Update to ROS2 Humble 0.7

This commit is contained in:
Xuwznln
2026-01-27 13:31:24 +08:00
parent 2cf58ca452
commit 43e4c71a8e
17 changed files with 759 additions and 219 deletions

60
.conda/base/recipe.yaml Normal file
View File

@@ -0,0 +1,60 @@
# unilabos: Production package (depends on unilabos-env + pip unilabos)
# For production deployment
package:
name: unilabos
version: 0.10.16
source:
path: ../../unilabos
target_directory: unilabos
build:
python:
entry_points:
- unilab = unilabos.app.main:main
script:
- set PIP_NO_INDEX=
- if: win
then:
- copy %RECIPE_DIR%\..\..\MANIFEST.in %SRC_DIR%
- copy %RECIPE_DIR%\..\..\setup.cfg %SRC_DIR%
- copy %RECIPE_DIR%\..\..\setup.py %SRC_DIR%
- pip install %SRC_DIR%
- if: unix
then:
- cp $RECIPE_DIR/../../MANIFEST.in $SRC_DIR
- cp $RECIPE_DIR/../../setup.cfg $SRC_DIR
- cp $RECIPE_DIR/../../setup.py $SRC_DIR
- uv pip install $SRC_DIR
requirements:
host:
- python ==3.11.14
- pip
- setuptools
- zstd
- zstandard
run:
- zstd
- zstandard
- networkx
- typing_extensions
- websockets
- opentrons_shared_data
- pint
- fastapi
- jinja2
- requests
- uvicorn
- opcua
- pyserial
- pandas
- pymodbus
- matplotlib
- uni-lab::unilabos-env ==0.10.16
about:
repository: https://github.com/deepmodeling/Uni-Lab-OS
license: GPL-3.0-only
description: "UniLabOS - Production package with minimal ROS2 dependencies"

42
.conda/full/recipe.yaml Normal file
View File

@@ -0,0 +1,42 @@
# unilabos-full: Full package with all features
# Depends on unilabos + complete ROS2 desktop + dev tools
package:
name: unilabos-full
version: 0.10.16
build:
noarch: generic
requirements:
run:
# Base unilabos package (includes unilabos-env)
- uni-lab::unilabos ==0.10.16
# Documentation tools
- sphinx
- sphinx_rtd_theme
# Web UI
- gradio
- flask
# Interactive development
- ipython
- jupyter
- jupyros
- colcon-common-extensions
# ROS2 full desktop (includes rviz2, gazebo, etc.)
- robostack-staging::ros-humble-desktop-full
# Navigation and motion control
- ros-humble-navigation2
- ros-humble-ros2-control
- ros-humble-robot-state-publisher
- ros-humble-joint-state-publisher
# MoveIt motion planning
- ros-humble-moveit
- ros-humble-moveit-servo
# Simulation
- ros-humble-simulation
about:
repository: https://github.com/deepmodeling/Uni-Lab-OS
license: GPL-3.0-only
description: "UniLabOS Full - Complete package with ROS2 Desktop, MoveIt, Navigation2, Gazebo, Jupyter"

View File

@@ -1,91 +0,0 @@
package:
name: unilabos
version: 0.10.15
source:
path: ../unilabos
target_directory: unilabos
build:
python:
entry_points:
- unilab = unilabos.app.main:main
script:
- set PIP_NO_INDEX=
- if: win
then:
- copy %RECIPE_DIR%\..\MANIFEST.in %SRC_DIR%
- copy %RECIPE_DIR%\..\setup.cfg %SRC_DIR%
- copy %RECIPE_DIR%\..\setup.py %SRC_DIR%
- call %PYTHON% -m pip install %SRC_DIR%
- if: unix
then:
- cp $RECIPE_DIR/../MANIFEST.in $SRC_DIR
- cp $RECIPE_DIR/../setup.cfg $SRC_DIR
- cp $RECIPE_DIR/../setup.py $SRC_DIR
- $PYTHON -m pip install $SRC_DIR
requirements:
host:
- python ==3.11.11
- pip
- setuptools
- zstd
- zstandard
run:
- conda-forge::python ==3.11.11
- compilers
- cmake
- zstd
- zstandard
- ninja
- if: unix
then:
- make
- sphinx
- sphinx_rtd_theme
- numpy
- scipy
- pandas
- networkx
- matplotlib
- pint
- pyserial
- pyusb
- pylibftdi
- pymodbus
- python-can
- pyvisa
- opencv
- pydantic
- fastapi
- uvicorn
- gradio
- flask
- websockets
- ipython
- jupyter
- jupyros
- colcon-common-extensions
- robostack-staging::ros-humble-desktop-full
- robostack-staging::ros-humble-control-msgs
- robostack-staging::ros-humble-sensor-msgs
- robostack-staging::ros-humble-trajectory-msgs
- ros-humble-navigation2
- ros-humble-ros2-control
- ros-humble-robot-state-publisher
- ros-humble-joint-state-publisher
- ros-humble-rosbridge-server
- ros-humble-cv-bridge
- ros-humble-tf2
- ros-humble-moveit
- ros-humble-moveit-servo
- ros-humble-simulation
- ros-humble-tf-transformations
- transforms3d
- uni-lab::ros-humble-unilabos-msgs
about:
repository: https://github.com/deepmodeling/Uni-Lab-OS
license: GPL-3.0-only
description: "Uni-Lab-OS"

