mirror of
https://github.com/dptech-corp/Uni-Lab-OS.git
synced 2025-12-17 13:01:12 +00:00
Add workflow upload func.
This commit is contained in:
@@ -10,6 +10,7 @@ Json = Dict[str, Any]
|
||||
|
||||
# ---------------- Graph ----------------
|
||||
|
||||
|
||||
class WorkflowGraph:
|
||||
"""简单的有向图实现:使用 params 单层参数;inputs 内含连线;支持 node-link 导出"""
|
||||
|
||||
@@ -21,20 +22,31 @@ class WorkflowGraph:
|
||||
self.nodes[node_id] = attrs
|
||||
|
||||
def add_edge(self, source: str, target: str, **attrs):
|
||||
# 将 source_port/target_port 映射为服务端期望的 source_handle_key/target_handle_key
|
||||
source_handle_key = attrs.pop("source_port", "") or attrs.pop("source_handle_key", "")
|
||||
target_handle_key = attrs.pop("target_port", "") or attrs.pop("target_handle_key", "")
|
||||
|
||||
edge = {
|
||||
"source": source,
|
||||
"target": target,
|
||||
"source_node_uuid": source,
|
||||
"target_node_uuid": target,
|
||||
"source_handle_key": source_handle_key,
|
||||
"source_handle_io": attrs.pop("source_handle_io", "source"),
|
||||
"target_handle_key": target_handle_key,
|
||||
"target_handle_io": attrs.pop("target_handle_io", "target"),
|
||||
**attrs
|
||||
**attrs,
|
||||
}
|
||||
self.edges.append(edge)
|
||||
|
||||
def _materialize_wiring_into_inputs(self, obj: Any, inputs: Dict[str, Any],
|
||||
variable_sources: Dict[str, Dict[str, Any]],
|
||||
target_node_id: str, base_path: List[str]):
|
||||
def _materialize_wiring_into_inputs(
|
||||
self,
|
||||
obj: Any,
|
||||
inputs: Dict[str, Any],
|
||||
variable_sources: Dict[str, Dict[str, Any]],
|
||||
target_node_id: str,
|
||||
base_path: List[str],
|
||||
):
|
||||
has_var = False
|
||||
|
||||
def walk(node: Any, path: List[str]):
|
||||
@@ -48,9 +60,12 @@ class WorkflowGraph:
|
||||
if src:
|
||||
key = ".".join(path) # e.g. "params.foo.bar.0"
|
||||
inputs[key] = {"node": src["node_id"], "output": src.get("output_name", "result")}
|
||||
self.add_edge(str(src["node_id"]), target_node_id,
|
||||
source_handle_io=src.get("output_name", "result"),
|
||||
target_handle_io=key)
|
||||
self.add_edge(
|
||||
str(src["node_id"]),
|
||||
target_node_id,
|
||||
source_handle_io=src.get("output_name", "result"),
|
||||
target_handle_io=key,
|
||||
)
|
||||
return placeholder
|
||||
return {k: walk(v, path + [k]) for k, v in node.items()}
|
||||
if isinstance(node, list):
|
||||
@@ -60,18 +75,20 @@ class WorkflowGraph:
|
||||
replaced = walk(obj, base_path[:])
|
||||
return replaced, has_var
|
||||
|
||||
def add_workflow_node(self,
|
||||
node_id: int,
|
||||
*,
|
||||
device_key: Optional[str] = None, # 实例名,如 "ser"
|
||||
resource_name: Optional[str] = None, # registry key(原 device_class)
|
||||
module: Optional[str] = None,
|
||||
template_name: Optional[str] = None, # 动作/模板名(原 action_key)
|
||||
params: Dict[str, Any],
|
||||
variable_sources: Dict[str, Dict[str, Any]],
|
||||
add_ready_if_no_vars: bool = True,
|
||||
prev_node_id: Optional[int] = None,
|
||||
**extra_attrs) -> None:
|
||||
def add_workflow_node(
|
||||
self,
|
||||
node_id: int,
|
||||
*,
|
||||
device_key: Optional[str] = None, # 实例名,如 "ser"
|
||||
resource_name: Optional[str] = None, # registry key(原 device_class)
|
||||
module: Optional[str] = None,
|
||||
template_name: Optional[str] = None, # 动作/模板名(原 action_key)
|
||||
params: Dict[str, Any],
|
||||
