Add workflow upload func.

This commit is contained in:
Xuwznln
2025-12-08 19:12:05 +08:00
parent ced961050d
commit 16ee3de086
32 changed files with 811 additions and 222 deletions

View File

View File

@@ -10,6 +10,7 @@ Json = Dict[str, Any]
# ---------------- Graph ----------------
class WorkflowGraph:
"""简单的有向图实现:使用 params 单层参数inputs 内含连线;支持 node-link 导出"""
@@ -21,20 +22,31 @@ class WorkflowGraph:
self.nodes[node_id] = attrs
def add_edge(self, source: str, target: str, **attrs):
# 将 source_port/target_port 映射为服务端期望的 source_handle_key/target_handle_key
source_handle_key = attrs.pop("source_port", "") or attrs.pop("source_handle_key", "")
target_handle_key = attrs.pop("target_port", "") or attrs.pop("target_handle_key", "")
edge = {
"source": source,
"target": target,
"source_node_uuid": source,
"target_node_uuid": target,
"source_handle_key": source_handle_key,
"source_handle_io": attrs.pop("source_handle_io", "source"),
"target_handle_key": target_handle_key,
"target_handle_io": attrs.pop("target_handle_io", "target"),
**attrs
**attrs,
}
self.edges.append(edge)
def _materialize_wiring_into_inputs(self, obj: Any, inputs: Dict[str, Any],
variable_sources: Dict[str, Dict[str, Any]],
target_node_id: str, base_path: List[str]):
def _materialize_wiring_into_inputs(
self,
obj: Any,
inputs: Dict[str, Any],
variable_sources: Dict[str, Dict[str, Any]],
target_node_id: str,
base_path: List[str],
):
has_var = False
def walk(node: Any, path: List[str]):
@@ -48,9 +60,12 @@ class WorkflowGraph:
if src:
key = ".".join(path) # e.g. "params.foo.bar.0"
inputs[key] = {"node": src["node_id"], "output": src.get("output_name", "result")}
self.add_edge(str(src["node_id"]), target_node_id,
source_handle_io=src.get("output_name", "result"),
target_handle_io=key)
self.add_edge(
str(src["node_id"]),
target_node_id,
source_handle_io=src.get("output_name", "result"),
target_handle_io=key,
)
return placeholder
return {k: walk(v, path + [k]) for k, v in node.items()}
if isinstance(node, list):
@@ -60,18 +75,20 @@ class WorkflowGraph:
replaced = walk(obj, base_path[:])
return replaced, has_var
def add_workflow_node(self,
node_id: int,
*,
device_key: Optional[str] = None, # 实例名,如 "ser"
resource_name: Optional[str] = None, # registry key原 device_class
module: Optional[str] = None,
template_name: Optional[str] = None, # 动作/模板名(原 action_key
params: Dict[str, Any],
variable_sources: Dict[str, Dict[str, Any]],
add_ready_if_no_vars: bool = True,
prev_node_id: Optional[int] = None,
**extra_attrs) -> None:
def add_workflow_node(
self,
node_id: int,
*,
device_key: Optional[str] = None, # 实例名,如 "ser"
resource_name: Optional[str] = None, # registry key原 device_class
module: Optional[str] = None,
template_name: Optional[str] = None, # 动作/模板名(原 action_key
params: Dict[str, Any],
variable_sources: Dict[str, Dict[str, Any]],
add_ready_if_no_vars: bool = True,
prev_node_id: Optional[int] = None,
**extra_attrs,
) -> None:
"""添加工作流节点params 单层;自动变量连线与 ready 串联;支持附加属性"""
node_id_str = str(node_id)
inputs: Dict[str, Any] = {}
@@ -87,9 +104,9 @@ class WorkflowGraph:
node_obj = {
"device_key": device_key,
"resource_name": resource_name, # ✅ 新名字
"resource_name": resource_name, # ✅ 新名字
"module": module,
"template_name": template_name, # ✅ 新名字
"template_name": template_name, # ✅ 新名字
"params": params,
"inputs": inputs,
}
@@ -100,13 +117,13 @@ class WorkflowGraph:
def to_dict(self) -> List[Dict[str, Any]]:
result = []
for node_id, attrs in self.nodes.items():
node = {"id": node_id}
node = {"uuid": node_id}
params = dict(attrs.get("parameters", {}) or {})
flat = {k: v for k, v in attrs.items() if k != "parameters"}
flat.update(params)
node.update(flat)
result.append(node)
return sorted(result, key=lambda n: int(n["id"]) if str(n["id"]).isdigit() else n["id"])
return sorted(result, key=lambda n: int(n["uuid"]) if str(n["uuid"]).isdigit() else n["uuid"])
# node-link 导出(含 edges
def to_node_link_dict(self) -> Dict[str, Any]:
@@ -115,12 +132,27 @@ class WorkflowGraph:
node_attrs = attrs.copy()
params = node_attrs.pop("parameters", {}) or {}
node_attrs.update(params)
nodes_list.append({"id": node_id, **node_attrs})
return {"directed": True, "multigraph": False, "graph": {}, "nodes": nodes_list, "edges": self.edges, "links": self.edges}
nodes_list.append({"uuid": node_id, **node_attrs})
return {
"directed": True,
"multigraph": False,
"graph": {},
"nodes": nodes_list,
"edges": self.edges,
"links": self.edges,
}
def refactor_data(data: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
"""统一的数据重构函数,根据操作类型自动选择模板"""
def refactor_data(
data: List[Dict[str, Any]],
action_resource_mapping: Optional[Dict[str, str]] = None,
) -> List[Dict[str, Any]]:
"""统一的数据重构函数,根据操作类型自动选择模板
Args:
data: 原始步骤数据列表
action_resource_mapping: action 到 resource_name 的映射字典,可选
"""
refactored_data = []
# 定义操作映射,包含生物实验和有机化学的所有操作
@@ -157,43 +189,67 @@ def refactor_data(data: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
times = step.get("times", step.get("parameters", {}).get("times", 1))
sub_steps = step.get("steps", step.get("parameters", {}).get("steps", []))
for i in range(int(times)):
sub_data = refactor_data(sub_steps)
sub_data = refactor_data(sub_steps, action_resource_mapping)
refactored_data.extend(sub_data)
continue
# 获取模板名称
template = OPERATION_MAPPING.get(operation)
if not template:
template_name = OPERATION_MAPPING.get(operation)
if not template_name:
# 自动推断模板类型
if operation.lower() in ["transfer", "incubation", "move_labware", "oscillation"]:
template = f"biomek-{operation}"
template_name = f"biomek-{operation}"
else:
template = f"{operation}Protocol"
template_name = f"{operation}Protocol"
# 获取 resource_name
resource_name = f"device.{operation.lower()}"
if action_resource_mapping:
resource_name = action_resource_mapping.get(operation, resource_name)
# 获取步骤编号,生成 name 字段
step_number = step.get("step_number")
name = f"Step {step_number}" if step_number is not None else None
# 创建步骤数据
step_data = {
"template": template,
"template_name": template_name,
"resource_name": resource_name,
"description": step.get("description", step.get("purpose", f"{operation} operation")),
"lab_node_type": "Device",
"parameters": step.get("parameters", step.get("action_args", {})),
"param": step.get("parameters", step.get("action_args", {})),
"footer": f"{template_name}-{resource_name}",
}
if name:
step_data["name"] = name
refactored_data.append(step_data)
return refactored_data
def build_protocol_graph(
labware_info: List[Dict[str, Any]], protocol_steps: List[Dict[str, Any]], workstation_name: str
labware_info: List[Dict[str, Any]],
protocol_steps: List[Dict[str, Any]],
workstation_name: str,
action_resource_mapping: Optional[Dict[str, str]] = None,
) -> WorkflowGraph:
"""统一的协议图构建函数,根据设备类型自动选择构建逻辑"""
"""统一的协议图构建函数,根据设备类型自动选择构建逻辑
Args:
labware_info: labware 信息字典
protocol_steps: 协议步骤列表
