workflow upload & set liquid fix & add set liquid with plate

fix upload workflow json

save class name when deserialize & protocol execute test

Support root node change pos

add unilabos_class

gather query
This commit is contained in:
Xuwznln
2026-01-28 13:23:25 +08:00
parent 3a2d9e9603
commit 5179a7e48e
15 changed files with 2619 additions and 473 deletions

770
unilabos/workflow/common.py Normal file
View File

@@ -0,0 +1,770 @@
"""
工作流转换模块 - JSON 到 WorkflowGraph 的转换流程
==================== 输入格式 (JSON) ====================
{
"workflow": [
{"action": "transfer_liquid", "action_args": {"sources": "cell_lines", "targets": "Liquid_1", "asp_vol": 100.0, "dis_vol": 74.75, ...}},
...
],
"reagent": {
"cell_lines": {"slot": 4, "well": ["A1", "A3", "A5"], "labware": "DRUG + YOYO-MEDIA"},
"Liquid_1": {"slot": 1, "well": ["A4", "A7", "A10"], "labware": "rep 1"},
...
}
}
==================== 转换步骤 ====================
第一步: 按 slot 去重创建 create_resource 节点(创建板子)
--------------------------------------------------------------------------------
- 遍历所有 reagent按 slot 去重,为每个唯一的 slot 创建一个板子
- 生成参数:
res_id: plate_slot_{slot}
device_id: /PRCXI
class_name: PRCXI_BioER_96_wellplate
parent: /PRCXI/PRCXI_Deck/T{slot}
slot_on_deck: "{slot}"
- 输出端口: labware用于连接 set_liquid_from_plate
- 控制流: create_resource 之间通过 ready 端口串联
示例: slot=1, slot=4 -> 创建 2 个 create_resource 节点
第二步: 为每个 reagent 创建 set_liquid_from_plate 节点(设置液体)
--------------------------------------------------------------------------------
- 遍历所有 reagent为每个试剂创建 set_liquid_from_plate 节点
- 生成参数:
plate: [](通过连接传递,来自 create_resource 的 labware
well_names: ["A1", "A3", "A5"](来自 reagent 的 well 数组)
liquid_names: ["cell_lines", "cell_lines", "cell_lines"](与 well 数量一致)
volumes: [1e5, 1e5, 1e5](与 well 数量一致,默认体积)
- 输入连接: create_resource (labware) -> set_liquid_from_plate (input_plate)
- 输出端口: output_wells用于连接 transfer_liquid
- 控制流: set_liquid_from_plate 连接在所有 create_resource 之后,通过 ready 端口串联
第三步: 解析 workflow创建 transfer_liquid 等动作节点
--------------------------------------------------------------------------------
- 遍历 workflow 数组,为每个动作创建步骤节点
- 参数重命名: asp_vol -> asp_vols, dis_vol -> dis_vols, asp_flow_rate -> asp_flow_rates, dis_flow_rate -> dis_flow_rates
- 参数扩展: 根据 targets 的 wells 数量,将单值扩展为数组
例: asp_vol=100.0, targets 有 3 个 wells -> asp_vols=[100.0, 100.0, 100.0]
- 连接处理: 如果 sources/targets 已通过 set_liquid_from_plate 连接,参数值改为 []
- 输入连接: set_liquid_from_plate (output_wells) -> transfer_liquid (sources_identifier / targets_identifier)
- 输出端口: sources_out, targets_out用于连接下一个 transfer_liquid
==================== 连接关系图 ====================
控制流 (ready 端口串联):
create_resource_1 -> create_resource_2 -> ... -> set_liquid_1 -> set_liquid_2 -> ... -> transfer_liquid_1 -> transfer_liquid_2 -> ...