View File

@@ -31,12 +31,14 @@ jobs:
auto-update-conda: false
show-channel-urls: true
- name: Install ROS dependencies and unilabos-msgs
- name: Install ROS dependencies, uv and unilabos-msgs
run: |
# Install all packages together for proper dependency resolution
# Use mamba for faster and more reliable solving
mamba install -n check-env \
python=3.11.14 \
conda-forge::uv \
conda-forge::opencv \
robostack-staging::ros-humble-ros-core \
robostack-staging::ros-humble-action-msgs \
robostack-staging::ros-humble-std-msgs \
@@ -57,36 +59,14 @@ jobs:
run: |
# Activate the environment
conda activate check-env
# Core dependencies for devices
pip install uv
uv pip install networkx \
typing_extensions \
websockets \
msgcenterpy \
opentrons_shared_data \
pint \
fastapi \
jinja2 \
requests \
uvicorn \
git+https://github.com/Xuwznln/pylabrobot.git \
opencv-python \
pyautogui \
opcua \
pyserial \
pandas \
crcmod-plus \
pymodbus \
pywinauto_recorder \
matplotlib \
# PyLabRobot (custom fork)
pip install
# Install pip dependencies from requirements.txt (uv already installed via conda)
uv pip install -r unilabos/utils/requirements.txt
# Install special packages (git-based)
uv pip install pywinauto git+https://github.com/Xuwznln/pylabrobot.git
# Remove conflicting package
uv pip uninstall enum34 || true
# Install unilabos in editable mode
pip install -e .
uv pip install -e .
- name: Run check mode (complete_registry)
run: |

View File

@@ -13,6 +13,11 @@ on:
required: false
default: 'win-64'
type: string
build_full:
description: '是否构建完整版 unilabos-full (默认构建轻量版 unilabos)'
required: false
default: false
type: boolean
jobs:
build-conda-pack:
@@ -69,7 +74,7 @@ jobs:
with:
miniforge-version: latest
use-mamba: true
python-version: '3.11.11'
python-version: '3.11.14'
channels: conda-forge,robostack-staging,uni-lab,defaults
channel-priority: flexible
activate-environment: unilab
@@ -81,7 +86,14 @@ jobs:
run: |
echo Installing unilabos and dependencies to unilab environment...
echo Using mamba for faster and more reliable dependency resolution...
mamba install -n unilab uni-lab::unilabos conda-pack -c uni-lab -c robostack-staging -c conda-forge -y
echo Build full: ${{ github.event.inputs.build_full }}
if "${{ github.event.inputs.build_full }}"=="true" (
echo Installing unilabos-full ^(complete package^)...
mamba install -n unilab uni-lab::unilabos-full conda-pack -c uni-lab -c robostack-staging -c conda-forge -y
) else (
echo Installing unilabos ^(minimal package^)...
mamba install -n unilab uni-lab::unilabos conda-pack -c uni-lab -c robostack-staging -c conda-forge -y
)
- name: Install conda-pack, unilabos and dependencies (Unix)
if: steps.should_build.outputs.should_build == 'true' && matrix.platform != 'win-64'
@@ -89,7 +101,14 @@ jobs:
run: |
echo "Installing unilabos and dependencies to unilab environment..."
echo "Using mamba for faster and more reliable dependency resolution..."
mamba install -n unilab uni-lab::unilabos conda-pack -c uni-lab -c robostack-staging -c conda-forge -y
echo "Build full: ${{ github.event.inputs.build_full }}"
if [[ "${{ github.event.inputs.build_full }}" == "true" ]]; then
echo "Installing unilabos-full (complete package)..."
mamba install -n unilab uni-lab::unilabos-full conda-pack -c uni-lab -c robostack-staging -c conda-forge -y
else
echo "Installing unilabos (minimal package)..."
mamba install -n unilab uni-lab::unilabos conda-pack -c uni-lab -c robostack-staging -c conda-forge -y
fi
- name: Get latest ros-humble-unilabos-msgs version (Windows)
if: steps.should_build.outputs.should_build == 'true' && matrix.platform == 'win-64'
@@ -308,7 +327,12 @@ jobs:
echo ==========================================
echo Platform: ${{ matrix.platform }}
echo Branch: ${{ github.event.inputs.branch }}
echo Python version: 3.11.11
echo Python version: 3.11.14
if "${{ github.event.inputs.build_full }}"=="true" (
echo Package: unilabos-full ^(complete^)
) else (
echo Package: unilabos ^(minimal^)
)
echo.
echo Distribution package contents:
dir dist-package
@@ -328,7 +352,12 @@ jobs:
echo "=========================================="
echo "Platform: ${{ matrix.platform }}"
echo "Branch: ${{ github.event.inputs.branch }}"
echo "Python version: 3.11.11"
echo "Python version: 3.11.14"
if [[ "${{ github.event.inputs.build_full }}" == "true" ]]; then
echo "Package: unilabos-full (complete)"
else
echo "Package: unilabos (minimal)"
fi
echo ""
echo "Distribution package contents:"
ls -lh dist-package/

View File

@@ -1,10 +1,12 @@
name: Deploy Docs
on:
push:
branches: [main]
pull_request:
# 在 CI Check 成功后自动触发(仅 main 分支)
workflow_run:
workflows: ["CI Check"]
types: [completed]
branches: [main]
# 手动触发
workflow_dispatch:
inputs:
branch:
@@ -33,12 +35,19 @@ concurrency:
jobs:
# Build documentation
build:
# 只在以下情况运行:
# 1. workflow_run 触发且 CI Check 成功
# 2. 手动触发
if: |
github.event_name == 'workflow_dispatch' ||
(github.event_name == 'workflow_run' && github.event.workflow_run.conclusion == 'success')
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
ref: ${{ github.event.inputs.branch || github.ref }}
# workflow_run 时使用触发工作流的分支,手动触发时使用输入的分支
ref: ${{ github.event.workflow_run.head_branch || github.event.inputs.branch || github.ref }}
fetch-depth: 0
- name: Setup Miniforge (with mamba)
@@ -46,7 +55,7 @@ jobs:
with:
miniforge-version: latest
use-mamba: true
python-version: '3.11.11'
python-version: '3.11.14'
channels: conda-forge,robostack-staging,uni-lab,defaults
channel-priority: flexible
activate-environment: unilab
@@ -76,7 +85,9 @@ jobs:
- name: Setup Pages
id: pages
uses: actions/configure-pages@v4
if: github.ref == 'refs/heads/main' || (github.event_name == 'workflow_dispatch' && github.event.inputs.deploy_to_pages == 'true')
if: |
github.event.workflow_run.head_branch == 'main' ||
(github.event_name == 'workflow_dispatch' && github.event.inputs.deploy_to_pages == 'true')
- name: Build Sphinx documentation
run: |
@@ -95,13 +106,17 @@ jobs:
- name: Upload build artifacts
uses: actions/upload-pages-artifact@v3
if: github.ref == 'refs/heads/main' || (github.event_name == 'workflow_dispatch' && github.event.inputs.deploy_to_pages == 'true')
if: |
github.event.workflow_run.head_branch == 'main' ||
(github.event_name == 'workflow_dispatch' && github.event.inputs.deploy_to_pages == 'true')
with:
path: docs/_build/html
# Deploy to GitHub Pages
deploy:
if: github.ref == 'refs/heads/main' || (github.event_name == 'workflow_dispatch' && github.event.inputs.deploy_to_pages == 'true')
if: |
github.event.workflow_run.head_branch == 'main' ||
(github.event_name == 'workflow_dispatch' && github.event.inputs.deploy_to_pages == 'true')
environment:
name: github-pages
url: ${{ steps.deployment.outputs.page_url }}