workstation_name: 工作站名称
action_resource_mapping: action 到 resource_name 的映射字典,可选
"""
G = WorkflowGraph()
resource_last_writer = {}
protocol_steps = refactor_data(protocol_steps)
protocol_steps = refactor_data(protocol_steps, action_resource_mapping)
# 有机化学&移液站协议图构建
WORKSTATION_ID = workstation_name
# 为所有labware创建资源节点
res_index = 0
for labware_id, item in labware_info.items():
# item_id = item.get("id") or item.get("name", f"item_{uuid.uuid4()}")
node_id = str(uuid.uuid4())
@@ -217,13 +273,16 @@ def build_protocol_graph(
liquid_type = [labware_id]
liquid_volume = [1e5]
res_index += 1
G.add_node(
node_id,
template_name=f"create_resource",
template_name="create_resource",
resource_name="host_node",
name=f"Res {res_index}",
description=description,
lab_node_type=lab_node_type,
params={
footer="create_resource-host_node",
param={
"res_id": labware_id,
"device_id": WORKSTATION_ID,
"class_name": "container",
@@ -234,7 +293,6 @@ def build_protocol_graph(
"liquid_volume": liquid_volume,
"slot_on_deck": "",
},
role=item.get("role", ""),
)
resource_last_writer[labware_id] = f"{node_id}:labware"
@@ -251,7 +309,7 @@ def build_protocol_graph(
last_control_node_id = node_id
# 物料流
params = step.get("parameters", {})
params = step.get("param", {})
input_resources_possible_names = [
"vessel",
"to_vessel",
@@ -299,7 +357,7 @@ def draw_protocol_graph(protocol_graph: WorkflowGraph, output_path: str):
G = nx.DiGraph()
for node_id, attrs in protocol_graph.nodes.items():
label = attrs.get("description", attrs.get("template", node_id[:8]))
label = attrs.get("description", attrs.get("template_name", node_id[:8]))
G.add_node(node_id, label=label, **attrs)
for edge in protocol_graph.edges:
@@ -331,11 +389,13 @@ def draw_protocol_graph(protocol_graph: WorkflowGraph, output_path: str):
print(f" - Visualization saved to '{output_path}'")
COMPASS = {"n","e","s","w","ne","nw","se","sw","c"}
COMPASS = {"n", "e", "s", "w", "ne", "nw", "se", "sw", "c"}
def _is_compass(port: str) -> bool:
return isinstance(port, str) and port.lower() in COMPASS
def draw_protocol_graph_with_ports(protocol_graph, output_path: str, rankdir: str = "LR"):
"""
使用 Graphviz 端口语法绘制协议工作流图。
@@ -350,22 +410,22 @@ def draw_protocol_graph_with_ports(protocol_graph, output_path: str, rankdir: st
# 1) 先用 networkx 搭建有向图,保留端口属性
G = nx.DiGraph()
for node_id, attrs in protocol_graph.nodes.items():
label = attrs.get("description", attrs.get("template", node_id[:8]))
label = attrs.get("description", attrs.get("template_name", node_id[:8]))
# 保留一个干净的“中心标签”,用于放在 record 的中间槽
G.add_node(node_id, _core_label=str(label), **{k:v for k,v in attrs.items() if k not in ("label",)})
G.add_node(node_id, _core_label=str(label), **{k: v for k, v in attrs.items() if k not in ("label",)})
edges_data = []
in_ports_by_node = {} # 收集命名输入端口
in_ports_by_node = {} # 收集命名输入端口
out_ports_by_node = {} # 收集命名输出端口
for edge in protocol_graph.edges:
u = edge["source"]
v = edge["target"]
sp = edge.get("source_port")
tp = edge.get("target_port")
sp = edge.get("source_handle_key") or edge.get("source_port")
tp = edge.get("target_handle_key") or edge.get("target_port")
# 记录到图里(保留原始端口信息)
G.add_edge(u, v, source_port=sp, target_port=tp)
G.add_edge(u, v, source_handle_key=sp, target_handle_key=tp)
edges_data.append((u, v, sp, tp))
# 如果不是 compass就按“命名端口”先归类等会儿给节点造 record
@@ -377,7 +437,9 @@ def draw_protocol_graph_with_ports(protocol_graph, output_path: str, rankdir: st
