({"nodes": [x for xs in resources.dump() for x in xs], "mount_uuid": mount_uuid}, indent=4))
|
||||
payload = {"nodes": [x for xs in resources.dump() for x in xs], "mount_uuid": mount_uuid}
|
||||
f.write(json.dumps(payload, indent=4))
|
||||
# 从序列化数据中提取所有节点的UUID(保存旧UUID)
|
||||
old_uuids = {n.res_content.uuid: n for n in resources.all_nodes}
|
||||
if not self.initialized or first_add:
|
||||
@@ -331,6 +332,67 @@ class HTTPClient:
|
||||
logger.error(f"响应内容: {response.text}")
|
||||
return None
|
||||
|
||||
def workflow_import(
|
||||
self,
|
||||
name: str,
|
||||
workflow_uuid: str,
|
||||
workflow_name: str,
|
||||
nodes: List[Dict[str, Any]],
|
||||
edges: List[Dict[str, Any]],
|
||||
tags: Optional[List[str]] = None,
|
||||
published: bool = False,
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
导入工作流到服务器
|
||||
|
||||
Args:
|
||||
name: 工作流名称(顶层)
|
||||
workflow_uuid: 工作流UUID
|
||||
workflow_name: 工作流名称(data内部)
|
||||
nodes: 工作流节点列表
|
||||
edges: 工作流边列表
|
||||
tags: 工作流标签列表,默认为空列表
|
||||
published: 是否发布工作流,默认为False
|
||||
|
||||
Returns:
|
||||
Dict: API响应数据,包含 code 和 data (uuid, name)
|
||||
"""
|
||||
# target_lab_uuid 暂时使用默认值,后续由后端根据 ak/sk 获取
|
||||
payload = {
|
||||
"target_lab_uuid": "28c38bb0-63f6-4352-b0d8-b5b8eb1766d5",
|
||||
"name": name,
|
||||
"data": {
|
||||
"workflow_uuid": workflow_uuid,
|
||||
"workflow_name": workflow_name,
|
||||
"nodes": nodes,
|
||||
"edges": edges,
|
||||
"tags": tags if tags is not None else [],
|
||||
"published": published,
|
||||
},
|
||||
}
|
||||
# 保存请求到文件
|
||||
with open(os.path.join(BasicConfig.working_dir, "req_workflow_upload.json"), "w", encoding="utf-8") as f:
|
||||
f.write(json.dumps(payload, indent=4, ensure_ascii=False))
|
||||
|
||||
response = requests.post(
|
||||
f"{self.remote_addr}/lab/workflow/owner/import",
|
||||
json=payload,
|
||||
headers={"Authorization": f"Lab {self.auth}"},
|
||||
timeout=60,
|
||||
)
|
||||
# 保存响应到文件
|
||||
with open(os.path.join(BasicConfig.working_dir, "res_workflow_upload.json"), "w", encoding="utf-8") as f:
|
||||
f.write(f"{response.status_code}" + "\n" + response.text)
|
||||
|
||||
if response.status_code == 200:
|
||||
res = response.json()
|
||||
if "code" in res and res["code"] != 0:
|
||||
logger.error(f"导入工作流失败: {response.text}")
|
||||
return res
|
||||
else:
|
||||
logger.error(f"导入工作流失败: {response.status_code}, {response.text}")
|
||||
return {"code": response.status_code, "message": response.text}
|
||||
|
||||
|
||||
# 创建默认客户端实例
|
||||
http_client = HTTPClient()
|
||||
|
||||
@@ -21,7 +21,8 @@ class BasicConfig:
|
||||
startup_json_path = None # 填写绝对路径
|
||||
disable_browser = False # 禁止浏览器自动打开
|
||||
port = 8002 # 本地HTTP服务
|
||||
log_level: Literal['TRACE', 'DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'] = "DEBUG" # 'TRACE', 'DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'
|
||||
# 'TRACE', 'DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'
|
||||
log_level: Literal["TRACE", "DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"] = "DEBUG"
|
||||
|
||||
@classmethod
|
||||
def auth_secret(cls):
|
||||
@@ -65,13 +66,14 @@ def _update_config_from_module(module):
|
||||
if not attr.startswith("_"):
|
||||
setattr(obj, attr, getattr(getattr(module, name), attr))
|
||||
|
||||
|
||||
def _update_config_from_env():
|
||||
prefix = "UNILABOS_"
|
||||
for env_key, env_value in os.environ.items():
|
||||
if not env_key.startswith(prefix):
|
||||
continue
|
||||
try:
|
||||
key_path = env_key[len(prefix):] # Remove UNILAB_ prefix
|
||||
key_path = env_key[len(prefix) :] # Remove UNILAB_ prefix
|
||||
class_field = key_path.upper().split("_", 1)
|
||||
if len(class_field) != 2:
|
||||
logger.warning(f"[ENV] 环境变量格式不正确:{env_key}")
|
||||
|
||||
@@ -9333,7 +9333,34 @@ liquid_handler.prcxi:
|
||||
touch_tip: false
|
||||
use_channels:
|
||||
- 0
|
||||
handles: {}
|
||||
handles:
|
||||
input:
|
||||
- data_key: liquid
|
||||
data_source: handle
|
||||
data_type: resource
|
||||
handler_key: sources
|
||||
label: sources
|
||||
- data_key: liquid
|
||||
data_source: executor
|
||||
data_type: resource
|
||||
handler_key: targets
|
||||
label: targets
|
||||
- data_key: liquid
|
||||
data_source: executor
|
||||
data_type: resource
|
||||
handler_key: tip_rack
|
||||
label: tip_rack
|
||||
output:
|
||||
- data_key: liquid
|
||||
data_source: handle
|
||||
data_type: resource
|
||||
handler_key: sources_out
|
||||
label: sources
|
||||
- data_key: liquid
|
||||
data_source: executor
|
||||
data_type: resource
|
||||
handler_key: targets_out
|
||||
label: targets
|
||||
placeholder_keys:
|
||||
sources: unilabos_resources
|
||||
targets: unilabos_resources
|
||||
|
||||
@@ -66,8 +66,8 @@ class ResourceDict(BaseModel):
|
||||
klass: str = Field(alias="class", description="Resource class name")
|
||||
pose: ResourceDictPosition = Field(description="Resource position", default_factory=ResourceDictPosition)
|
||||
config: Dict[str, Any] = Field(description="Resource configuration")
|
||||
data: Dict[str, Any] = Field(description="Resource data")
|
||||
extra: Dict[str, Any] = Field(description="Extra data")
|
||||