物料流:
[create_resource] --labware--> [set_liquid_from_plate] --output_wells--> [transfer_liquid] --sources_out/targets_out--> [下一个 transfer_liquid]
(slot=1) (cell_lines) (input_plate) (sources_identifier) (sources_identifier)
(slot=4) (Liquid_1) (targets_identifier) (targets_identifier)
==================== 端口映射 ====================
create_resource:
输出: labware
set_liquid_from_plate:
输入: input_plate
输出: output_plate, output_wells
transfer_liquid:
输入: sources -> sources_identifier, targets -> targets_identifier
输出: sources -> sources_out, targets -> targets_out
==================== 校验规则 ====================
- 检查 sources/targets 是否在 reagent 中定义
- 检查 sources 和 targets 的 wells 数量是否匹配
- 检查参数数组长度是否与 wells 数量一致
- 如有问题,在 footer 中添加 [WARN: ...] 标记
"""
import re
import uuid
import networkx as nx
from networkx.drawing.nx_agraph import to_agraph
import matplotlib.pyplot as plt
from typing import Dict, List, Any, Tuple, Optional
Json = Dict[str, Any]
# ==================== 默认配置 ====================
# create_resource 节点默认参数
CREATE_RESOURCE_DEFAULTS = {
"device_id": "/PRCXI",
"parent_template": "/PRCXI/PRCXI_Deck/T{slot}", # {slot} 会被替换为实际的 slot 值
"class_name": "PRCXI_BioER_96_wellplate",
}
# 默认液体体积 (uL)
DEFAULT_LIQUID_VOLUME = 1e5
# 参数重命名映射:单数 -> 复数(用于 transfer_liquid 等动作)
PARAM_RENAME_MAPPING = {
"asp_vol": "asp_vols",
"dis_vol": "dis_vols",
"asp_flow_rate": "asp_flow_rates",
"dis_flow_rate": "dis_flow_rates",
}
# ---------------- Graph ----------------
class WorkflowGraph:
"""简单的有向图实现:使用 params 单层参数inputs 内含连线;支持 node-link 导出"""
def __init__(self):
self.nodes: Dict[str, Dict[str, Any]] = {}
self.edges: List[Dict[str, Any]] = []
def add_node(self, node_id: str, **attrs):
self.nodes[node_id] = attrs
def add_edge(self, source: str, target: str, **attrs):
# 将 source_port/target_port 映射为服务端期望的 source_handle_key/target_handle_key
source_handle_key = attrs.pop("source_port", "") or attrs.pop("source_handle_key", "")
target_handle_key = attrs.pop("target_port", "") or attrs.pop("target_handle_key", "")
edge = {
"source": source,
"target": target,
"source_node_uuid": source,
"target_node_uuid": target,
"source_handle_key": source_handle_key,
"source_handle_io": attrs.pop("source_handle_io", "source"),
"target_handle_key": target_handle_key,
"target_handle_io": attrs.pop("target_handle_io", "target"),
**attrs,
}
self.edges.append(edge)
def _materialize_wiring_into_inputs(
self,
obj: Any,
inputs: Dict[str, Any],
variable_sources: Dict[str, Dict[str, Any]],
target_node_id: str,
base_path: List[str],
):
has_var = False
def walk(node: Any, path: List[str]):
nonlocal has_var
if isinstance(node, dict):
if "__var__" in node:
has_var = True
varname = node["__var__"]
placeholder = f"${{{varname}}}"
src = variable_sources.get(varname)
if src:
key = ".".join(path) # e.g. "params.foo.bar.0"
inputs[key] = {"node": src["node_id"], "output": src.get("output_name", "result")}
self.add_edge(
str(src["node_id"]),
target_node_id,
source_handle_io=src.get("output_name", "result"),
target_handle_io=key,
)
return placeholder
return {k: walk(v, path + [k]) for k, v in node.items()}
if isinstance(node, list):
return [walk(v, path + [str(i)]) for i, v in enumerate(node)]
return node
replaced = walk(obj, base_path[:])
return replaced, has_var
def add_workflow_node(
self,
node_id: int,
*,
device_key: Optional[str] = None, # 实例名,如 "ser"
resource_name: Optional[str] = None, # registry key原 device_class
module: Optional[str] = None,
template_name: Optional[str] = None, # 动作/模板名(原 action_key
params: Dict[str, Any],
variable_sources: Dict[str, Dict[str, Any]],
add_ready_if_no_vars: bool = True,
prev_node_id: Optional[int] = None,
**extra_attrs,
) -> None:
"""添加工作流节点params 单层;自动变量连线与 ready 串联;支持附加属性"""