# 2) 转为 AGraph使用 Graphviz 渲染
A = to_agraph(G)
A.graph_attr.update(rankdir=rankdir, splines="true", concentrate="false", fontsize="10")
A.node_attr.update(shape="box", style="rounded,filled", fillcolor="lightyellow", color="#999999", fontname="Helvetica")
A.node_attr.update(
shape="box", style="rounded,filled", fillcolor="lightyellow", color="#999999", fontname="Helvetica"
)
A.edge_attr.update(arrowsize="0.8", color="#666666")
# 3) 为需要命名端口的节点设置 record 形状与 label
@@ -386,18 +448,19 @@ def draw_protocol_graph_with_ports(protocol_graph, output_path: str, rankdir: st
node = A.get_node(n)
core = G.nodes[n].get("_core_label", n)
in_ports = sorted(in_ports_by_node.get(n, []))
in_ports = sorted(in_ports_by_node.get(n, []))
out_ports = sorted(out_ports_by_node.get(n, []))
# 如果该节点涉及命名端口,则用 record否则保留原 box
if in_ports or out_ports:
def port_fields(ports):
if not ports:
return " " # 必须留一个空槽占位
# 每个端口一个小格子,<p> name
return "|".join(f"<{re.sub(r'[^A-Za-z0-9_:.|-]', '_', p)}> {p}" for p in ports)
left = port_fields(in_ports)
left = port_fields(in_ports)
right = port_fields(out_ports)
# 三栏:左(入) | 中(节点名) | 右(出)
@@ -410,7 +473,7 @@ def draw_protocol_graph_with_ports(protocol_graph, output_path: str, rankdir: st
# 4) 给边设置 headport / tailport
# - 若端口为 compass直接用 compasse.g., headport="e"
# - 若端口为命名端口:使用在 record 中定义的 <port> 名(同名即可)
for (u, v, sp, tp) in edges_data:
for u, v, sp, tp in edges_data:
e = A.get_edge(u, v)
# Graphviz 属性tail 是源head 是目标
@@ -419,13 +482,13 @@ def draw_protocol_graph_with_ports(protocol_graph, output_path: str, rankdir: st
e.attr["tailport"] = sp.lower()
else:
# 与 record label 中 <port> 名一致;特殊字符已在 label 中做了清洗
e.attr["tailport"] = re.sub(r'[^A-Za-z0-9_:.|-]', '_', str(sp))
e.attr["tailport"] = re.sub(r"[^A-Za-z0-9_:.|-]", "_", str(sp))
if tp:
if _is_compass(tp):
e.attr["headport"] = tp.lower()
else:
e.attr["headport"] = re.sub(r'[^A-Za-z0-9_:.|-]', '_', str(tp))
e.attr["headport"] = re.sub(r"[^A-Za-z0-9_:.|-]", "_", str(tp))
# 可选:若想让边更贴边缘,可设置 constraint/spline 等
# e.attr["arrowhead"] = "vee"
@@ -433,11 +496,14 @@ def draw_protocol_graph_with_ports(protocol_graph, output_path: str, rankdir: st
# 5) 输出
A.draw(output_path, prog="dot")
print(f" - Port-aware workflow rendered to '{output_path}'")
# ---------------- Registry Adapter ----------------
class RegistryAdapter:
"""根据 module 的类名(冒号右侧)反查 registry 的 resource_name原 device_class并抽取参数顺序"""
def __init__(self, device_registry: Dict[str, Any]):
self.device_registry = device_registry or {}
self.module_class_to_resource = self._build_module_class_index()
@@ -455,8 +521,7 @@ class RegistryAdapter:
def resolve_resource_by_classname(self, class_name: str) -> Optional[str]:
if not class_name:
return None
return (self.module_class_to_resource.get(class_name)
or self.module_class_to_resource.get(class_name.lower()))
return self.module_class_to_resource.get(class_name) or self.module_class_to_resource.get(class_name.lower())
def get_device_module(self, resource_name: Optional[str]) -> Optional[str]:
if not resource_name:
@@ -466,9 +531,7 @@ class RegistryAdapter:
def get_actions(self, resource_name: Optional[str]) -> Dict[str, Any]:
if not resource_name:
return {}
return (self.device_registry.get(resource_name, {})
.get("class", {})
.get("action_value_mappings", {})) or {}
return (self.device_registry.get(resource_name, {}).get("class", {}).get("action_value_mappings", {})) or {}