data: Dict[str, Any] = Field(description="Resource data, eg: container liquid data")
|
||||
extra: Dict[str, Any] = Field(description="Extra data, eg: slot index")
|
||||
|
||||
@field_serializer("parent_uuid")
|
||||
def _serialize_parent(self, parent_uuid: Optional["ResourceDict"]):
|
||||
|
||||
@@ -1,94 +0,0 @@
|
||||
import json
|
||||
import sys
|
||||
from datetime import datetime
|
||||
from pathlib import Path
|
||||
|
||||
ROOT_DIR = Path(__file__).resolve().parents[2]
|
||||
if str(ROOT_DIR) not in sys.path:
|
||||
sys.path.insert(0, str(ROOT_DIR))
|
||||
|
||||
import pytest
|
||||
|
||||
from unilabos.workflow.common import build_protocol_graph, draw_protocol_graph, draw_protocol_graph_with_ports
|
||||
|
||||
|
||||
ROOT_DIR = Path(__file__).resolve().parents[2]
|
||||
if str(ROOT_DIR) not in sys.path:
|
||||
sys.path.insert(0, str(ROOT_DIR))
|
||||
|
||||
|
||||
def _normalize_steps(data):
|
||||
normalized = []
|
||||
for step in data:
|
||||
action = step.get("action") or step.get("operation")
|
||||
if not action:
|
||||
continue
|
||||
raw_params = step.get("parameters") or step.get("action_args") or {}
|
||||
params = dict(raw_params)
|
||||
|
||||
if "source" in raw_params and "sources" not in raw_params:
|
||||
params["sources"] = raw_params["source"]
|
||||
if "target" in raw_params and "targets" not in raw_params:
|
||||
params["targets"] = raw_params["target"]
|
||||
|
||||
description = step.get("description") or step.get("purpose")
|
||||
step_dict = {"action": action, "parameters": params}
|
||||
if description:
|
||||
step_dict["description"] = description
|
||||
normalized.append(step_dict)
|
||||
return normalized
|
||||
|
||||
|
||||
def _normalize_labware(data):
|
||||
labware = {}
|
||||
for item in data:
|
||||
reagent_name = item.get("reagent_name")
|
||||
key = reagent_name or item.get("material_name") or item.get("name")
|
||||
if not key:
|
||||
continue
|
||||
key = str(key)
|
||||
idx = 1
|
||||
original_key = key
|
||||
while key in labware:
|
||||
idx += 1
|
||||
key = f"{original_key}_{idx}"
|
||||
|
||||
labware[key] = {
|
||||
"slot": item.get("positions") or item.get("slot"),
|
||||
"labware": item.get("material_name") or item.get("labware"),
|
||||
"well": item.get("well", []),
|
||||
"type": item.get("type", "reagent"),
|
||||
"role": item.get("role", ""),
|
||||
"name": key,
|
||||
}
|
||||
return labware
|
||||
|
||||
|
||||
@pytest.mark.parametrize("protocol_name", [
|
||||
"example_bio",
|
||||
# "bioyond_materials_liquidhandling_1",
|
||||
"example_prcxi",
|
||||
])
|
||||
def test_build_protocol_graph(protocol_name):
|
||||
data_path = Path(__file__).with_name(f"{protocol_name}.json")
|
||||
with data_path.open("r", encoding="utf-8") as fp:
|
||||
d = json.load(fp)
|
||||
|
||||
if "workflow" in d and "reagent" in d:
|
||||
protocol_steps = d["workflow"]
|
||||
labware_info = d["reagent"]
|
||||
elif "steps_info" in d and "labware_info" in d:
|
||||
protocol_steps = _normalize_steps(d["steps_info"])
|
||||
labware_info = _normalize_labware(d["labware_info"])
|
||||
else:
|
||||
raise ValueError("Unsupported protocol format")
|
||||
|
||||
graph = build_protocol_graph(
|
||||
labware_info=labware_info,
|
||||
protocol_steps=protocol_steps,
|
||||
workstation_name="PRCXi",
|
||||
)
|
||||
timestamp = datetime.now().strftime("%Y%m%d_%H%M")
|
||||
output_path = data_path.with_name(f"{protocol_name}_graph_{timestamp}.png")
|
||||
draw_protocol_graph_with_ports(graph, str(output_path))
|
||||
print(graph)
|
||||
0
unilabos/workflow/__init__.py
Normal file
0
unilabos/workflow/__init__.py
Normal file
@@ -10,6 +10,7 @@ Json = Dict[str, Any]
|
||||
|
||||
# ---------------- Graph ----------------
|
||||
|
||||
|
||||
class WorkflowGraph:
|
||||
"""简单的有向图实现:使用 params 单层参数;inputs 内含连线;支持 node-link 导出"""
|
||||
|
||||
@@ -21,20 +22,31 @@ class WorkflowGraph:
|
||||
self.nodes[node_id] = attrs
|
||||
|
||||
def add_edge(self, source: str, target: str, **attrs):
|
||||
# 将 source_port/target_port 映射为服务端期望的 source_handle_key/target_handle_key
|
||||
source_handle_key = attrs.pop("source_port", "") or attrs.pop("source_handle_key", "")
|
||||
target_handle_key = attrs.pop("target_port", "") or attrs.pop("target_handle_key", "")
|
||||
|
||||
edge = {
|
||||
"source": source,
|
||||
"target": target,
|
||||
"source_node_uuid": source,
|
||||
"target_node_uuid": target,
|
||||
"source_handle_key": source_handle_key,
|
||||
"source_handle_io": attrs.pop("source_handle_io", "source"),
|
||||
"target_handle_key": target_handle_key,
|
||||
"target_handle_io": attrs.pop("target_handle_io", "target"),
|
||||
**attrs
|
||||
**attrs,
|
||||
}
|
||||
self.edges.append(edge)
|
||||
|
||||
def _materialize_wiring_into_inputs(self, obj: Any, inputs: Dict[str, Any],
|
||||
variable_sources: Dict[str, Dict[str, Any]],
|
||||
target_node_id: str, base_path: List[str]):
|
||||
def _materialize_wiring_into_inputs(
|
||||
self,
|
||||
obj: Any,
|
||||
inputs: Dict[str, Any],
|
||||
variable_sources: Dict[str, Dict[str, Any]],
|
||||
target_node_id: str,
|
||||
base_path: List[str],
|
||||
):
|
||||
has_var = False
|
||||
|
||||
def walk(node: Any, path: List[str]):