variable_sources: Dict[str, Dict[str, Any]],
|
||||
add_ready_if_no_vars: bool = True,
|
||||
prev_node_id: Optional[int] = None,
|
||||
**extra_attrs,
|
||||
) -> None:
|
||||
"""添加工作流节点:params 单层;自动变量连线与 ready 串联;支持附加属性"""
|
||||
node_id_str = str(node_id)
|
||||
inputs: Dict[str, Any] = {}
|
||||
@@ -87,9 +104,9 @@ class WorkflowGraph:
|
||||
|
||||
node_obj = {
|
||||
"device_key": device_key,
|
||||
"resource_name": resource_name, # ✅ 新名字
|
||||
"resource_name": resource_name, # ✅ 新名字
|
||||
"module": module,
|
||||
"template_name": template_name, # ✅ 新名字
|
||||
"template_name": template_name, # ✅ 新名字
|
||||
"params": params,
|
||||
"inputs": inputs,
|
||||
}
|
||||
@@ -100,13 +117,13 @@ class WorkflowGraph:
|
||||
def to_dict(self) -> List[Dict[str, Any]]:
|
||||
result = []
|
||||
for node_id, attrs in self.nodes.items():
|
||||
node = {"id": node_id}
|
||||
node = {"uuid": node_id}
|
||||
params = dict(attrs.get("parameters", {}) or {})
|
||||
flat = {k: v for k, v in attrs.items() if k != "parameters"}
|
||||
flat.update(params)
|
||||
node.update(flat)
|
||||
result.append(node)
|
||||
return sorted(result, key=lambda n: int(n["id"]) if str(n["id"]).isdigit() else n["id"])
|
||||
return sorted(result, key=lambda n: int(n["uuid"]) if str(n["uuid"]).isdigit() else n["uuid"])
|
||||
|
||||
# node-link 导出(含 edges)
|
||||
def to_node_link_dict(self) -> Dict[str, Any]:
|
||||
@@ -115,12 +132,27 @@ class WorkflowGraph:
|
||||
node_attrs = attrs.copy()
|
||||
params = node_attrs.pop("parameters", {}) or {}
|
||||
node_attrs.update(params)
|
||||
nodes_list.append({"id": node_id, **node_attrs})
|
||||
return {"directed": True, "multigraph": False, "graph": {}, "nodes": nodes_list, "edges": self.edges, "links": self.edges}
|
||||
nodes_list.append({"uuid": node_id, **node_attrs})
|
||||
return {
|
||||
"directed": True,
|
||||
"multigraph": False,
|
||||
"graph": {},
|
||||
"nodes": nodes_list,
|
||||
"edges": self.edges,
|
||||
"links": self.edges,
|
||||
}
|
||||
|
||||
|
||||
def refactor_data(data: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
|
||||
"""统一的数据重构函数,根据操作类型自动选择模板"""
|
||||
def refactor_data(
|
||||
data: List[Dict[str, Any]],
|
||||
action_resource_mapping: Optional[Dict[str, str]] = None,
|
||||
) -> List[Dict[str, Any]]:
|
||||
"""统一的数据重构函数,根据操作类型自动选择模板
|
||||
|
||||
Args:
|
||||
data: 原始步骤数据列表
|
||||
action_resource_mapping: action 到 resource_name 的映射字典,可选
|
||||
"""
|
||||
refactored_data = []
|
||||
|
||||
# 定义操作映射,包含生物实验和有机化学的所有操作
|
||||
@@ -157,43 +189,67 @@ def refactor_data(data: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
|
||||
times = step.get("times", step.get("parameters", {}).get("times", 1))
|
||||
sub_steps = step.get("steps", step.get("parameters", {}).get("steps", []))
|
||||
for i in range(int(times)):
|
||||
sub_data = refactor_data(sub_steps)
|
||||
sub_data = refactor_data(sub_steps, action_resource_mapping)
|
||||
refactored_data.extend(sub_data)
|
||||
continue
|
||||
|
||||
# 获取模板名称
|
||||
template = OPERATION_MAPPING.get(operation)
|
||||
if not template:
|
||||
template_name = OPERATION_MAPPING.get(operation)
|
||||
if not template_name:
|
||||
# 自动推断模板类型
|
||||
if operation.lower() in ["transfer", "incubation", "move_labware", "oscillation"]:
|
||||
template = f"biomek-{operation}"
|
||||
template_name = f"biomek-{operation}"