View File

@@ -1,17 +1,26 @@
name: UniLabOS Conda Build
on:
# 在 CI Check 成功后自动触发
workflow_run:
workflows: ["CI Check"]
types: [completed]
branches: [main, dev]
# 标签推送时直接触发(发布版本)
push:
branches: [main, dev]
tags: ['v*']
pull_request:
branches: [main, dev]
# 手动触发
workflow_dispatch:
inputs:
platforms:
description: '选择构建平台 (逗号分隔): linux-64, osx-64, osx-arm64, win-64'
required: false
default: 'linux-64'
build_full:
description: '是否构建 unilabos-full 完整包 (默认只构建 unilabos 基础包)'
required: false
default: false
type: boolean
upload_to_anaconda:
description: '是否上传到Anaconda.org'
required: false
@@ -20,6 +29,14 @@ on:
jobs:
build:
# 只在以下情况运行:
# 1. workflow_run 触发且 CI Check 成功
# 2. 标签推送(发布版本)
# 3. 手动触发
if: |
github.event_name == 'workflow_dispatch' ||
github.event_name == 'push' ||
(github.event_name == 'workflow_run' && github.event.workflow_run.conclusion == 'success')
strategy:
fail-fast: false
matrix:
@@ -81,12 +98,33 @@ jobs:
conda list | grep -E "(rattler-build|anaconda-client)"
echo "Platform: ${{ matrix.platform }}"
echo "OS: ${{ matrix.os }}"
echo "Building UniLabOS package"
echo "Build full package: ${{ github.event.inputs.build_full || 'false' }}"
echo "Building packages:"
echo " - unilabos-env (environment dependencies)"
echo " - unilabos (with pip package)"
if [[ "${{ github.event.inputs.build_full }}" == "true" ]]; then
echo " - unilabos-full (complete package)"
fi
- name: Build conda package
- name: Build unilabos-env (conda environment only, noarch)
if: steps.should_build.outputs.should_build == 'true'
run: |
rattler-build build -r .conda/recipe.yaml -c uni-lab -c robostack-staging -c conda-forge
echo "Building unilabos-env (conda environment dependencies)..."
rattler-build build -r .conda/env/recipe.yaml -c uni-lab -c robostack-staging -c conda-forge
- name: Build unilabos (with pip package)
if: steps.should_build.outputs.should_build == 'true'
run: |
echo "Building unilabos package..."
rattler-build build -r .conda/base/recipe.yaml -c uni-lab -c robostack-staging -c conda-forge --channel ./output
- name: Build unilabos-full - Only when explicitly requested
if: |
steps.should_build.outputs.should_build == 'true' &&
github.event.inputs.build_full == 'true'
run: |
echo "Building unilabos-full package on ${{ matrix.platform }}..."
rattler-build build -r .conda/full/recipe.yaml -c uni-lab -c robostack-staging -c conda-forge --channel ./output
- name: List built packages
if: steps.should_build.outputs.should_build == 'true'

View File

@@ -1,4 +1,5 @@
recursive-include unilabos/test *
recursive-include unilabos/utils *
recursive-include unilabos/registry *.yaml
recursive-include unilabos/app/web/static *
recursive-include unilabos/app/web/templates *

View File

@@ -31,26 +31,46 @@ Detailed documentation can be found at:
## Quick Start
1. Setup Conda Environment
### 1. Setup Conda Environment
Uni-Lab-OS recommends using `mamba` for environment management:
Uni-Lab-OS recommends using `mamba` for environment management. Choose the package that fits your needs:
| Package | Use Case | Contents |
|---------|----------|----------|
| `unilabos` | **Recommended for most users** | Complete package, ready to use |
| `unilabos-env` | Developers (editable install) | Environment only, install unilabos via pip |
| `unilabos-full` | Simulation/Visualization | unilabos + ROS2 Desktop + Gazebo + MoveIt |
```bash
# Create new environment
mamba create -n unilab python=3.11.11
mamba create -n unilab python=3.11.14
mamba activate unilab
mamba install -n unilab uni-lab::unilabos -c robostack-staging -c conda-forge
# Option A: Standard installation (recommended for most users)
mamba install uni-lab::unilabos -c robostack-staging -c conda-forge
# Option B: For developers (editable mode development)
mamba install uni-lab::unilabos-env -c robostack-staging -c conda-forge
# Then install unilabos and dependencies:
git clone https://github.com/deepmodeling/Uni-Lab-OS.git && cd Uni-Lab-OS
pip install -e .
uv pip install -r unilabos/utils/requirements.txt
# Option C: Full installation (simulation/visualization)
mamba install uni-lab::unilabos-full -c robostack-staging -c conda-forge
```
2. Install Dev Uni-Lab-OS
**When to use which?**
- **unilabos**: Standard installation for production deployment and general usage (recommended)
- **unilabos-env**: For developers who need `pip install -e .` editable mode, modify source code
- **unilabos-full**: For simulation (Gazebo), visualization (rviz2), and Jupyter notebooks
### 2. Clone Repository (Optional, for developers)
```bash
# Clone the repository
# Clone the repository (only needed for development or examples)
git clone https://github.com/deepmodeling/Uni-Lab-OS.git
cd Uni-Lab-OS
# Install Uni-Lab-OS
pip install .
```
3. Start Uni-Lab System