node_id_str = str(node_id)
inputs: Dict[str, Any] = {}
params, has_var = self._materialize_wiring_into_inputs(
params, inputs, variable_sources, node_id_str, base_path=["params"]
)
if add_ready_if_no_vars and not has_var:
last_id = str(prev_node_id) if prev_node_id is not None else "-1"
inputs["ready"] = {"node": int(last_id), "output": "ready"}
self.add_edge(last_id, node_id_str, source_handle_io="ready", target_handle_io="ready")
node_obj = {
"device_key": device_key,
"resource_name": resource_name, # ✅ 新名字
"module": module,
"template_name": template_name, # ✅ 新名字
"params": params,
"inputs": inputs,
}
node_obj.update(extra_attrs or {})
self.add_node(node_id_str, parameters=node_obj)
# 顺序工作流导出(连线在 inputs不返回 edges
def to_dict(self) -> List[Dict[str, Any]]:
result = []
for node_id, attrs in self.nodes.items():
node = {"uuid": node_id}
params = dict(attrs.get("parameters", {}) or {})
flat = {k: v for k, v in attrs.items() if k != "parameters"}
flat.update(params)
node.update(flat)
result.append(node)
return sorted(result, key=lambda n: int(n["uuid"]) if str(n["uuid"]).isdigit() else n["uuid"])
# node-link 导出(含 edges
def to_node_link_dict(self) -> Dict[str, Any]:
nodes_list = []
for node_id, attrs in self.nodes.items():
node_attrs = attrs.copy()
params = node_attrs.pop("parameters", {}) or {}
node_attrs.update(params)
nodes_list.append({"uuid": node_id, **node_attrs})
return {
"directed": True,
"multigraph": False,
"graph": {},
"nodes": nodes_list,
"edges": self.edges,
"links": self.edges,
}
def refactor_data(
data: List[Dict[str, Any]],
action_resource_mapping: Optional[Dict[str, str]] = None,
) -> List[Dict[str, Any]]:
"""统一的数据重构函数,根据操作类型自动选择模板
Args:
data: 原始步骤数据列表
action_resource_mapping: action 到 resource_name 的映射字典,可选
"""
refactored_data = []
# 定义操作映射,包含生物实验和有机化学的所有操作
OPERATION_MAPPING = {
# 生物实验操作
"transfer_liquid": "transfer_liquid",
"transfer": "transfer",
"incubation": "incubation",
"move_labware": "move_labware",
"oscillation": "oscillation",
# 有机化学操作
"HeatChillToTemp": "HeatChillProtocol",
"StopHeatChill": "HeatChillStopProtocol",
"StartHeatChill": "HeatChillStartProtocol",
"HeatChill": "HeatChillProtocol",
"Dissolve": "DissolveProtocol",
"Transfer": "TransferProtocol",
"Evaporate": "EvaporateProtocol",
"Recrystallize": "RecrystallizeProtocol",
"Filter": "FilterProtocol",
"Dry": "DryProtocol",
"Add": "AddProtocol",
}
UNSUPPORTED_OPERATIONS = ["Purge", "Wait", "Stir", "ResetHandling"]
for step in data:
operation = step.get("action")
if not operation or operation in UNSUPPORTED_OPERATIONS:
continue
# 处理重复操作
if operation == "Repeat":
times = step.get("times", step.get("parameters", {}).get("times", 1))
sub_steps = step.get("steps", step.get("parameters", {}).get("steps", []))
for i in range(int(times)):
sub_data = refactor_data(sub_steps, action_resource_mapping)
refactored_data.extend(sub_data)
continue
# 获取模板名称
template_name = OPERATION_MAPPING.get(operation)
if not template_name:
# 自动推断模板类型
if operation.lower() in ["transfer", "incubation", "move_labware", "oscillation"]:
template_name = f"biomek-{operation}"
else:
template_name = f"{operation}Protocol"
# 获取 resource_name
resource_name = f"device.{operation.lower()}"
if action_resource_mapping:
resource_name = action_resource_mapping.get(operation, resource_name)
# 获取步骤编号,生成 name 字段
step_number = step.get("step_number")
name = f"Step {step_number}" if step_number is not None else None
# 创建步骤数据
step_data = {
"template_name": template_name,
"resource_name": resource_name,
"description": step.get("description", step.get("purpose", f"{operation} operation")),
"lab_node_type": "Device",
"param": step.get("parameters", step.get("action_args", {})),
"footer": f"{template_name}-{resource_name}",