|
||||
else:
|
||||
template = f"{operation}Protocol"
|
||||
template_name = f"{operation}Protocol"
|
||||
|
||||
# 获取 resource_name
|
||||
resource_name = f"device.{operation.lower()}"
|
||||
if action_resource_mapping:
|
||||
resource_name = action_resource_mapping.get(operation, resource_name)
|
||||
|
||||
# 获取步骤编号,生成 name 字段
|
||||
step_number = step.get("step_number")
|
||||
name = f"Step {step_number}" if step_number is not None else None
|
||||
|
||||
# 创建步骤数据
|
||||
step_data = {
|
||||
"template": template,
|
||||
"template_name": template_name,
|
||||
"resource_name": resource_name,
|
||||
"description": step.get("description", step.get("purpose", f"{operation} operation")),
|
||||
"lab_node_type": "Device",
|
||||
"parameters": step.get("parameters", step.get("action_args", {})),
|
||||
"param": step.get("parameters", step.get("action_args", {})),
|
||||
"footer": f"{template_name}-{resource_name}",
|
||||
}
|
||||
if name:
|
||||
step_data["name"] = name
|
||||
refactored_data.append(step_data)
|
||||
|
||||
return refactored_data
|
||||
|
||||
|
||||
def build_protocol_graph(
|
||||
labware_info: List[Dict[str, Any]], protocol_steps: List[Dict[str, Any]], workstation_name: str
|
||||
labware_info: List[Dict[str, Any]],
|
||||
protocol_steps: List[Dict[str, Any]],
|
||||
workstation_name: str,
|
||||
action_resource_mapping: Optional[Dict[str, str]] = None,
|
||||
) -> WorkflowGraph:
|
||||
"""统一的协议图构建函数,根据设备类型自动选择构建逻辑"""
|
||||
"""统一的协议图构建函数,根据设备类型自动选择构建逻辑
|
||||
|
||||
Args:
|
||||
labware_info: labware 信息字典
|
||||
protocol_steps: 协议步骤列表
|
||||
workstation_name: 工作站名称
|
||||
action_resource_mapping: action 到 resource_name 的映射字典,可选
|
||||
"""
|
||||
G = WorkflowGraph()
|
||||
resource_last_writer = {}
|
||||
|
||||
protocol_steps = refactor_data(protocol_steps)
|
||||
protocol_steps = refactor_data(protocol_steps, action_resource_mapping)
|
||||
# 有机化学&移液站协议图构建
|
||||
WORKSTATION_ID = workstation_name
|
||||
|
||||
# 为所有labware创建资源节点
|
||||
res_index = 0
|
||||
for labware_id, item in labware_info.items():
|
||||
# item_id = item.get("id") or item.get("name", f"item_{uuid.uuid4()}")
|
||||
node_id = str(uuid.uuid4())
|
||||
@@ -217,13 +273,16 @@ def build_protocol_graph(
|
||||
liquid_type = [labware_id]
|
||||
liquid_volume = [1e5]
|
||||
|
||||
res_index += 1
|
||||
G.add_node(
|
||||
node_id,
|
||||
template_name=f"create_resource",
|
||||
template_name="create_resource",
|
||||
resource_name="host_node",
|
||||
name=f"Res {res_index}",
|
||||
description=description,
|
||||
lab_node_type=lab_node_type,
|
||||
params={
|
||||
footer="create_resource-host_node",
|
||||
param={
|
||||
"res_id": labware_id,
|
||||
"device_id": WORKSTATION_ID,
|
||||
"class_name": "container",
|
||||
@@ -234,7 +293,6 @@ def build_protocol_graph(
|
||||
"liquid_volume": liquid_volume,
|
||||
"slot_on_deck": "",
|
||||
},
|
||||
role=item.get("role", ""),
|
||||
)
|
||||
resource_last_writer[labware_id] = f"{node_id}:labware"
|
||||
|
||||
@@ -251,7 +309,7 @@ def build_protocol_graph(
|
||||
last_control_node_id = node_id
|
||||
|
||||
# 物料流
|
||||
params = step.get("parameters", {})
|
||||
params = step.get("param", {})
|
||||
input_resources_possible_names = [
|
||||
"vessel",
|
||||
"to_vessel",
|
||||
@@ -299,7 +357,7 @@ def draw_protocol_graph(protocol_graph: WorkflowGraph, output_path: str):