View File

@@ -31,26 +31,46 @@ Uni-Lab-OS 是一个用于实验室自动化的综合平台,旨在连接和控
## 快速开始
1. 配置 Conda 环境
### 1. 配置 Conda 环境
Uni-Lab-OS 建议使用 `mamba` 管理环境。根据您的操作系统选择适当的环境文件:
Uni-Lab-OS 建议使用 `mamba` 管理环境。根据您的需求选择合适的安装包:
| 安装包 | 适用场景 | 包含内容 |
|--------|----------|----------|
| `unilabos` | **推荐大多数用户** | 完整安装包,开箱即用 |
| `unilabos-env` | 开发者(可编辑安装) | 仅环境依赖,通过 pip 安装 unilabos |
| `unilabos-full` | 仿真/可视化 | unilabos + ROS2 桌面版 + Gazebo + MoveIt |
```bash
# 创建新环境
mamba create -n unilab python=3.11.11
mamba create -n unilab python=3.11.14
mamba activate unilab
mamba install -n unilab uni-lab::unilabos -c robostack-staging -c conda-forge
# 方案 A标准安装推荐大多数用户
mamba install uni-lab::unilabos -c robostack-staging -c conda-forge
# 方案 B开发者环境可编辑模式开发
mamba install uni-lab::unilabos-env -c robostack-staging -c conda-forge
# 然后安装 unilabos 和依赖:
git clone https://github.com/deepmodeling/Uni-Lab-OS.git && cd Uni-Lab-OS
pip install -e .
uv pip install -r unilabos/utils/requirements.txt
# 方案 C完整安装仿真/可视化)
mamba install uni-lab::unilabos-full -c robostack-staging -c conda-forge
```
2. 安装开发版 Uni-Lab-OS:
**如何选择?**
- **unilabos**:标准安装,适用于生产部署和日常使用(推荐)
- **unilabos-env**:开发者使用,支持 `pip install -e .` 可编辑模式,可修改源代码
- **unilabos-full**需要仿真Gazebo、可视化rviz2或 Jupyter Notebook
### 2. 克隆仓库(可选,供开发者使用)
```bash
# 克隆仓库
# 克隆仓库(仅开发或查看示例时需要)
git clone https://github.com/deepmodeling/Uni-Lab-OS.git
cd Uni-Lab-OS
# 安装 Uni-Lab-OS
pip install .
```
3. 启动 Uni-Lab 系统

View File

@@ -31,6 +31,14 @@
详细的安装步骤请参考 [安装指南](installation.md)。
**选择合适的安装包:**
| 安装包 | 适用场景 | 包含组件 |
|--------|----------|----------|
| `unilabos` | **推荐大多数用户**,生产部署 | 完整安装包,开箱即用 |
| `unilabos-env` | 开发者(可编辑安装) | 仅环境依赖,通过 pip 安装 unilabos |
| `unilabos-full` | 仿真/可视化 | unilabos + 完整 ROS2 桌面版 + Gazebo + MoveIt |
**关键步骤:**
```bash
@@ -38,15 +46,30 @@
# 下载 Miniforge: https://github.com/conda-forge/miniforge/releases
# 2. 创建 Conda 环境
mamba create -n unilab python=3.11.11
mamba create -n unilab python=3.11.14
# 3. 激活环境
mamba activate unilab
# 4. 安装 Uni-Lab-OS
# 4. 安装 Uni-Lab-OS(选择其一)
# 方案 A标准安装推荐大多数用户
mamba install uni-lab::unilabos -c robostack-staging -c conda-forge
# 方案 B开发者环境可编辑模式开发
mamba install uni-lab::unilabos-env -c robostack-staging -c conda-forge
pip install -e /path/to/Uni-Lab-OS # 可编辑安装
uv pip install -r unilabos/utils/requirements.txt # 安装 pip 依赖
# 方案 C完整版仿真/可视化)
mamba install uni-lab::unilabos-full -c robostack-staging -c conda-forge
```
**选择建议:**
- **日常使用/生产部署**:使用 `unilabos`(推荐),完整功能,开箱即用
- **开发者**:使用 `unilabos-env` + `pip install -e .` + `uv pip install -r unilabos/utils/requirements.txt`,代码修改立即生效
- **仿真/可视化**:使用 `unilabos-full`,含 Gazebo、rviz2、MoveIt
#### 1.2 验证安装
```bash
@@ -768,7 +791,43 @@ Waiting for host service...
详细的设备驱动编写指南请参考 [添加设备驱动](../developer_guide/add_device.md)。
#### 9.1 为什么需要自定义设备?
#### 9.1 开发环境准备
**推荐使用 `unilabos-env` + `pip install -e .` + `uv pip install`** 进行设备开发:
```bash
# 1. 创建环境并安装 unilabos-envROS2 + conda 依赖 + uv
mamba create -n unilab python=3.11.14
conda activate unilab
mamba install uni-lab::unilabos-env -c robostack-staging -c conda-forge
# 2. 克隆代码
git clone https://github.com/deepmodeling/Uni-Lab-OS.git
cd Uni-Lab-OS
# 3. 以可编辑模式安装(推荐使用脚本,自动检测中文环境)
python scripts/dev_install.py
# 或手动安装:
pip install -e .
uv pip install -r unilabos/utils/requirements.txt
```
**为什么使用这种方式?**
- `unilabos-env` 提供 ROS2 核心组件和 uv通过 conda 安装,避免编译)
- `unilabos/utils/requirements.txt` 包含所有运行时需要的 pip 依赖
- `dev_install.py` 自动检测中文环境,中文系统自动使用清华镜像
- 使用 `uv` 替代 `pip`,安装速度更快
- 可编辑模式:代码修改**立即生效**,无需重新安装
**如果安装失败或速度太慢**,可以手动执行(使用清华镜像):
```bash
pip install -e . -i https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple
uv pip install -r unilabos/utils/requirements.txt -i https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple
```
#### 9.2 为什么需要自定义设备?
Uni-Lab-OS 内置了常见设备,但您的实验室可能有特殊设备需要集成:
@@ -777,7 +836,7 @@ Uni-Lab-OS 内置了常见设备,但您的实验室可能有特殊设备需要
- 特殊的实验流程
- 第三方设备集成
#### 9.2 创建 Python 包
#### 9.3 创建 Python 包
为了方便开发和管理,建议为您的实验室创建独立的 Python 包。
@@ -814,7 +873,7 @@ touch my_lab_devices/my_lab_devices/__init__.py
touch my_lab_devices/my_lab_devices/devices/__init__.py
```
#### 9.3 创建 setup.py
#### 9.4 创建 setup.py
```python
# my_lab_devices/setup.py
@@ -845,7 +904,7 @@ setup(
)
```
#### 9.4 开发安装
#### 9.5 开发安装
使用 `-e` 参数进行可编辑安装,这样代码修改后立即生效:
@@ -860,7 +919,7 @@ pip install -e . -i https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple
- 方便调试和测试
- 支持版本控制git
#### 9.5 编写设备驱动
#### 9.6 编写设备驱动
创建设备驱动文件:
@@ -1001,7 +1060,7 @@ class MyPump:
- **返回 Dict**:所有动作方法返回字典类型
- **文档字符串**:详细说明参数和功能
#### 9.6 测试设备驱动
#### 9.7 测试设备驱动
创建简单的测试脚本:

View File

@@ -13,15 +13,26 @@
- 开发者需要 Git 和基本的 Python 开发知识
- 自定义 msgs 需要 GitHub 账号
## 安装包选择
Uni-Lab-OS 提供三个安装包版本,根据您的需求选择:
| 安装包 | 适用场景 | 包含组件 | 磁盘占用 |
|--------|----------|----------|----------|
| **unilabos** | **推荐大多数用户**,生产部署 | 完整安装包,开箱即用 | ~2-3 GB |
| **unilabos-env** | 开发者环境(可编辑安装) | 仅环境依赖,通过 pip 安装 unilabos | ~2 GB |
| **unilabos-full** | 仿真可视化、完整功能体验 | unilabos + 完整 ROS2 桌面版 + Gazebo + MoveIt | ~8-10 GB |
## 安装方式选择
根据您的使用场景,选择合适的安装方式:
| 安装方式 | 适用人群 | 特点 | 安装时间 |
| ---------------------- | -------------------- | ------------------------------ | ---------------------------- |
| **方式一:一键安装** | 实验室用户、快速体验 | 预打包环境,离线可用,无需配置 | 5-10 分钟 (网络良好的情况下) |
| **方式二:手动安装** | 标准用户、生产环境 | 灵活配置,版本可控 | 10-20 分钟 |
| **方式三:开发者安装** | 开发者、需要修改源码 | 可编辑模式,支持自定义 msgs | 20-30 分钟 |
| 安装方式 | 适用人群 | 推荐安装包 | 特点 | 安装时间 |
| ---------------------- | -------------------- | ----------------- | ------------------------------ | ---------------------------- |
| **方式一:一键安装** | 快速体验、演示 | 预打包环境 | 离线可用,无需配置 | 5-10 分钟 (网络良好的情况下) |
| **方式二:手动安装** | **大多数用户** | `unilabos` | 完整功能,开箱即用 | 10-20 分钟 |
| **方式三:开发者安装** | 开发者、需要修改源码 | `unilabos-env` | 可编辑模式,支持自定义开发 | 20-30 分钟 |
| **仿真/可视化** | 仿真测试、可视化调试 | `unilabos-full` | 含 Gazebo、rviz2、MoveIt | 30-60 分钟 |
---
@@ -144,17 +155,38 @@ bash Miniforge3-$(uname)-$(uname -m).sh
使用以下命令创建 Uni-Lab 专用环境:
```bash
mamba create -n unilab python=3.11.11 # 目前ros2组件依赖版本大多为3.11.11
mamba create -n unilab python=3.11.14 # 目前ros2组件依赖版本大多为3.11.14
mamba activate unilab
mamba install -n unilab uni-lab::unilabos -c robostack-staging -c conda-forge
# 选择安装包(三选一):
# 方案 A标准安装推荐大多数用户
mamba install uni-lab::unilabos -c robostack-staging -c conda-forge
# 方案 B开发者环境可编辑模式开发
mamba install uni-lab::unilabos-env -c robostack-staging -c conda-forge
# 然后安装 unilabos 和 pip 依赖:
git clone https://github.com/deepmodeling/Uni-Lab-OS.git && cd Uni-Lab-OS
pip install -e .
uv pip install -r unilabos/utils/requirements.txt
# 方案 C完整版含仿真和可视化工具
mamba install uni-lab::unilabos-full -c robostack-staging -c conda-forge
```
**参数说明**:
- `-n unilab`: 创建名为 "unilab" 的环境
- `uni-lab::unilabos`: 从 uni-lab channel 安装 unilabos 包
- `uni-lab::unilabos`: 安装 unilabos 完整包,开箱即用(推荐)
- `uni-lab::unilabos-env`: 仅安装环境依赖,适合开发者使用 `pip install -e .`
- `uni-lab::unilabos-full`: 安装完整包(含 ROS2 Desktop、Gazebo、MoveIt 等)
- `-c robostack-staging -c conda-forge`: 添加额外的软件源
**包选择建议**
- **日常使用/生产部署**:安装 `unilabos`(推荐,完整功能,开箱即用)
- **开发者**:安装 `unilabos-env`,然后使用 `uv pip install -r unilabos/utils/requirements.txt` 安装依赖,再 `pip install -e .` 进行可编辑安装
- **仿真/可视化**:安装 `unilabos-full`Gazebo、rviz2、MoveIt
**如果遇到网络问题**,可以使用清华镜像源加速下载:
```bash
@@ -163,8 +195,14 @@ mamba config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/m
mamba config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
mamba config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
# 然后重新执行安装命令
# 然后重新执行安装命令(推荐标准安装)
mamba create -n unilab uni-lab::unilabos -c robostack-staging
# 或完整版(仿真/可视化)
mamba create -n unilab uni-lab::unilabos-full -c robostack-staging
# pip 安装时使用清华镜像(开发者安装时使用)
uv pip install -r unilabos/utils/requirements.txt -i https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple
```
### 第三步:激活环境
@@ -203,58 +241,87 @@ cd Uni-Lab-OS
cd Uni-Lab-OS
```
### 第二步:安装基础环境
### 第二步:安装开发环境unilabos-env
**推荐方式**:先通过**方式一(一键安装)**或**方式二(手动安装)**完成基础环境的安装这将包含所有必需的依赖项ROS2、msgs 等)。
#### 选项 A通过一键安装推荐
参考上文"方式一:一键安装",完成基础环境的安装后,激活环境:
**重要**:开发者请使用 `unilabos-env` 包,它专为开发者设计:
- 包含 ROS2 核心组件和消息包ros-humble-ros-core、std-msgs、geometry-msgs 等)
- 包含 transforms3d、cv-bridge、tf2 等 conda 依赖
- 包含 `uv` 工具,用于快速安装 pip 依赖
- **不包含** pip 依赖和 unilabos 包(由 `pip install -e .` 和 `uv pip install` 安装)
```bash
# 创建并激活环境
mamba create -n unilab python=3.11.14
conda activate unilab
# 安装开发者环境包ROS2 + conda 依赖 + uv
mamba install uni-lab::unilabos-env -c robostack-staging -c conda-forge
```
#### 选项 B通过手动安装
### 第三步:安装 pip 依赖和可编辑模式安装
参考上文"方式二:手动安装",创建并安装环境
```bash
mamba create -n unilab python=3.11.11
conda activate unilab
mamba install -n unilab uni-lab::unilabos -c robostack-staging -c conda-forge
```
**说明**:这会安装包括 Python 3.11.11、ROS2 Humble、ros-humble-unilabos-msgs 和所有必需依赖
### 第三步:切换到开发版本
现在你已经有了一个完整可用的 Uni-Lab 环境,接下来将 unilabos 包切换为开发版本:
克隆代码并安装依赖
```bash
# 确保环境已激活
conda activate unilab
# 卸载 pip 安装的 unilabos保留所有 conda 依赖
pip uninstall unilabos -y
# 克隆 dev 分支(如果还未克隆)
cd /path/to/your/workspace
git clone -b dev https://github.com/deepmodeling/Uni-Lab-OS.git
# 或者如果已经克隆,切换到 dev 分支
# 克隆仓库(如果还未克隆
git clone https://github.com/deepmodeling/Uni-Lab-OS.git
cd Uni-Lab-OS
# 切换到 dev 分支(可选)
git checkout dev
git pull
# 以可编辑模式安装开发版 unilabos
pip install -e . -i https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple
```
**参数说明**
**推荐:使用安装脚本**(自动检测中文环境,使用 uv 加速)
- `-e`: editable mode可编辑模式代码修改立即生效无需重新安装
- `-i`: 使用清华镜像源加速下载
- `pip uninstall unilabos`: 只卸载 pip 安装的 unilabos 包,不影响 conda 安装的其他依赖(如 ROS2、msgs 等)
```bash
# 自动检测中文环境,如果是中文系统则使用清华镜像
python scripts/dev_install.py
# 或者手动指定:
python scripts/dev_install.py --china # 强制使用清华镜像
python scripts/dev_install.py --no-mirror # 强制使用 PyPI
python scripts/dev_install.py --skip-deps # 跳过 pip 依赖安装
python scripts/dev_install.py --use-pip # 使用 pip 而非 uv
```
**手动安装**(如果脚本安装失败或速度太慢):
```bash
# 1. 安装 unilabos可编辑模式
pip install -e .
# 2. 使用 uv 安装 pip 依赖(推荐,速度更快)
uv pip install -r unilabos/utils/requirements.txt
# 国内用户使用清华镜像:
pip install -e . -i https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple
uv pip install -r unilabos/utils/requirements.txt -i https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple
```
**注意**
- `uv` 已包含在 `unilabos-env` 中,无需单独安装
- `unilabos/utils/requirements.txt` 包含运行 unilabos 所需的所有 pip 依赖
- 部分特殊包(如 pylabrobot会在运行时由 unilabos 自动检测并安装
**为什么使用可编辑模式?**
- `-e` (editable mode):代码修改**立即生效**,无需重新安装
- 适合开发调试:修改代码后直接运行测试
- 与 `unilabos-env` 配合:环境依赖由 conda 管理unilabos 代码由 pip 管理
**验证安装**
```bash
# 检查 unilabos 版本
python -c "import unilabos; print(unilabos.__version__)"
# 检查安装位置(应该指向你的代码目录)
pip show unilabos | grep Location
```
### 第四步:安装或自定义 ros-humble-unilabos-msgs可选
@@ -464,7 +531,45 @@ cd $CONDA_PREFIX/envs/unilab
### 问题 8: 环境很大,有办法减小吗?
**解决方案**: 预打包的环境包含所有依赖,通常较大(压缩后 2-5GB。这是为了确保离线安装和完整功能。如果空间有限考虑使用方式二手动安装只安装需要的组件。
**解决方案**:
1. **使用 `unilabos` 标准版**(推荐大多数用户):
```bash
mamba install uni-lab::unilabos -c robostack-staging -c conda-forge
```
标准版包含完整功能,环境大小约 2-3GB相比完整版的 8-10GB
2. **使用 `unilabos-env` 开发者版**(最小化):
```bash
mamba install uni-lab::unilabos-env -c robostack-staging -c conda-forge
# 然后手动安装依赖
pip install -e .
uv pip install -r unilabos/utils/requirements.txt
```
开发者版只包含环境依赖,体积最小约 2GB。
3. **按需安装额外组件**
如果后续需要特定功能,可以单独安装:
```bash
# 需要 Jupyter
mamba install jupyter jupyros
# 需要可视化
mamba install matplotlib opencv
# 需要仿真(注意:这会安装大量依赖)
mamba install ros-humble-gazebo-ros
```
4. **预打包环境问题**
预打包环境(方式一)包含所有依赖,通常较大(压缩后 2-5GB。这是为了确保离线安装和完整功能。
**包选择建议**
| 需求 | 推荐包 | 预估大小 |
|------|--------|----------|
| 日常使用/生产部署 | `unilabos` | ~2-3 GB |
| 开发调试(可编辑模式) | `unilabos-env` | ~2 GB |
| 仿真/可视化 | `unilabos-full` | ~8-10 GB |
### 问题 9: 如何更新到最新版本?
@@ -511,6 +616,7 @@ mamba update ros-humble-unilabos-msgs -c uni-lab -c robostack-staging -c conda-f
**提示**:
- 生产环境推荐使用方式二(手动安装)的稳定版本
- 开发和测试推荐使用方式三(开发者安装)
- 快速体验和演示推荐使用方式一(一键安装)
- **大多数用户**推荐使用方式二(手动安装)的 `unilabos` 标准版
- **开发者**推荐使用方式三(开发者安装),安装 `unilabos-env` 后使用 `uv pip install -r unilabos/utils/requirements.txt` 安装依赖
- **仿真/可视化**推荐安装 `unilabos-full` 完整版
- **快速体验和演示**推荐使用方式一(一键安装)

View File

@@ -85,7 +85,7 @@ Verification:
-------------
The verify_installation.py script will check:
- Python version (3.11.11)
- Python version (3.11.14)
- ROS2 rclpy installation
- UniLabOS installation and dependencies
@@ -104,7 +104,7 @@ Build Information:
Branch: {branch}
Platform: {platform}
Python: 3.11.11
Python: 3.11.14
Date: {build_date}
Troubleshooting:

214
scripts/dev_install.py Normal file
View File

@@ -0,0 +1,214 @@
#!/usr/bin/env python3
"""
Development installation script for UniLabOS.
Auto-detects Chinese locale and uses appropriate mirror.
Usage:
python scripts/dev_install.py
python scripts/dev_install.py --no-mirror # Force no mirror
python scripts/dev_install.py --china # Force China mirror
python scripts/dev_install.py --skip-deps # Skip pip dependencies installation
Flow:
1. pip install -e . (install unilabos in editable mode)
2. Detect Chinese locale