|
||||
@@ -48,9 +60,12 @@ class WorkflowGraph:
|
||||
if src:
|
||||
key = ".".join(path) # e.g. "params.foo.bar.0"
|
||||
inputs[key] = {"node": src["node_id"], "output": src.get("output_name", "result")}
|
||||
self.add_edge(str(src["node_id"]), target_node_id,
|
||||
source_handle_io=src.get("output_name", "result"),
|
||||
target_handle_io=key)
|
||||
self.add_edge(
|
||||
str(src["node_id"]),
|
||||
target_node_id,
|
||||
source_handle_io=src.get("output_name", "result"),
|
||||
target_handle_io=key,
|
||||
)
|
||||
return placeholder
|
||||
return {k: walk(v, path + [k]) for k, v in node.items()}
|
||||
if isinstance(node, list):
|
||||
@@ -60,18 +75,20 @@ class WorkflowGraph:
|
||||
replaced = walk(obj, base_path[:])
|
||||
return replaced, has_var
|
||||
|
||||
def add_workflow_node(self,
|
||||
node_id: int,
|
||||
*,
|
||||
device_key: Optional[str] = None, # 实例名,如 "ser"
|
||||
resource_name: Optional[str] = None, # registry key(原 device_class)
|
||||
module: Optional[str] = None,
|
||||
template_name: Optional[str] = None, # 动作/模板名(原 action_key)
|
||||
params: Dict[str, Any],
|
||||
variable_sources: Dict[str, Dict[str, Any]],
|
||||
add_ready_if_no_vars: bool = True,
|
||||
prev_node_id: Optional[int] = None,
|
||||
**extra_attrs) -> None:
|
||||
def add_workflow_node(
|
||||
self,
|
||||
node_id: int,
|
||||
*,
|
||||
device_key: Optional[str] = None, # 实例名,如 "ser"
|
||||
resource_name: Optional[str] = None, # registry key(原 device_class)
|
||||
module: Optional[str] = None,
|
||||
template_name: Optional[str] = None, # 动作/模板名(原 action_key)
|
||||
params: Dict[str, Any],
|
||||
variable_sources: Dict[str, Dict[str, Any]],
|
||||
add_ready_if_no_vars: bool = True,
|
||||
prev_node_id: Optional[int] = None,
|
||||
**extra_attrs,
|
||||
) -> None:
|
||||
"""添加工作流节点:params 单层;自动变量连线与 ready 串联;支持附加属性"""
|
||||
node_id_str = str(node_id)
|
||||
inputs: Dict[str, Any] = {}
|
||||
@@ -87,9 +104,9 @@ class WorkflowGraph:
|
||||
|
||||
node_obj = {
|
||||
"device_key": device_key,
|
||||
"resource_name": resource_name, # ✅ 新名字
|
||||
"resource_name": resource_name, # ✅ 新名字
|
||||
"module": module,
|
||||
"template_name": template_name, # ✅ 新名字
|
||||
"template_name": template_name, # ✅ 新名字
|
||||
"params": params,
|
||||
"inputs": inputs,
|
||||
}
|
||||
@@ -100,13 +117,13 @@ class WorkflowGraph:
|
||||
def to_dict(self) -> List[Dict[str, Any]]:
|
||||
result = []
|
||||
for node_id, attrs in self.nodes.items():
|
||||
node = {"id": node_id}
|
||||
node = {"uuid": node_id}
|
||||
params = dict(attrs.get("parameters", {}) or {})
|
||||
flat = {k: v for k, v in attrs.items() if k != "parameters"}
|
||||
flat.update(params)
|
||||
node.update(flat)
|
||||
result.append(node)
|
||||
return sorted(result, key=lambda n: int(n["id"]) if str(n["id"]).isdigit() else n["id"])
|
||||
return sorted(result, key=lambda n: int(n["uuid"]) if str(n["uuid"]).isdigit() else n["uuid"])
|
||||
|
||||
# node-link 导出(含 edges)
|
||||
def to_node_link_dict(self) -> Dict[str, Any]:
|
||||
@@ -115,12 +132,27 @@ class WorkflowGraph:
|
||||
node_attrs = attrs.copy()
|
||||
params = node_attrs.pop("parameters", {}) or {}
|
||||
node_attrs.update(params)
|
||||
nodes_list.append({"id": node_id, **node_attrs})
|
||||
return {"directed": True, "multigraph": False, "graph": {}, "nodes": nodes_list, "edges": self.edges, "links": self.edges}
|
||||
nodes_list.append({"uuid": node_id, **node_attrs})
|
||||
return {
|
||||
"directed": True,
|
||||
"multigraph": False,
|
||||
"graph": {},
|
||||
"nodes": nodes_list,
|
||||
"edges": self.edges,
|
||||
"links": self.edges,
|
||||
}
|
||||
|
||||
|
||||
def refactor_data(data: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
|
||||
"""统一的数据重构函数,根据操作类型自动选择模板"""
|
||||
def refactor_data(
|
||||
data: List[Dict[str, Any]],
|
||||
action_resource_mapping: Optional[Dict[str, str]] = None,
|
||||
) -> List[Dict[str, Any]]:
|
||||
"""统一的数据重构函数,根据操作类型自动选择模板
|
||||
|
||||
Args:
|
||||
data: 原始步骤数据列表
|
||||
action_resource_mapping: action 到 resource_name 的映射字典,可选
|
||||
"""
|
||||
refactored_data = []
|
||||
|
||||
# 定义操作映射,包含生物实验和有机化学的所有操作
|
||||
@@ -157,43 +189,67 @@ def refactor_data(data: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
|
||||
times = step.get("times", step.get("parameters", {}).get("times", 1))
|
||||
sub_steps = step.get("steps", step.get("parameters", {}).get("steps", []))
|
||||
for i in range(int(times)):
|
||||
sub_data = refactor_data(sub_steps)
|
||||
sub_data = refactor_data(sub_steps, action_resource_mapping)
|
||||
refactored_data.extend(sub_data)
|
||||
continue
|
||||
|
||||
# 获取模板名称
|
||||
template = OPERATION_MAPPING.get(operation)
|
||||
if not template:
|
||||
template_name = OPERATION_MAPPING.get(operation)
|
||||
if not template_name:
|
||||
# 自动推断模板类型
|
||||
if operation.lower() in ["transfer", "incubation", "move_labware", "oscillation"]:
|
||||
template = f"biomek-{operation}"
|
||||
template_name = f"biomek-{operation}"
|
||||
else:
|
||||
template = f"{operation}Protocol"
|
||||
template_name = f"{operation}Protocol"
|
||||
|
||||
# 获取 resource_name
|
||||
resource_name = f"device.{operation.lower()}"