|
||||
G = nx.DiGraph()
|
||||
|
||||
for node_id, attrs in protocol_graph.nodes.items():
|
||||
label = attrs.get("description", attrs.get("template", node_id[:8]))
|
||||
label = attrs.get("description", attrs.get("template_name", node_id[:8]))
|
||||
G.add_node(node_id, label=label, **attrs)
|
||||
|
||||
for edge in protocol_graph.edges:
|
||||
@@ -331,11 +389,13 @@ def draw_protocol_graph(protocol_graph: WorkflowGraph, output_path: str):
|
||||
print(f" - Visualization saved to '{output_path}'")
|
||||
|
||||
|
||||
COMPASS = {"n","e","s","w","ne","nw","se","sw","c"}
|
||||
COMPASS = {"n", "e", "s", "w", "ne", "nw", "se", "sw", "c"}
|
||||
|
||||
|
||||
def _is_compass(port: str) -> bool:
|
||||
return isinstance(port, str) and port.lower() in COMPASS
|
||||
|
||||
|
||||
def draw_protocol_graph_with_ports(protocol_graph, output_path: str, rankdir: str = "LR"):
|
||||
"""
|
||||
使用 Graphviz 端口语法绘制协议工作流图。
|
||||
@@ -350,22 +410,22 @@ def draw_protocol_graph_with_ports(protocol_graph, output_path: str, rankdir: st
|
||||
# 1) 先用 networkx 搭建有向图,保留端口属性
|
||||
G = nx.DiGraph()
|
||||
for node_id, attrs in protocol_graph.nodes.items():
|
||||
label = attrs.get("description", attrs.get("template", node_id[:8]))
|
||||
label = attrs.get("description", attrs.get("template_name", node_id[:8]))
|
||||
# 保留一个干净的“中心标签”,用于放在 record 的中间槽
|
||||
G.add_node(node_id, _core_label=str(label), **{k:v for k,v in attrs.items() if k not in ("label",)})
|
||||
G.add_node(node_id, _core_label=str(label), **{k: v for k, v in attrs.items() if k not in ("label",)})
|
||||
|
||||
edges_data = []
|
||||
in_ports_by_node = {} # 收集命名输入端口
|
||||
in_ports_by_node = {} # 收集命名输入端口
|
||||
out_ports_by_node = {} # 收集命名输出端口
|
||||
|
||||
for edge in protocol_graph.edges:
|
||||
u = edge["source"]
|
||||
v = edge["target"]
|
||||
sp = edge.get("source_port")
|
||||
tp = edge.get("target_port")
|
||||
sp = edge.get("source_handle_key") or edge.get("source_port")
|
||||
tp = edge.get("target_handle_key") or edge.get("target_port")
|
||||
|
||||
# 记录到图里(保留原始端口信息)
|
||||
G.add_edge(u, v, source_port=sp, target_port=tp)
|
||||
G.add_edge(u, v, source_handle_key=sp, target_handle_key=tp)
|
||||
edges_data.append((u, v, sp, tp))
|
||||
|
||||
# 如果不是 compass,就按“命名端口”先归类,等会儿给节点造 record
|
||||
@@ -377,7 +437,9 @@ def draw_protocol_graph_with_ports(protocol_graph, output_path: str, rankdir: st
|
||||
# 2) 转为 AGraph,使用 Graphviz 渲染
|
||||
A = to_agraph(G)
|
||||
A.graph_attr.update(rankdir=rankdir, splines="true", concentrate="false", fontsize="10")
|
||||
A.node_attr.update(shape="box", style="rounded,filled", fillcolor="lightyellow", color="#999999", fontname="Helvetica")
|
||||
A.node_attr.update(
|
||||
shape="box", style="rounded,filled", fillcolor="lightyellow", color="#999999", fontname="Helvetica"
|
||||
)
|
||||
A.edge_attr.update(arrowsize="0.8", color="#666666")
|
||||
|
||||
# 3) 为需要命名端口的节点设置 record 形状与 label
|
||||
@@ -386,18 +448,19 @@ def draw_protocol_graph_with_ports(protocol_graph, output_path: str, rankdir: st
|
||||
node = A.get_node(n)
|
||||
core = G.nodes[n].get("_core_label", n)
|
||||
|
||||
in_ports = sorted(in_ports_by_node.get(n, []))
|
||||
in_ports = sorted(in_ports_by_node.get(n, []))
|
||||
out_ports = sorted(out_ports_by_node.get(n, []))
|
||||
|
||||
# 如果该节点涉及命名端口,则用 record;否则保留原 box
|