def get_action_schema(self, resource_name: Optional[str], template_name: str) -> Optional[Json]:
return (self.get_actions(resource_name).get(template_name) or {}).get("schema")

View File

@@ -0,0 +1,356 @@
"""
JSON 工作流转换模块
提供从多种 JSON 格式转换为统一工作流格式的功能。
支持的格式:
1. workflow/reagent 格式
2. steps_info/labware_info 格式
"""
import json
from os import PathLike
from pathlib import Path
from typing import Any, Dict, List, Optional, Set, Tuple, Union
from unilabos.workflow.common import WorkflowGraph, build_protocol_graph
from unilabos.registry.registry import lab_registry
def get_action_handles(resource_name: str, template_name: str) -> Dict[str, List[str]]:
"""
从 registry 获取指定设备和动作的 handles 配置
Args:
resource_name: 设备资源名称,如 "liquid_handler.prcxi"
template_name: 动作模板名称,如 "transfer_liquid"
Returns:
包含 source 和 target handler_keys 的字典:
{"source": ["sources_out", "targets_out", ...], "target": ["sources", "targets", ...]}
"""
result = {"source": [], "target": []}
device_info = lab_registry.device_type_registry.get(resource_name, {})
if not device_info:
return result
action_mappings = device_info.get("class", {}).get("action_value_mappings", {})
action_config = action_mappings.get(template_name, {})
handles = action_config.get("handles", {})
if isinstance(handles, dict):
# 处理 input handles (作为 target)
for handle in handles.get("input", []):
handler_key = handle.get("handler_key", "")
if handler_key:
result["source"].append(handler_key)
# 处理 output handles (作为 source)
for handle in handles.get("output", []):
handler_key = handle.get("handler_key", "")
if handler_key:
result["target"].append(handler_key)
return result
def validate_workflow_handles(graph: WorkflowGraph) -> Tuple[bool, List[str]]:
"""
校验工作流图中所有边的句柄配置是否正确
Args:
graph: 工作流图对象
Returns:
(is_valid, errors): 是否有效,错误信息列表
"""
errors = []
nodes = graph.nodes
for edge in graph.edges:
left_uuid = edge.get("source")
right_uuid = edge.get("target")
# target_handle_key是target, right的输入节点入节点
# source_handle_key是source, left的输出节点出节点
right_source_conn_key = edge.get("target_handle_key", "")
left_target_conn_key = edge.get("source_handle_key", "")
# 获取源节点和目标节点信息
left_node = nodes.get(left_uuid, {})
right_node = nodes.get(right_uuid, {})
left_res_name = left_node.get("resource_name", "")
left_template_name = left_node.get("template_name", "")
right_res_name = right_node.get("resource_name", "")
right_template_name = right_node.get("template_name", "")
# 获取源节点的 output handles
left_node_handles = get_action_handles(left_res_name, left_template_name)
target_valid_keys = left_node_handles.get("target", [])
target_valid_keys.append("ready")
# 获取目标节点的 input handles
right_node_handles = get_action_handles(right_res_name, right_template_name)
source_valid_keys = right_node_handles.get("source", [])
source_valid_keys.append("ready")
# 如果节点配置了 output handles则 source_port 必须有效
if not right_source_conn_key:
node_name = left_node.get("name", left_uuid[:8])
errors.append(f"源节点 '{node_name}' 的 source_handle_key 为空," f"应设置为: {source_valid_keys}")
elif right_source_conn_key not in source_valid_keys:
node_name = left_node.get("name", left_uuid[:8])
errors.append(
f"源节点 '{node_name}' 的 source 端点 '{right_source_conn_key}' 不存在," f"支持的端点: {source_valid_keys}"
)
# 如果节点配置了 input handles则 target_port 必须有效
if not left_target_conn_key:
node_name = right_node.get("name", right_uuid[:8])
errors.append(f"目标节点 '{node_name}' 的 target_handle_key 为空," f"应设置为: {target_valid_keys}")