|
||||
if action_resource_mapping:
|
||||
resource_name = action_resource_mapping.get(operation, resource_name)
|
||||
|
||||
# 获取步骤编号,生成 name 字段
|
||||
step_number = step.get("step_number")
|
||||
name = f"Step {step_number}" if step_number is not None else None
|
||||
|
||||
# 创建步骤数据
|
||||
step_data = {
|
||||
"template": template,
|
||||
"template_name": template_name,
|
||||
"resource_name": resource_name,
|
||||
"description": step.get("description", step.get("purpose", f"{operation} operation")),
|
||||
"lab_node_type": "Device",
|
||||
"parameters": step.get("parameters", step.get("action_args", {})),
|
||||
"param": step.get("parameters", step.get("action_args", {})),
|
||||
"footer": f"{template_name}-{resource_name}",
|
||||
}
|
||||
if name:
|
||||
step_data["name"] = name
|
||||
refactored_data.append(step_data)
|
||||
|
||||
return refactored_data
|
||||
|
||||
|
||||
def build_protocol_graph(
|
||||
labware_info: List[Dict[str, Any]], protocol_steps: List[Dict[str, Any]], workstation_name: str
|
||||
labware_info: List[Dict[str, Any]],
|
||||
protocol_steps: List[Dict[str, Any]],
|
||||
workstation_name: str,
|
||||
action_resource_mapping: Optional[Dict[str, str]] = None,
|
||||
) -> WorkflowGraph:
|
||||
"""统一的协议图构建函数,根据设备类型自动选择构建逻辑"""
|
||||
"""统一的协议图构建函数,根据设备类型自动选择构建逻辑
|
||||
|
||||
Args:
|
||||
labware_info: labware 信息字典
|
||||
protocol_steps: 协议步骤列表
|
||||
workstation_name: 工作站名称
|
||||
action_resource_mapping: action 到 resource_name 的映射字典,可选
|
||||
"""
|
||||
G = WorkflowGraph()
|
||||
resource_last_writer = {}
|
||||
|
||||
protocol_steps = refactor_data(protocol_steps)
|
||||
protocol_steps = refactor_data(protocol_steps, action_resource_mapping)
|
||||
# 有机化学&移液站协议图构建
|
||||
WORKSTATION_ID = workstation_name
|
||||
|
||||
# 为所有labware创建资源节点
|
||||
res_index = 0
|
||||
for labware_id, item in labware_info.items():
|
||||
# item_id = item.get("id") or item.get("name", f"item_{uuid.uuid4()}")
|
||||
node_id = str(uuid.uuid4())
|
||||
@@ -217,13 +273,16 @@ def build_protocol_graph(
|
||||
liquid_type = [labware_id]
|
||||
liquid_volume = [1e5]
|
||||
|
||||
res_index += 1
|
||||
G.add_node(
|
||||
node_id,
|
||||
template_name=f"create_resource",
|
||||
template_name="create_resource",
|
||||
resource_name="host_node",
|
||||
name=f"Res {res_index}",
|
||||
description=description,
|
||||
lab_node_type=lab_node_type,
|
||||
params={
|
||||
footer="create_resource-host_node",
|
||||
param={
|
||||
"res_id": labware_id,
|
||||
"device_id": WORKSTATION_ID,
|
||||
"class_name": "container",
|
||||
@@ -234,7 +293,6 @@ def build_protocol_graph(
|
||||
"liquid_volume": liquid_volume,
|
||||
"slot_on_deck": "",
|
||||
},
|
||||
role=item.get("role", ""),
|
||||
)
|
||||
resource_last_writer[labware_id] = f"{node_id}:labware"
|
||||
|
||||
@@ -251,7 +309,7 @@ def build_protocol_graph(
|
||||
last_control_node_id = node_id
|
||||
|
||||
# 物料流
|
||||
params = step.get("parameters", {})
|
||||
params = step.get("param", {})
|
||||
input_resources_possible_names = [
|
||||
"vessel",
|
||||
"to_vessel",
|
||||
@@ -299,7 +357,7 @@ def draw_protocol_graph(protocol_graph: WorkflowGraph, output_path: str):
|
||||
G = nx.DiGraph()
|
||||
|
||||
for node_id, attrs in protocol_graph.nodes.items():
|
||||
label = attrs.get("description", attrs.get("template", node_id[:8]))
|
||||
label = attrs.get("description", attrs.get("template_name", node_id[:8]))
|
||||
G.add_node(node_id, label=label, **attrs)
|
||||
|
||||
for edge in protocol_graph.edges:
|
||||
@@ -331,11 +389,13 @@ def draw_protocol_graph(protocol_graph: WorkflowGraph, output_path: str):
|
||||
print(f" - Visualization saved to '{output_path}'")
|
||||
|
||||
|
||||
COMPASS = {"n","e","s","w","ne","nw","se","sw","c"}
|
||||
COMPASS = {"n", "e", "s", "w", "ne", "nw", "se", "sw", "c"}
|
||||
|
||||
|
||||
def _is_compass(port: str) -> bool:
|
||||
return isinstance(port, str) and port.lower() in COMPASS
|
||||
|
||||
|
||||
def draw_protocol_graph_with_ports(protocol_graph, output_path: str, rankdir: str = "LR"):
|
||||
"""
|
||||
使用 Graphviz 端口语法绘制协议工作流图。
|
||||
@@ -350,22 +410,22 @@ def draw_protocol_graph_with_ports(protocol_graph, output_path: str, rankdir: st
|
||||
# 1) 先用 networkx 搭建有向图,保留端口属性
|
||||
G = nx.DiGraph()
|
||||
for node_id, attrs in protocol_graph.nodes.items():
|
||||
label = attrs.get("description", attrs.get("template", node_id[:8]))
|
||||
label = attrs.get("description", attrs.get("template_name", node_id[:8]))
|
||||
# 保留一个干净的“中心标签”,用于放在 record 的中间槽
|
||||
G.add_node(node_id, _core_label=str(label), **{k:v for k,v in attrs.items() if k not in ("label",)})
|
||||
G.add_node(node_id, _core_label=str(label), **{k: v for k, v in attrs.items() if k not in ("label",)})
|
||||
|
||||
edges_data = []
|
||||
in_ports_by_node = {} # 收集命名输入端口
|
||||
in_ports_by_node = {} # 收集命名输入端口
|
||||
out_ports_by_node = {} # 收集命名输出端口
|
||||
|
||||
for edge in protocol_graph.edges:
|
||||
u = edge["source"]
|
||||
v = edge["target"]
|
||||
sp = edge.get("source_port")
|
||||
tp = edge.get("target_port")
|
||||
sp = edge.get("source_handle_key") or edge.get("source_port")
|