3. Use uv to install pip dependencies from requirements.txt
4. Special packages (like pylabrobot) are handled by environment_check.py at runtime
"""
import locale
import subprocess
import sys
import argparse
from pathlib import Path
# Tsinghua mirror URL
TSINGHUA_MIRROR = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple"
def is_chinese_locale() -> bool:
"""
Detect if system is in Chinese locale.
Same logic as EnvironmentChecker._is_chinese_locale()
"""
try:
lang = locale.getdefaultlocale()[0]
if lang and ("zh" in lang.lower() or "chinese" in lang.lower()):
return True
except Exception:
pass
return False
def run_command(cmd: list, description: str, retry: int = 2) -> bool:
"""Run command with retry support."""
print(f"[INFO] {description}")
print(f"[CMD] {' '.join(cmd)}")
for attempt in range(retry + 1):
try:
result = subprocess.run(cmd, check=True, timeout=600)
print(f"[OK] {description}")
return True
except subprocess.CalledProcessError as e:
if attempt < retry:
print(f"[WARN] Attempt {attempt + 1} failed, retrying...")
else:
print(f"[ERROR] {description} failed: {e}")
return False
except subprocess.TimeoutExpired:
print(f"[ERROR] {description} timed out")
return False
return False
def install_editable(project_root: Path, use_mirror: bool) -> bool:
"""Install unilabos in editable mode using pip."""
cmd = [sys.executable, "-m", "pip", "install", "-e", str(project_root)]
if use_mirror:
cmd.extend(["-i", TSINGHUA_MIRROR])
return run_command(cmd, "Installing unilabos in editable mode")
def install_requirements_uv(requirements_file: Path, use_mirror: bool) -> bool:
"""Install pip dependencies using uv (installed via conda-forge::uv)."""
cmd = ["uv", "pip", "install", "-r", str(requirements_file)]
if use_mirror:
cmd.extend(["-i", TSINGHUA_MIRROR])
return run_command(cmd, "Installing pip dependencies with uv", retry=2)
def install_requirements_pip(requirements_file: Path, use_mirror: bool) -> bool:
"""Fallback: Install pip dependencies using pip."""
cmd = [sys.executable, "-m", "pip", "install", "-r", str(requirements_file)]
if use_mirror:
cmd.extend(["-i", TSINGHUA_MIRROR])
return run_command(cmd, "Installing pip dependencies with pip", retry=2)
def check_uv_available() -> bool:
"""Check if uv is available (installed via conda-forge::uv)."""
try:
subprocess.run(["uv", "--version"], capture_output=True, check=True)
return True
except (subprocess.CalledProcessError, FileNotFoundError):
return False
def main():
parser = argparse.ArgumentParser(description="Development installation script for UniLabOS")
parser.add_argument("--china", action="store_true", help="Force use China mirror (Tsinghua)")
parser.add_argument("--no-mirror", action="store_true", help="Force use default PyPI (no mirror)")
parser.add_argument(
"--skip-deps", action="store_true", help="Skip pip dependencies installation (only install unilabos)"
)
parser.add_argument("--use-pip", action="store_true", help="Use pip instead of uv for dependencies")
args = parser.parse_args()
# Determine project root
script_dir = Path(__file__).parent
project_root = script_dir.parent
requirements_file = project_root / "unilabos" / "utils" / "requirements.txt"
if not (project_root / "setup.py").exists():
print(f"[ERROR] setup.py not found in {project_root}")
sys.exit(1)
print("=" * 60)
print("UniLabOS Development Installation")
print("=" * 60)
print(f"Project root: {project_root}")
print()
# Determine mirror usage based on locale
if args.no_mirror:
use_mirror = False
print("[INFO] Mirror disabled by --no-mirror flag")
elif args.china:
use_mirror = True
print("[INFO] China mirror enabled by --china flag")
else:
use_mirror = is_chinese_locale()
if use_mirror:
print("[INFO] Chinese locale detected, using Tsinghua mirror")
else:
print("[INFO] Non-Chinese locale detected, using default PyPI")
print()
# Step 1: Install unilabos in editable mode
print("[STEP 1] Installing unilabos in editable mode...")
if not install_editable(project_root, use_mirror):
print("[ERROR] Failed to install unilabos")
print()
print("Manual fallback:")
if use_mirror:
print(f" pip install -e {project_root} -i {TSINGHUA_MIRROR}")