||||
if in_ports or out_ports:
|
||||
|
||||
def port_fields(ports):
|
||||
if not ports:
|
||||
return " " # 必须留一个空槽占位
|
||||
# 每个端口一个小格子,<p> name
|
||||
return "|".join(f"<{re.sub(r'[^A-Za-z0-9_:.|-]', '_', p)}> {p}" for p in ports)
|
||||
|
||||
left = port_fields(in_ports)
|
||||
left = port_fields(in_ports)
|
||||
right = port_fields(out_ports)
|
||||
|
||||
# 三栏:左(入) | 中(节点名) | 右(出)
|
||||
@@ -410,7 +473,7 @@ def draw_protocol_graph_with_ports(protocol_graph, output_path: str, rankdir: st
|
||||
# 4) 给边设置 headport / tailport
|
||||
# - 若端口为 compass:直接用 compass(e.g., headport="e")
|
||||
# - 若端口为命名端口:使用在 record 中定义的 <port> 名(同名即可)
|
||||
for (u, v, sp, tp) in edges_data:
|
||||
for u, v, sp, tp in edges_data:
|
||||
e = A.get_edge(u, v)
|
||||
|
||||
# Graphviz 属性:tail 是源,head 是目标
|
||||
@@ -419,13 +482,13 @@ def draw_protocol_graph_with_ports(protocol_graph, output_path: str, rankdir: st
|
||||
e.attr["tailport"] = sp.lower()
|
||||
else:
|
||||
# 与 record label 中 <port> 名一致;特殊字符已在 label 中做了清洗
|
||||
e.attr["tailport"] = re.sub(r'[^A-Za-z0-9_:.|-]', '_', str(sp))
|
||||
e.attr["tailport"] = re.sub(r"[^A-Za-z0-9_:.|-]", "_", str(sp))
|
||||
|
||||
if tp:
|
||||
if _is_compass(tp):
|
||||
e.attr["headport"] = tp.lower()
|
||||
else:
|
||||
e.attr["headport"] = re.sub(r'[^A-Za-z0-9_:.|-]', '_', str(tp))
|
||||
e.attr["headport"] = re.sub(r"[^A-Za-z0-9_:.|-]", "_", str(tp))
|
||||
|
||||
# 可选:若想让边更贴边缘,可设置 constraint/spline 等
|
||||
# e.attr["arrowhead"] = "vee"
|
||||
@@ -433,11 +496,14 @@ def draw_protocol_graph_with_ports(protocol_graph, output_path: str, rankdir: st
|
||||
# 5) 输出
|
||||
A.draw(output_path, prog="dot")
|
||||
print(f" - Port-aware workflow rendered to '{output_path}'")
|
||||
|
||||
|
||||
# ---------------- Registry Adapter ----------------
|
||||
|
||||
|
||||
class RegistryAdapter:
|
||||
"""根据 module 的类名(冒号右侧)反查 registry 的 resource_name(原 device_class),并抽取参数顺序"""
|
||||
|
||||
def __init__(self, device_registry: Dict[str, Any]):
|
||||
self.device_registry = device_registry or {}
|
||||
self.module_class_to_resource = self._build_module_class_index()
|
||||
@@ -455,8 +521,7 @@ class RegistryAdapter:
|
||||
def resolve_resource_by_classname(self, class_name: str) -> Optional[str]:
|
||||
if not class_name:
|
||||
return None
|
||||
return (self.module_class_to_resource.get(class_name)
|
||||
or self.module_class_to_resource.get(class_name.lower()))
|
||||
return self.module_class_to_resource.get(class_name) or self.module_class_to_resource.get(class_name.lower())
|
||||
|
||||
def get_device_module(self, resource_name: Optional[str]) -> Optional[str]:
|
||||
if not resource_name:
|
||||
@@ -466,9 +531,7 @@ class RegistryAdapter:
|
||||
def get_actions(self, resource_name: Optional[str]) -> Dict[str, Any]:
|
||||
if not resource_name:
|
||||
return {}
|
||||
return (self.device_registry.get(resource_name, {})
|
||||
.get("class", {})
|
||||
.get("action_value_mappings", {})) or {}
|
||||
return (self.device_registry.get(resource_name, {}).get("class", {}).get("action_value_mappings", {})) or {}
|
||||
|
||||
def get_action_schema(self, resource_name: Optional[str], template_name: str) -> Optional[Json]:
|
||||
return (self.get_actions(resource_name).get(template_name) or {}).get("schema")
|
||||
|
||||
Reference in New Issue
Block a user