}
if name:
step_data["name"] = name
refactored_data.append(step_data)
return refactored_data
def build_protocol_graph(
labware_info: Dict[str, Dict[str, Any]],
protocol_steps: List[Dict[str, Any]],
workstation_name: str,
action_resource_mapping: Optional[Dict[str, str]] = None,
) -> WorkflowGraph:
"""统一的协议图构建函数,根据设备类型自动选择构建逻辑
Args:
labware_info: labware 信息字典,格式为 {name: {slot, well, labware, ...}, ...}
protocol_steps: 协议步骤列表
workstation_name: 工作站名称
action_resource_mapping: action 到 resource_name 的映射字典,可选
"""
G = WorkflowGraph()
resource_last_writer = {} # reagent_name -> "node_id:port"
slot_to_create_resource = {} # slot -> create_resource node_id
protocol_steps = refactor_data(protocol_steps, action_resource_mapping)
# ==================== 第一步:按 slot 去重创建 create_resource 节点 ====================
# 收集所有唯一的 slot
slots_info = {} # slot -> {labware, res_id}
for labware_id, item in labware_info.items():
slot = str(item.get("slot", ""))
if slot and slot not in slots_info:
res_id = f"plate_slot_{slot}"
slots_info[slot] = {
"labware": item.get("labware", ""),
"res_id": res_id,
}
# 为每个唯一的 slot 创建 create_resource 节点
res_index = 0
last_create_resource_id = None
for slot, info in slots_info.items():
node_id = str(uuid.uuid4())
res_id = info["res_id"]
res_index += 1
G.add_node(
node_id,
template_name="create_resource",
resource_name="host_node",
name=f"Plate {res_index}",
description=f"Create plate on slot {slot}",
lab_node_type="Labware",
footer="create_resource-host_node",
param={
"res_id": res_id,
"device_id": CREATE_RESOURCE_DEFAULTS["device_id"],
"class_name": CREATE_RESOURCE_DEFAULTS["class_name"],
"parent": CREATE_RESOURCE_DEFAULTS["parent_template"].format(slot=slot),
"bind_locations": {"x": 0.0, "y": 0.0, "z": 0.0},
"slot_on_deck": slot,
},
)
slot_to_create_resource[slot] = node_id
# create_resource 之间通过 ready 串联
if last_create_resource_id is not None:
G.add_edge(last_create_resource_id, node_id, source_port="ready", target_port="ready")
last_create_resource_id = node_id
# ==================== 第二步:为每个 reagent 创建 set_liquid_from_plate 节点 ====================
set_liquid_index = 0
last_set_liquid_id = last_create_resource_id # set_liquid_from_plate 连接在 create_resource 之后
for labware_id, item in labware_info.items():
# 跳过 Tip/Rack 类型
if "Rack" in str(labware_id) or "Tip" in str(labware_id):
continue
if item.get("type") == "hardware":
continue
slot = str(item.get("slot", ""))
wells = item.get("well", [])
if not wells or not slot:
continue
# res_id 不能有空格
res_id = str(labware_id).replace(" ", "_")
well_count = len(wells)
node_id = str(uuid.uuid4())
set_liquid_index += 1
G.add_node(
node_id,
template_name="set_liquid_from_plate",
resource_name="liquid_handler.prcxi",
name=f"SetLiquid {set_liquid_index}",
description=f"Set liquid: {labware_id}",
lab_node_type="Reagent",
footer="set_liquid_from_plate-liquid_handler.prcxi",
param={
"plate": [], # 通过连接传递
"well_names": wells, # 孔位名数组,如 ["A1", "A3", "A5"]
"liquid_names": [res_id] * well_count,
"volumes": [DEFAULT_LIQUID_VOLUME] * well_count,
},
)
# ready 连接:上一个节点 -> set_liquid_from_plate
if last_set_liquid_id is not None:
G.add_edge(last_set_liquid_id, node_id, source_port="ready", target_port="ready")
last_set_liquid_id = node_id
# 物料流create_resource 的 labware -> set_liquid_from_plate 的 input_plate
create_res_node_id = slot_to_create_resource.get(slot)
if create_res_node_id:
G.add_edge(create_res_node_id, node_id, source_port="labware", target_port="input_plate")
# set_liquid_from_plate 的输出 output_wells 用于连接 transfer_liquid
resource_last_writer[labware_id] = f"{node_id}:output_wells"
last_control_node_id = last_set_liquid_id
# 端口名称映射JSON 字段名 -> 实际 handle key
INPUT_PORT_MAPPING = {