else:
print(f" pip install -e {project_root}")
sys.exit(1)
print()
# Step 2: Install pip dependencies
if args.skip_deps:
print("[INFO] Skipping pip dependencies installation (--skip-deps)")
else:
print("[STEP 2] Installing pip dependencies...")
if not requirements_file.exists():
print(f"[WARN] Requirements file not found: {requirements_file}")
print("[INFO] Skipping dependencies installation")
else:
# Try uv first (faster), fallback to pip
if args.use_pip:
print("[INFO] Using pip (--use-pip flag)")
success = install_requirements_pip(requirements_file, use_mirror)
elif check_uv_available():
print("[INFO] Using uv (installed via conda-forge::uv)")
success = install_requirements_uv(requirements_file, use_mirror)
if not success:
print("[WARN] uv failed, falling back to pip...")
success = install_requirements_pip(requirements_file, use_mirror)
else:
print("[WARN] uv not available (should be installed via: mamba install conda-forge::uv)")
print("[INFO] Falling back to pip...")
success = install_requirements_pip(requirements_file, use_mirror)
if not success:
print()
print("[WARN] Failed to install some dependencies automatically.")
print("You can manually install them:")
if use_mirror:
print(f" uv pip install -r {requirements_file} -i {TSINGHUA_MIRROR}")
print(" or:")
print(f" pip install -r {requirements_file} -i {TSINGHUA_MIRROR}")
else:
print(f" uv pip install -r {requirements_file}")
print(" or:")
print(f" pip install -r {requirements_file}")
print()
print("=" * 60)
print("Installation complete!")
print("=" * 60)
print()
print("Note: Some special packages (like pylabrobot) are installed")
print("automatically at runtime by unilabos if needed.")
print()
print("Verify installation:")
print(' python -c "import unilabos; print(unilabos.__version__)"')
print()
print("If you encounter issues, you can manually install dependencies:")
if use_mirror:
print(f" uv pip install -r unilabos/utils/requirements.txt -i {TSINGHUA_MIRROR}")
else:
print(" uv pip install -r unilabos/utils/requirements.txt")
print()
if __name__ == "__main__":
main()

View File

@@ -1,13 +1,11 @@
import argparse
import asyncio
import os
import shutil
import signal
import sys
import threading
import time
from typing import Dict, Any, List
import networkx as nx
import yaml
@@ -17,9 +15,9 @@ unilabos_dir = os.path.dirname(os.path.dirname(current_dir))
if unilabos_dir not in sys.path:
sys.path.append(unilabos_dir)
from unilabos.app.utils import cleanup_for_restart
from unilabos.utils.banner_print import print_status, print_unilab_banner
from unilabos.config.config import load_config, BasicConfig, HTTPConfig
from unilabos.app.utils import cleanup_for_restart
# Global restart flags (used by ws_client and web/server)
_restart_requested: bool = False

View File

@@ -4,8 +4,40 @@ UniLabOS 应用工具函数
提供清理、重启等工具函数
"""
import gc
import glob
import os
import shutil
import sys
def patch_rclpy_dll_windows():
"""在 Windows + conda 环境下为 rclpy 打 DLL 加载补丁"""
if sys.platform != "win32" or not os.environ.get("CONDA_PREFIX"):
return
try:
import rclpy
return
except ImportError as e:
if not str(e).startswith("DLL load failed"):
return
cp = os.environ["CONDA_PREFIX"]
impl = os.path.join(cp, "Lib", "site-packages", "rclpy", "impl", "implementation_singleton.py")
pyd = glob.glob(os.path.join(cp, "Lib", "site-packages", "rclpy", "_rclpy_pybind11*.pyd"))
if not os.path.exists(impl) or not pyd:
return
with open(impl, "r", encoding="utf-8") as f:
content = f.read()
lib_bin = os.path.join(cp, "Library", "bin").replace("\\", "/")
patch = f'# UniLabOS DLL Patch\nimport os,ctypes\nos.add_dll_directory("{lib_bin}") if hasattr(os,"add_dll_directory") else None\ntry: ctypes.CDLL("{pyd[0].replace(chr(92),"/")}")\nexcept: pass\n# End Patch\n'
shutil.copy2(impl, impl + ".bak")
with open(impl, "w", encoding="utf-8") as f:
f.write(patch + content)
patch_rclpy_dll_windows()
import gc
import threading
import time

View File

@@ -0,0 +1,17 @@
networkx
typing_extensions
websockets
msgcenterpy>=0.1.5
opentrons_shared_data
pint
fastapi
jinja2
requests
uvicorn
pyautogui
opcua
pyserial
pandas
crcmod-plus
pymodbus
matplotlib