||||
tp = edge.get("target_handle_key") or edge.get("target_port")
|
||||
|
||||
# 记录到图里(保留原始端口信息)
|
||||
G.add_edge(u, v, source_port=sp, target_port=tp)
|
||||
G.add_edge(u, v, source_handle_key=sp, target_handle_key=tp)
|
||||
edges_data.append((u, v, sp, tp))
|
||||
|
||||
# 如果不是 compass,就按“命名端口”先归类,等会儿给节点造 record
|
||||
@@ -377,7 +437,9 @@ def draw_protocol_graph_with_ports(protocol_graph, output_path: str, rankdir: st
|
||||
# 2) 转为 AGraph,使用 Graphviz 渲染
|
||||
A = to_agraph(G)
|
||||
A.graph_attr.update(rankdir=rankdir, splines="true", concentrate="false", fontsize="10")
|
||||
A.node_attr.update(shape="box", style="rounded,filled", fillcolor="lightyellow", color="#999999", fontname="Helvetica")
|
||||
A.node_attr.update(
|
||||
shape="box", style="rounded,filled", fillcolor="lightyellow", color="#999999", fontname="Helvetica"
|
||||
)
|
||||
A.edge_attr.update(arrowsize="0.8", color="#666666")
|
||||
|
||||
# 3) 为需要命名端口的节点设置 record 形状与 label
|
||||
@@ -386,18 +448,19 @@ def draw_protocol_graph_with_ports(protocol_graph, output_path: str, rankdir: st
|
||||
node = A.get_node(n)
|
||||
core = G.nodes[n].get("_core_label", n)
|
||||
|
||||
in_ports = sorted(in_ports_by_node.get(n, []))
|
||||
in_ports = sorted(in_ports_by_node.get(n, []))
|
||||
out_ports = sorted(out_ports_by_node.get(n, []))
|
||||
|
||||
# 如果该节点涉及命名端口,则用 record;否则保留原 box
|
||||
if in_ports or out_ports:
|
||||
|
||||
def port_fields(ports):
|
||||
if not ports:
|
||||
return " " # 必须留一个空槽占位
|
||||
# 每个端口一个小格子,<p> name
|
||||
return "|".join(f"<{re.sub(r'[^A-Za-z0-9_:.|-]', '_', p)}> {p}" for p in ports)
|
||||
|
||||
left = port_fields(in_ports)
|
||||
left = port_fields(in_ports)
|
||||
right = port_fields(out_ports)
|
||||
|
||||
# 三栏:左(入) | 中(节点名) | 右(出)
|
||||
@@ -410,7 +473,7 @@ def draw_protocol_graph_with_ports(protocol_graph, output_path: str, rankdir: st
|
||||
# 4) 给边设置 headport / tailport
|
||||
# - 若端口为 compass:直接用 compass(e.g., headport="e")
|
||||
# - 若端口为命名端口:使用在 record 中定义的 <port> 名(同名即可)
|
||||
for (u, v, sp, tp) in edges_data:
|
||||
for u, v, sp, tp in edges_data:
|
||||
e = A.get_edge(u, v)
|
||||
|
||||
# Graphviz 属性:tail 是源,head 是目标
|
||||
@@ -419,13 +482,13 @@ def draw_protocol_graph_with_ports(protocol_graph, output_path: str, rankdir: st
|
||||
e.attr["tailport"] = sp.lower()
|
||||
else:
|
||||
# 与 record label 中 <port> 名一致;特殊字符已在 label 中做了清洗
|
||||
e.attr["tailport"] = re.sub(r'[^A-Za-z0-9_:.|-]', '_', str(sp))
|
||||
e.attr["tailport"] = re.sub(r"[^A-Za-z0-9_:.|-]", "_", str(sp))
|
||||
|
||||
if tp:
|
||||
if _is_compass(tp):
|
||||
e.attr["headport"] = tp.lower()
|
||||
else:
|
||||
e.attr["headport"] = re.sub(r'[^A-Za-z0-9_:.|-]', '_', str(tp))
|
||||
e.attr["headport"] = re.sub(r"[^A-Za-z0-9_:.|-]", "_", str(tp))
|
||||
|
||||
# 可选:若想让边更贴边缘,可设置 constraint/spline 等
|
||||
# e.attr["arrowhead"] = "vee"
|
||||
@@ -433,11 +496,14 @@ def draw_protocol_graph_with_ports(protocol_graph, output_path: str, rankdir: st
|
||||
# 5) 输出
|
||||
A.draw(output_path, prog="dot")
|
||||
print(f" - Port-aware workflow rendered to '{output_path}'")
|
||||
|
||||
|
||||
# ---------------- Registry Adapter ----------------
|
||||
|
||||
|
||||
class RegistryAdapter:
|
||||
"""根据 module 的类名(冒号右侧)反查 registry 的 resource_name(原 device_class),并抽取参数顺序"""
|
||||
|
||||
def __init__(self, device_registry: Dict[str, Any]):
|
||||
self.device_registry = device_registry or {}
|
||||
self.module_class_to_resource = self._build_module_class_index()
|
||||
@@ -455,8 +521,7 @@ class RegistryAdapter:
|
||||
def resolve_resource_by_classname(self, class_name: str) -> Optional[str]:
|
||||
if not class_name:
|
||||
return None
|
||||
return (self.module_class_to_resource.get(class_name)
|
||||
or self.module_class_to_resource.get(class_name.lower()))
|
||||
return self.module_class_to_resource.get(class_name) or self.module_class_to_resource.get(class_name.lower())
|
||||
|
||||
def get_device_module(self, resource_name: Optional[str]) -> Optional[str]:
|
||||
if not resource_name:
|
||||
@@ -466,9 +531,7 @@ class RegistryAdapter:
|
||||
def get_actions(self, resource_name: Optional[str]) -> Dict[str, Any]:
|
||||
if not resource_name:
|
||||
return {}
|
||||
return (self.device_registry.get(resource_name, {})
|
||||
.get("class", {})
|
||||
.get("action_value_mappings", {})) or {}
|
||||
return (self.device_registry.get(resource_name, {}).get("class", {}).get("action_value_mappings", {})) or {}
|
||||
|
||||
def get_action_schema(self, resource_name: Optional[str], template_name: str) -> Optional[Json]:
|
||||
return (self.get_actions(resource_name).get(template_name) or {}).get("schema")
|
||||
|
||||
356
unilabos/workflow/convert_from_json.py
Normal file
356
unilabos/workflow/convert_from_json.py
Normal file
@@ -0,0 +1,356 @@
|
||||
"""
|
||||
JSON 工作流转换模块
|
||||
|
||||
提供从多种 JSON 格式转换为统一工作流格式的功能。
|
||||
支持的格式:
|
||||
1. workflow/reagent 格式
|
||||
2. steps_info/labware_info 格式
|
||||
"""
|
||||
|
||||
import json
|
||||
from os import PathLike
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, Optional, Set, Tuple, Union
|
||||
|
||||
from unilabos.workflow.common import WorkflowGraph, build_protocol_graph