"sources": "sources_identifier",
"targets": "targets_identifier",
"vessel": "vessel",
"to_vessel": "to_vessel",
"from_vessel": "from_vessel",
"reagent": "reagent",
"solvent": "solvent",
"compound": "compound",
}
OUTPUT_PORT_MAPPING = {
"sources": "sources_out", # 输出端口是 xxx_out
"targets": "targets_out", # 输出端口是 xxx_out
"vessel": "vessel_out",
"to_vessel": "to_vessel_out",
"from_vessel": "from_vessel_out",
"filtrate_vessel": "filtrate_out",
"reagent": "reagent",
"solvent": "solvent",
"compound": "compound",
}
# 需要根据 wells 数量扩展的参数列表(复数形式)
EXPAND_BY_WELLS_PARAMS = ["asp_vols", "dis_vols", "asp_flow_rates", "dis_flow_rates"]
# 处理协议步骤
for step in protocol_steps:
node_id = str(uuid.uuid4())
params = step.get("param", {}).copy() # 复制一份,避免修改原数据
connected_params = set() # 记录被连接的参数
warnings = [] # 收集警告信息
# 参数重命名:单数 -> 复数
for old_name, new_name in PARAM_RENAME_MAPPING.items():
if old_name in params:
params[new_name] = params.pop(old_name)
# 处理输入连接
for param_key, target_port in INPUT_PORT_MAPPING.items():
resource_name = params.get(param_key)
if resource_name and resource_name in resource_last_writer:
source_node, source_port = resource_last_writer[resource_name].split(":")
G.add_edge(source_node, node_id, source_port=source_port, target_port=target_port)
connected_params.add(param_key)
elif resource_name and resource_name not in resource_last_writer:
# 资源名在 labware_info 中不存在
warnings.append(f"{param_key}={resource_name} 未找到")
# 获取 targets 对应的 wells 数量,用于扩展参数
targets_name = params.get("targets")
sources_name = params.get("sources")
targets_wells_count = 1
sources_wells_count = 1
if targets_name and targets_name in labware_info:
target_wells = labware_info[targets_name].get("well", [])
targets_wells_count = len(target_wells) if target_wells else 1
elif targets_name:
warnings.append(f"targets={targets_name} 未在 reagent 中定义")
if sources_name and sources_name in labware_info:
source_wells = labware_info[sources_name].get("well", [])
sources_wells_count = len(source_wells) if source_wells else 1
elif sources_name:
warnings.append(f"sources={sources_name} 未在 reagent 中定义")
# 检查 sources 和 targets 的 wells 数量是否匹配
if targets_wells_count != sources_wells_count and targets_name and sources_name:
warnings.append(f"wells 数量不匹配: sources={sources_wells_count}, targets={targets_wells_count}")
# 使用 targets 的 wells 数量来扩展参数
wells_count = targets_wells_count
# 扩展单值参数为数组(根据 targets 的 wells 数量)
for expand_param in EXPAND_BY_WELLS_PARAMS:
if expand_param in params:
value = params[expand_param]
# 如果是单个值,扩展为数组
if not isinstance(value, list):
params[expand_param] = [value] * wells_count
# 如果已经是数组但长度不对,记录警告
elif len(value) != wells_count:
warnings.append(f"{expand_param} 数量({len(value)})与 wells({wells_count})不匹配")
# 如果 sources/targets 已通过连接传递,将参数值改为空数组
for param_key in connected_params:
if param_key in params:
params[param_key] = []
# 更新 step 的 param 和 footer
step_copy = step.copy()
step_copy["param"] = params
# 如果有警告,修改 footer 添加警告标记(警告放前面)
if warnings:
original_footer = step.get("footer", "")
step_copy["footer"] = f"[WARN: {'; '.join(warnings)}] {original_footer}"
G.add_node(node_id, **step_copy)
# 控制流
if last_control_node_id is not None:
G.add_edge(last_control_node_id, node_id, source_port="ready", target_port="ready")
last_control_node_id = node_id
# 处理输出:更新 resource_last_writer
for param_key, output_port in OUTPUT_PORT_MAPPING.items():
resource_name = step.get("param", {}).get(param_key) # 使用原始参数值
if resource_name:
resource_last_writer[resource_name] = f"{node_id}:{output_port}"
return G
def draw_protocol_graph(protocol_graph: WorkflowGraph, output_path: str):
"""
(辅助功能) 使用 networkx 和 matplotlib 绘制协议工作流图,用于可视化。
"""
if not protocol_graph:
print("Cannot draw graph: Graph object is empty.")