elif left_target_conn_key not in target_valid_keys:
node_name = right_node.get("name", right_uuid[:8])
errors.append(
f"目标节点 '{node_name}' 的 target 端点 '{left_target_conn_key}' 不存在,"
f"支持的端点: {target_valid_keys}"
)
return len(errors) == 0, errors
# action 到 resource_name 的映射
ACTION_RESOURCE_MAPPING: Dict[str, str] = {
# 生物实验操作
"transfer_liquid": "liquid_handler.prcxi",
"transfer": "liquid_handler.prcxi",
"incubation": "incubator.prcxi",
"move_labware": "labware_mover.prcxi",
"oscillation": "shaker.prcxi",
# 有机化学操作
"HeatChillToTemp": "heatchill.chemputer",
"StopHeatChill": "heatchill.chemputer",
"StartHeatChill": "heatchill.chemputer",
"HeatChill": "heatchill.chemputer",
"Dissolve": "stirrer.chemputer",
"Transfer": "liquid_handler.chemputer",
"Evaporate": "rotavap.chemputer",
"Recrystallize": "reactor.chemputer",
"Filter": "filter.chemputer",
"Dry": "dryer.chemputer",
"Add": "liquid_handler.chemputer",
}
def normalize_steps(data: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
"""
将不同格式的步骤数据规范化为统一格式
支持的输入格式:
- action + parameters
- action + action_args
- operation + parameters
Args:
data: 原始步骤数据列表
Returns:
规范化后的步骤列表,格式为 [{"action": str, "parameters": dict, "description": str?, "step_number": int?}, ...]
"""
normalized = []
for idx, step in enumerate(data):
# 获取动作名称(支持 action 或 operation 字段)
action = step.get("action") or step.get("operation")
if not action:
continue
# 获取参数(支持 parameters 或 action_args 字段)
raw_params = step.get("parameters") or step.get("action_args") or {}
params = dict(raw_params)
# 规范化 source/target -> sources/targets
if "source" in raw_params and "sources" not in raw_params:
params["sources"] = raw_params["source"]
if "target" in raw_params and "targets" not in raw_params:
params["targets"] = raw_params["target"]
# 获取描述(支持 description 或 purpose 字段)
description = step.get("description") or step.get("purpose")
# 获取步骤编号(优先使用原始数据中的 step_number否则使用索引+1
step_number = step.get("step_number", idx + 1)
step_dict = {"action": action, "parameters": params, "step_number": step_number}
if description:
step_dict["description"] = description
normalized.append(step_dict)
return normalized
def normalize_labware(data: List[Dict[str, Any]]) -> Dict[str, Dict[str, Any]]:
"""
将不同格式的 labware 数据规范化为统一的字典格式
支持的输入格式:
- reagent_name + material_name + positions
- name + labware + slot
Args:
data: 原始 labware 数据列表
Returns:
规范化后的 labware 字典,格式为 {name: {"slot": int, "labware": str, "well": list, "type": str, "role": str, "name": str}, ...}
"""
labware = {}
for item in data:
# 获取 key 名称(优先使用 reagent_name其次是 material_name 或 name
reagent_name = item.get("reagent_name")
key = reagent_name or item.get("material_name") or item.get("name")
if not key:
continue
key = str(key)
# 处理重复 key自动添加后缀
idx = 1
original_key = key
while key in labware:
idx += 1
key = f"{original_key}_{idx}"
labware[key] = {
"slot": item.get("positions") or item.get("slot"),
"labware": item.get("material_name") or item.get("labware"),
"well": item.get("well", []),
"type": item.get("type", "reagent"),
"role": item.get("role", ""),
"name": key,
}
return labware
def convert_from_json(
data: Union[str, PathLike, Dict[str, Any]],
workstation_name: str = "PRCXi",
validate: bool = True,
) -> WorkflowGraph:
"""
从 JSON 数据或文件转换为 WorkflowGraph
支持的 JSON 格式:
1. {"workflow": [...], "reagent": {...}} - 直接格式
2. {"steps_info": [...], "labware_info": [...]} - 需要规范化的格式
Args:
data: JSON 文件路径、字典数据、或 JSON 字符串
workstation_name: 工作站名称,默认 "PRCXi"
validate: 是否校验句柄配置,默认 True
Returns:
WorkflowGraph: 构建好的工作流图
Raises:
ValueError: 不支持的 JSON 格式 或 句柄校验失败
FileNotFoundError: 文件不存在
json.JSONDecodeError: JSON 解析失败
"""
# 处理输入数据
if isinstance(data, (str, PathLike)):
path = Path(data)
if path.exists():
with path.open("r", encoding="utf-8") as fp:
json_data = json.load(fp)
elif isinstance(data, str):
# 尝试作为 JSON 字符串解析
json_data = json.loads(data)
else:
raise FileNotFoundError(f"文件不存在: {data}")
elif isinstance(data, dict):
json_data = data
else:
raise TypeError(f"不支持的数据类型: {type(data)}")
# 根据格式解析数据
if "workflow" in json_data and "reagent" in json_data:
# 格式1: workflow/reagent已经是规范格式
protocol_steps = json_data["workflow"]
labware_info = json_data["reagent"]
elif "steps_info" in json_data and "labware_info" in json_data:
# 格式2: steps_info/labware_info需要规范化
protocol_steps = normalize_steps(json_data["steps_info"])
labware_info = normalize_labware(json_data["labware_info"])
elif "steps" in json_data and "labware" in json_data:
# 格式3: steps/labware另一种常见格式
protocol_steps = normalize_steps(json_data["steps"])
if isinstance(json_data["labware"], list):
labware_info = normalize_labware(json_data["labware"])
else:
labware_info = json_data["labware"]
else:
raise ValueError(
"不支持的 JSON 格式。支持的格式:\n"
"1. {'workflow': [...], 'reagent': {...}}\n"
"2. {'steps_info': [...], 'labware_info': [...]}\n"
"3. {'steps': [...], 'labware': [...]}"
)
# 构建工作流图
graph = build_protocol_graph(
labware_info=labware_info,
protocol_steps=protocol_steps,
workstation_name=workstation_name,
action_resource_mapping=ACTION_RESOURCE_MAPPING,
)
# 校验句柄配置
if validate:
is_valid, errors = validate_workflow_handles(graph)
if not is_valid:
import warnings
for error in errors:
warnings.warn(f"句柄校验警告: {error}")
return graph
def convert_json_to_node_link(
data: Union[str, PathLike, Dict[str, Any]],
workstation_name: str = "PRCXi",
) -> Dict[str, Any]:
"""
将 JSON 数据转换为 node-link 格式的字典
Args:
data: JSON 文件路径、字典数据、或 JSON 字符串
workstation_name: 工作站名称,默认 "PRCXi"
Returns:
Dict: node-link 格式的工作流数据
"""
graph = convert_from_json(data, workstation_name)
return graph.to_node_link_dict()
def convert_json_to_workflow_list(
data: Union[str, PathLike, Dict[str, Any]],
workstation_name: str = "PRCXi",
) -> List[Dict[str, Any]]:
"""
将 JSON 数据转换为工作流列表格式
Args:
data: JSON 文件路径、字典数据、或 JSON 字符串
workstation_name: 工作站名称,默认 "PRCXi"
Returns:
List: 工作流节点列表
"""
graph = convert_from_json(data, workstation_name)
return graph.to_dict()
# 为了向后兼容,保留下划线前缀的别名
_normalize_steps = normalize_steps
_normalize_labware = normalize_labware

View File

@@ -1,24 +0,0 @@
import json
from os import PathLike
from unilabos.workflow.common import build_protocol_graph
def from_labwares_and_steps(data_path: PathLike):
with data_path.open("r", encoding="utf-8") as fp:
d = json.load(fp)
if "workflow" in d and "reagent" in d:
protocol_steps = d["workflow"]
labware_info = d["reagent"]
elif "steps_info" in d and "labware_info" in d:
protocol_steps = _normalize_steps(d["steps_info"])
labware_info = _normalize_labware(d["labware_info"])
else:
raise ValueError("Unsupported protocol format")
graph = build_protocol_graph(
labware_info=labware_info,
protocol_steps=protocol_steps,
workstation_name="PRCXi",
)

View File

@@ -0,0 +1,138 @@
"""
工作流工具模块
提供工作流上传等功能
"""
import json
import os
import uuid
from typing import Any, Dict, List, Optional