|
||||
from unilabos.registry.registry import lab_registry
|
||||
|
||||
|
||||
def get_action_handles(resource_name: str, template_name: str) -> Dict[str, List[str]]:
|
||||
"""
|
||||
从 registry 获取指定设备和动作的 handles 配置
|
||||
|
||||
Args:
|
||||
resource_name: 设备资源名称,如 "liquid_handler.prcxi"
|
||||
template_name: 动作模板名称,如 "transfer_liquid"
|
||||
|
||||
Returns:
|
||||
包含 source 和 target handler_keys 的字典:
|
||||
{"source": ["sources_out", "targets_out", ...], "target": ["sources", "targets", ...]}
|
||||
"""
|
||||
result = {"source": [], "target": []}
|
||||
|
||||
device_info = lab_registry.device_type_registry.get(resource_name, {})
|
||||
if not device_info:
|
||||
return result
|
||||
|
||||
action_mappings = device_info.get("class", {}).get("action_value_mappings", {})
|
||||
action_config = action_mappings.get(template_name, {})
|
||||
handles = action_config.get("handles", {})
|
||||
|
||||
if isinstance(handles, dict):
|
||||
# 处理 input handles (作为 target)
|
||||
for handle in handles.get("input", []):
|
||||
handler_key = handle.get("handler_key", "")
|
||||
if handler_key:
|
||||
result["source"].append(handler_key)
|
||||
# 处理 output handles (作为 source)
|
||||
for handle in handles.get("output", []):
|
||||
handler_key = handle.get("handler_key", "")
|
||||
if handler_key:
|
||||
result["target"].append(handler_key)
|
||||
|
||||
return result
|
||||
|
||||
|
||||
def validate_workflow_handles(graph: WorkflowGraph) -> Tuple[bool, List[str]]:
|
||||
"""
|
||||
校验工作流图中所有边的句柄配置是否正确
|
||||
|
||||
Args:
|
||||
graph: 工作流图对象
|
||||
|
||||
Returns:
|
||||
(is_valid, errors): 是否有效,错误信息列表
|
||||
"""
|
||||
errors = []
|
||||
nodes = graph.nodes
|
||||
|
||||
for edge in graph.edges:
|
||||
left_uuid = edge.get("source")
|
||||
right_uuid = edge.get("target")
|
||||
# target_handle_key是target, right的输入节点(入节点)
|
||||
# source_handle_key是source, left的输出节点(出节点)
|
||||
right_source_conn_key = edge.get("target_handle_key", "")
|
||||
left_target_conn_key = edge.get("source_handle_key", "")
|
||||
|
||||
# 获取源节点和目标节点信息
|
||||
left_node = nodes.get(left_uuid, {})
|
||||
right_node = nodes.get(right_uuid, {})
|
||||
|
||||
left_res_name = left_node.get("resource_name", "")
|
||||
left_template_name = left_node.get("template_name", "")
|
||||
right_res_name = right_node.get("resource_name", "")
|
||||
right_template_name = right_node.get("template_name", "")
|
||||
|
||||
# 获取源节点的 output handles
|
||||
left_node_handles = get_action_handles(left_res_name, left_template_name)
|
||||
target_valid_keys = left_node_handles.get("target", [])
|
||||
target_valid_keys.append("ready")
|
||||
|
||||
# 获取目标节点的 input handles
|
||||
right_node_handles = get_action_handles(right_res_name, right_template_name)
|
||||
source_valid_keys = right_node_handles.get("source", [])
|
||||
source_valid_keys.append("ready")
|
||||
|
||||
# 如果节点配置了 output handles,则 source_port 必须有效
|
||||
if not right_source_conn_key:
|
||||
node_name = left_node.get("name", left_uuid[:8])
|
||||
errors.append(f"源节点 '{node_name}' 的 source_handle_key 为空," f"应设置为: {source_valid_keys}")
|
||||
elif right_source_conn_key not in source_valid_keys:
|
||||
node_name = left_node.get("name", left_uuid[:8])
|
||||
errors.append(
|
||||
f"源节点 '{node_name}' 的 source 端点 '{right_source_conn_key}' 不存在," f"支持的端点: {source_valid_keys}"
|
||||
)
|
||||
|
||||
# 如果节点配置了 input handles,则 target_port 必须有效
|
||||
if not left_target_conn_key:
|
||||
node_name = right_node.get("name", right_uuid[:8])
|
||||
errors.append(f"目标节点 '{node_name}' 的 target_handle_key 为空," f"应设置为: {target_valid_keys}")
|
||||
elif left_target_conn_key not in target_valid_keys:
|
||||
node_name = right_node.get("name", right_uuid[:8])
|
||||
errors.append(
|
||||
f"目标节点 '{node_name}' 的 target 端点 '{left_target_conn_key}' 不存在,"
|
||||
f"支持的端点: {target_valid_keys}"
|
||||
)
|
||||
|
||||
return len(errors) == 0, errors
|
||||
|
||||
|
||||
# action 到 resource_name 的映射
|
||||
ACTION_RESOURCE_MAPPING: Dict[str, str] = {
|
||||
# 生物实验操作
|
||||
"transfer_liquid": "liquid_handler.prcxi",
|
||||
"transfer": "liquid_handler.prcxi",
|
||||
"incubation": "incubator.prcxi",
|
||||
"move_labware": "labware_mover.prcxi",
|
||||
"oscillation": "shaker.prcxi",
|
||||
# 有机化学操作
|
||||
"HeatChillToTemp": "heatchill.chemputer",
|
||||
"StopHeatChill": "heatchill.chemputer",
|
||||
"StartHeatChill": "heatchill.chemputer",
|
||||
"HeatChill": "heatchill.chemputer",
|
||||
"Dissolve": "stirrer.chemputer",
|
||||
"Transfer": "liquid_handler.chemputer",
|
||||
"Evaporate": "rotavap.chemputer",
|
||||
"Recrystallize": "reactor.chemputer",
|
||||
"Filter": "filter.chemputer",
|
||||
"Dry": "dryer.chemputer",
|
||||
"Add": "liquid_handler.chemputer",
|
||||
}
|
||||
|
||||
|
||||
def normalize_steps(data: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
将不同格式的步骤数据规范化为统一格式
|
||||
|
||||
支持的输入格式:
|
||||
- action + parameters
|
||||
- action + action_args
|
||||
- operation + parameters
|
||||
|
||||
Args:
|
||||
data: 原始步骤数据列表
|
||||
|
||||
Returns:
|
||||
规范化后的步骤列表,格式为 [{"action": str, "parameters": dict, "description": str?, "step_number": int?}, ...]
|
||||
"""
|
||||
normalized = []
|
||||
for idx, step in enumerate(data):
|
||||
# 获取动作名称(支持 action 或 operation 字段)
|
||||
action = step.get("action") or step.get("operation")
|
||||
if not action:
|
||||
continue
|
||||
|
||||
# 获取参数(支持 parameters 或 action_args 字段)
|
||||
raw_params = step.get("parameters") or step.get("action_args") or {}
|
||||
params = dict(raw_params)
|
||||
|
||||
# 规范化 source/target -> sources/targets
|
||||
if "source" in raw_params and "sources" not in raw_params:
|
||||
params["sources"] = raw_params["source"]
|
||||
if "target" in raw_params and "targets" not in raw_params:
|
||||
params["targets"] = raw_params["target"]
|
||||
|
||||
# 获取描述(支持 description 或 purpose 字段)
|
||||
description = step.get("description") or step.get("purpose")
|
||||
|
||||
# 获取步骤编号(优先使用原始数据中的 step_number,否则使用索引+1)
|
||||
step_number = step.get("step_number", idx + 1)
|
||||
|
||||
step_dict = {"action": action, "parameters": params, "step_number": step_number}
|
||||
if description:
|
||||
step_dict["description"] = description
|
||||
|
||||
normalized.append(step_dict)
|
||||
|
||||
return normalized
|
||||
|
||||
|
||||
def normalize_labware(data: List[Dict[str, Any]]) -> Dict[str, Dict[str, Any]]:
|
||||
"""
|
||||
将不同格式的 labware 数据规范化为统一的字典格式
|
||||
|
||||
支持的输入格式:
|
||||
- reagent_name + material_name + positions
|
||||
- name + labware + slot
|
||||
|
||||
Args:
|
||||
data: 原始 labware 数据列表
|
||||
|
||||
Returns:
|
||||
规范化后的 labware 字典,格式为 {name: {"slot": int, "labware": str, "well": list, "type": str, "role": str, "name": str}, ...}
|
||||
"""
|
||||
labware = {}
|
||||
for item in data:
|
||||
# 获取 key 名称(优先使用 reagent_name,其次是 material_name 或 name)
|
||||
reagent_name = item.get("reagent_name")
|
||||
key = reagent_name or item.get("material_name") or item.get("name")
|
||||
if not key:
|
||||
continue
|
||||
|
||||
key = str(key)
|
||||
|
||||
# 处理重复 key,自动添加后缀
|
||||
idx = 1
|
||||
original_key = key
|
||||
while key in labware:
|
||||
idx += 1
|
||||
key = f"{original_key}_{idx}"
|
||||
|
||||
labware[key] = {
|
||||
"slot": item.get("positions") or item.get("slot"),
|
||||
"labware": item.get("material_name") or item.get("labware"),
|
||||
"well": item.get("well", []),
|
||||
"type": item.get("type", "reagent"),
|
||||
"role": item.get("role", ""),
|
||||
"name": key,
|
||||
}
|
||||
|
||||
return labware
|
||||
|
||||
|
||||
def convert_from_json(
|
||||
data: Union[str, PathLike, Dict[str, Any]],
|
||||
workstation_name: str = "PRCXi",
|
||||
validate: bool = True,
|
||||
) -> WorkflowGraph:
|
||||
"""
|
||||
从 JSON 数据或文件转换为 WorkflowGraph
|
||||
|
||||
支持的 JSON 格式:
|
||||
1. {"workflow": [...], "reagent": {...}} - 直接格式
|
||||
2. {"steps_info": [...], "labware_info": [...]} - 需要规范化的格式
|
||||
|
||||
Args:
|
||||
data: JSON 文件路径、字典数据、或 JSON 字符串
|
||||
workstation_name: 工作站名称,默认 "PRCXi"
|
||||
validate: 是否校验句柄配置,默认 True
|
||||
|
||||
Returns:
|
||||
WorkflowGraph: 构建好的工作流图
|
||||
|
||||
Raises:
|
||||
ValueError: 不支持的 JSON 格式 或 句柄校验失败
|
||||
FileNotFoundError: 文件不存在
|
||||
json.JSONDecodeError: JSON 解析失败
|
||||
"""
|
||||
# 处理输入数据
|
||||
if isinstance(data, (str, PathLike)):
|
||||
path = Path(data)
|
||||
if path.exists():
|
||||
with path.open("r", encoding="utf-8") as fp:
|
||||
json_data = json.load(fp)
|
||||
elif isinstance(data, str):
|
||||
# 尝试作为 JSON 字符串解析
|
||||
json_data = json.loads(data)
|
||||
else:
|
||||
raise FileNotFoundError(f"文件不存在: {data}")
|
||||
elif isinstance(data, dict):
|
||||
json_data = data
|
||||
else:
|
||||
raise TypeError(f"不支持的数据类型: {type(data)}")
|
||||
|
||||
# 根据格式解析数据
|
||||
if "workflow" in json_data and "reagent" in json_data:
|
||||
# 格式1: workflow/reagent(已经是规范格式)
|
||||
protocol_steps = json_data["workflow"]
|
||||
labware_info = json_data["reagent"]
|
||||
elif "steps_info" in json_data and "labware_info" in json_data:
|
||||
# 格式2: steps_info/labware_info(需要规范化)
|
||||
protocol_steps = normalize_steps(json_data["steps_info"])
|
||||
labware_info = normalize_labware(json_data["labware_info"])
|
||||
elif "steps" in json_data and "labware" in json_data:
|
||||
# 格式3: steps/labware(另一种常见格式)
|
||||
protocol_steps = normalize_steps(json_data["steps"])
|
||||
if isinstance(json_data["labware"], list):
|
||||
labware_info = normalize_labware(json_data["labware"])
|
||||
else:
|
||||
labware_info = json_data["labware"]
|
||||
else:
|
||||
raise ValueError(
|
||||
"不支持的 JSON 格式。支持的格式:\n"
|
||||
"1. {'workflow': [...], 'reagent': {...}}\n"
|
||||
"2. {'steps_info': [...], 'labware_info': [...]}\n"
|
||||
"3. {'steps': [...], 'labware': [...]}"
|
||||
)
|
||||
|
||||
# 构建工作流图
|
||||
graph = build_protocol_graph(
|
||||
labware_info=labware_info,
|
||||
protocol_steps=protocol_steps,
|
||||
workstation_name=workstation_name,
|
||||
action_resource_mapping=ACTION_RESOURCE_MAPPING,
|
||||
)
|
||||
|
||||
# 校验句柄配置
|
||||
if validate:
|
||||
is_valid, errors = validate_workflow_handles(graph)
|
||||
if not is_valid:
|
||||
import warnings
|
||||
|
||||
for error in errors:
|
||||
warnings.warn(f"句柄校验警告: {error}")
|
||||
|
||||
return graph
|
||||
|
||||
|
||||
def convert_json_to_node_link(
|
||||
data: Union[str, PathLike, Dict[str, Any]],
|
||||
workstation_name: str = "PRCXi",
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
将 JSON 数据转换为 node-link 格式的字典
|
||||
|
||||
Args:
|
||||
data: JSON 文件路径、字典数据、或 JSON 字符串
|
||||
workstation_name: 工作站名称,默认 "PRCXi"
|
||||
|
||||
Returns:
|
||||
Dict: node-link 格式的工作流数据
|
||||
"""
|
||||
graph = convert_from_json(data, workstation_name)
|
||||
return graph.to_node_link_dict()
|
||||
|
||||
|
||||
def convert_json_to_workflow_list(
|
||||
data: Union[str, PathLike, Dict[str, Any]],
|
||||
workstation_name: str = "PRCXi",
|
||||
) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
将 JSON 数据转换为工作流列表格式
|
||||
|
||||
Args:
|