from unilabos.utils.banner_print import print_status
def _is_node_link_format(data: Dict[str, Any]) -> bool:
"""检查数据是否为 node-link 格式"""
return "nodes" in data and "edges" in data
def _convert_to_node_link(workflow_file: str, workflow_data: Dict[str, Any]) -> Dict[str, Any]:
"""
将非 node-link 格式的工作流数据转换为 node-link 格式
Args:
workflow_file: 工作流文件路径(用于日志)
workflow_data: 原始工作流数据
Returns:
node-link 格式的工作流数据
"""
from unilabos.workflow.convert_from_json import convert_json_to_node_link
print_status(f"检测到非 node-link 格式,正在转换...", "info")
node_link_data = convert_json_to_node_link(workflow_data)
print_status(f"转换完成", "success")
return node_link_data
def upload_workflow(
workflow_file: str,
workflow_name: Optional[str] = None,
tags: Optional[List[str]] = None,
published: bool = False,
) -> Dict[str, Any]:
"""
上传工作流到服务器
支持的输入格式:
1. node-link 格式: {"nodes": [...], "edges": [...]}
2. workflow/reagent 格式: {"workflow": [...], "reagent": {...}}
3. steps_info/labware_info 格式: {"steps_info": [...], "labware_info": [...]}
4. steps/labware 格式: {"steps": [...], "labware": [...]}
Args:
workflow_file: 工作流文件路径JSON格式
workflow_name: 工作流名称,如果不提供则从文件中读取或使用文件名
tags: 工作流标签列表,默认为空列表
published: 是否发布工作流默认为False
Returns:
Dict: API响应数据
"""
# 延迟导入,避免在配置文件加载之前初始化 http_client
from unilabos.app.web import http_client
if not os.path.exists(workflow_file):
print_status(f"工作流文件不存在: {workflow_file}", "error")
return {"code": -1, "message": f"文件不存在: {workflow_file}"}
# 读取工作流文件
try:
with open(workflow_file, "r", encoding="utf-8") as f:
workflow_data = json.load(f)
except json.JSONDecodeError as e:
print_status(f"工作流文件JSON解析失败: {e}", "error")
return {"code": -1, "message": f"JSON解析失败: {e}"}
# 自动检测并转换格式
if not _is_node_link_format(workflow_data):
try:
workflow_data = _convert_to_node_link(workflow_file, workflow_data)
except Exception as e:
print_status(f"工作流格式转换失败: {e}", "error")
return {"code": -1, "message": f"格式转换失败: {e}"}
# 提取工作流数据
nodes = workflow_data.get("nodes", [])
edges = workflow_data.get("edges", [])
workflow_uuid_val = workflow_data.get("workflow_uuid", str(uuid.uuid4()))
wf_name_from_file = workflow_data.get("workflow_name", os.path.basename(workflow_file).replace(".json", ""))
# 确定工作流名称
final_name = workflow_name or wf_name_from_file
print_status(f"正在上传工作流: {final_name}", "info")
print_status(f" - 节点数量: {len(nodes)}", "info")
print_status(f" - 边数量: {len(edges)}", "info")
print_status(f" - 标签: {tags or []}", "info")
print_status(f" - 发布状态: {published}", "info")
# 调用 http_client 上传
result = http_client.workflow_import(
name=final_name,
workflow_uuid=workflow_uuid_val,
workflow_name=final_name,
nodes=nodes,
edges=edges,
tags=tags,
published=published,
)
if result.get("code") == 0:
data = result.get("data", {})
print_status("工作流上传成功!", "success")
print_status(f" - UUID: {data.get('uuid', 'N/A')}", "info")
print_status(f" - 名称: {data.get('name', 'N/A')}", "info")
else:
print_status(f"工作流上传失败: {result.get('message', '未知错误')}", "error")
return result
def handle_workflow_upload_command(args_dict: Dict[str, Any]) -> None:
"""
处理 workflow_upload 子命令
Args:
args_dict: 命令行参数字典
"""
workflow_file = args_dict.get("workflow_file")
workflow_name = args_dict.get("workflow_name")
tags = args_dict.get("tags", [])
published = args_dict.get("published", False)
if workflow_file:
upload_workflow(workflow_file, workflow_name, tags, published)
else:
print_status("未指定工作流文件路径,请使用 -f/--workflow_file 参数", "error")