||||
data: JSON 文件路径、字典数据、或 JSON 字符串
|
||||
workstation_name: 工作站名称,默认 "PRCXi"
|
||||
|
||||
Returns:
|
||||
List: 工作流节点列表
|
||||
"""
|
||||
graph = convert_from_json(data, workstation_name)
|
||||
return graph.to_dict()
|
||||
|
||||
|
||||
# 为了向后兼容,保留下划线前缀的别名
|
||||
_normalize_steps = normalize_steps
|
||||
_normalize_labware = normalize_labware
|
||||
@@ -1,24 +0,0 @@
|
||||
import json
|
||||
from os import PathLike
|
||||
|
||||
from unilabos.workflow.common import build_protocol_graph
|
||||
|
||||
|
||||
def from_labwares_and_steps(data_path: PathLike):
|
||||
with data_path.open("r", encoding="utf-8") as fp:
|
||||
d = json.load(fp)
|
||||
|
||||
if "workflow" in d and "reagent" in d:
|
||||
protocol_steps = d["workflow"]
|
||||
labware_info = d["reagent"]
|
||||
elif "steps_info" in d and "labware_info" in d:
|
||||
protocol_steps = _normalize_steps(d["steps_info"])
|
||||
labware_info = _normalize_labware(d["labware_info"])
|
||||
else:
|
||||
raise ValueError("Unsupported protocol format")
|
||||
|
||||
graph = build_protocol_graph(
|
||||
labware_info=labware_info,
|
||||
protocol_steps=protocol_steps,
|
||||
workstation_name="PRCXi",
|
||||
)
|
||||
138
unilabos/workflow/wf_utils.py
Normal file
138
unilabos/workflow/wf_utils.py
Normal file
@@ -0,0 +1,138 @@
|
||||
"""
|
||||
工作流工具模块
|
||||
|
||||
提供工作流上传等功能
|
||||
"""
|
||||
|
||||
import json
|
||||
import os
|
||||
import uuid
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
from unilabos.utils.banner_print import print_status
|
||||
|
||||
|
||||
def _is_node_link_format(data: Dict[str, Any]) -> bool:
|
||||
"""检查数据是否为 node-link 格式"""
|
||||
return "nodes" in data and "edges" in data
|
||||
|
||||
|
||||
def _convert_to_node_link(workflow_file: str, workflow_data: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""
|
||||
将非 node-link 格式的工作流数据转换为 node-link 格式
|
||||
|
||||
Args:
|
||||
workflow_file: 工作流文件路径(用于日志)
|
||||
workflow_data: 原始工作流数据
|
||||
|
||||
Returns:
|
||||
node-link 格式的工作流数据
|
||||
"""
|
||||
from unilabos.workflow.convert_from_json import convert_json_to_node_link
|
||||
|
||||
print_status(f"检测到非 node-link 格式,正在转换...", "info")
|
||||
node_link_data = convert_json_to_node_link(workflow_data)
|
||||
print_status(f"转换完成", "success")
|
||||
return node_link_data
|
||||
|
||||
|
||||
def upload_workflow(
|
||||
workflow_file: str,
|
||||
workflow_name: Optional[str] = None,
|
||||
tags: Optional[List[str]] = None,
|
||||
published: bool = False,
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
上传工作流到服务器
|
||||
|
||||
支持的输入格式:
|
||||
1. node-link 格式: {"nodes": [...], "edges": [...]}
|
||||
2. workflow/reagent 格式: {"workflow": [...], "reagent": {...}}
|
||||
3. steps_info/labware_info 格式: {"steps_info": [...], "labware_info": [...]}
|
||||
4. steps/labware 格式: {"steps": [...], "labware": [...]}
|
||||
|
||||
Args:
|
||||
workflow_file: 工作流文件路径(JSON格式)
|
||||
workflow_name: 工作流名称,如果不提供则从文件中读取或使用文件名
|
||||
tags: 工作流标签列表,默认为空列表
|
||||
published: 是否发布工作流,默认为False
|
||||
|
||||
Returns:
|
||||
Dict: API响应数据
|
||||
"""
|
||||
# 延迟导入,避免在配置文件加载之前初始化 http_client
|
||||
from unilabos.app.web import http_client
|
||||
|
||||
if not os.path.exists(workflow_file):
|
||||
print_status(f"工作流文件不存在: {workflow_file}", "error")
|
||||
return {"code": -1, "message": f"文件不存在: {workflow_file}"}
|
||||
|
||||
# 读取工作流文件
|
||||
try:
|
||||
with open(workflow_file, "r", encoding="utf-8") as f:
|
||||
workflow_data = json.load(f)
|
||||
except json.JSONDecodeError as e:
|
||||
print_status(f"工作流文件JSON解析失败: {e}", "error")
|
||||
return {"code": -1, "message": f"JSON解析失败: {e}"}
|
||||
|
||||
# 自动检测并转换格式
|
||||
if not _is_node_link_format(workflow_data):
|
||||
try:
|
||||
workflow_data = _convert_to_node_link(workflow_file, workflow_data)
|
||||
except Exception as e:
|
||||
print_status(f"工作流格式转换失败: {e}", "error")
|
||||
return {"code": -1, "message": f"格式转换失败: {e}"}
|
||||
|
||||
# 提取工作流数据
|
||||
nodes = workflow_data.get("nodes", [])
|
||||
edges = workflow_data.get("edges", [])
|
||||
workflow_uuid_val = workflow_data.get("workflow_uuid", str(uuid.uuid4()))
|
||||
wf_name_from_file = workflow_data.get("workflow_name", os.path.basename(workflow_file).replace(".json", ""))
|
||||
|
||||
# 确定工作流名称
|
||||
final_name = workflow_name or wf_name_from_file
|
||||
|
||||
print_status(f"正在上传工作流: {final_name}", "info")
|
||||
print_status(f" - 节点数量: {len(nodes)}", "info")
|
||||
print_status(f" - 边数量: {len(edges)}", "info")
|
||||
print_status(f" - 标签: {tags or []}", "info")
|
||||
print_status(f" - 发布状态: {published}", "info")
|
||||
|
||||
# 调用 http_client 上传
|
||||
result = http_client.workflow_import(
|
||||
name=final_name,
|
||||
workflow_uuid=workflow_uuid_val,
|
||||
workflow_name=final_name,
|
||||
nodes=nodes,
|
||||
edges=edges,
|
||||
tags=tags,
|
||||
published=published,
|
||||
)
|
||||
|
||||
if result.get("code") == 0:
|
||||
data = result.get("data", {})
|
||||
print_status("工作流上传成功!", "success")
|
||||
print_status(f" - UUID: {data.get('uuid', 'N/A')}", "info")
|
||||
print_status(f" - 名称: {data.get('name', 'N/A')}", "info")
|
||||
else:
|
||||
print_status(f"工作流上传失败: {result.get('message', '未知错误')}", "error")
|
||||
|
||||
return result
|
||||
|
||||
|
||||
def handle_workflow_upload_command(args_dict: Dict[str, Any]) -> None:
|
||||
"""
|
||||
处理 workflow_upload 子命令
|
||||
|
||||
Args:
|
||||
args_dict: 命令行参数字典
|
||||
"""
|
||||
workflow_file = args_dict.get("workflow_file")
|
||||
workflow_name = args_dict.get("workflow_name")
|
||||
tags = args_dict.get("tags", [])
|
||||
published = args_dict.get("published", False)
|
||||
|
||||
if workflow_file:
|
||||
upload_workflow(workflow_file, workflow_name, tags, published)
|
||||
else:
|
||||
print_status("未指定工作流文件路径,请使用 -f/--workflow_file 参数", "error")
|
||||
Reference in New Issue
Block a user