return
G = nx.DiGraph()
for node_id, attrs in protocol_graph.nodes.items():
label = attrs.get("description", attrs.get("template_name", node_id[:8]))
G.add_node(node_id, label=label, **attrs)
for edge in protocol_graph.edges:
G.add_edge(edge["source"], edge["target"])
plt.figure(figsize=(20, 15))
try:
pos = nx.nx_agraph.graphviz_layout(G, prog="dot")
except Exception:
pos = nx.shell_layout(G) # Fallback layout
node_labels = {node: data["label"] for node, data in G.nodes(data=True)}
nx.draw(
G,
pos,
with_labels=False,
node_size=2500,
node_color="skyblue",
node_shape="o",
edge_color="gray",
width=1.5,
arrowsize=15,
)
nx.draw_networkx_labels(G, pos, labels=node_labels, font_size=8, font_weight="bold")
plt.title("Chemical Protocol Workflow Graph", size=15)
plt.savefig(output_path, dpi=300, bbox_inches="tight")
plt.close()
print(f" - Visualization saved to '{output_path}'")
COMPASS = {"n", "e", "s", "w", "ne", "nw", "se", "sw", "c"}
def _is_compass(port: str) -> bool:
return isinstance(port, str) and port.lower() in COMPASS
def draw_protocol_graph_with_ports(protocol_graph, output_path: str, rankdir: str = "LR"):
"""
使用 Graphviz 端口语法绘制协议工作流图。
- 若边上的 source_port/target_port 是 compassn/e/s/w/...),直接用 compass。
- 否则自动为节点创建 record 形状并定义命名端口 <portname>。
最终由 PyGraphviz 渲染并输出到 output_path后缀决定格式如 .png/.svg/.pdf
"""
if not protocol_graph:
print("Cannot draw graph: Graph object is empty.")
return
# 1) 先用 networkx 搭建有向图,保留端口属性
G = nx.DiGraph()
for node_id, attrs in protocol_graph.nodes.items():
label = attrs.get("description", attrs.get("template_name", node_id[:8]))
# 保留一个干净的“中心标签”,用于放在 record 的中间槽
G.add_node(node_id, _core_label=str(label), **{k: v for k, v in attrs.items() if k not in ("label",)})
edges_data = []
in_ports_by_node = {} # 收集命名输入端口
out_ports_by_node = {} # 收集命名输出端口
for edge in protocol_graph.edges:
u = edge["source"]
v = edge["target"]
sp = edge.get("source_handle_key") or edge.get("source_port")
tp = edge.get("target_handle_key") or edge.get("target_port")
# 记录到图里(保留原始端口信息)
G.add_edge(u, v, source_handle_key=sp, target_handle_key=tp)
edges_data.append((u, v, sp, tp))
# 如果不是 compass就按“命名端口”先归类等会儿给节点造 record
if sp and not _is_compass(sp):
out_ports_by_node.setdefault(u, set()).add(str(sp))
if tp and not _is_compass(tp):
in_ports_by_node.setdefault(v, set()).add(str(tp))
# 2) 转为 AGraph使用 Graphviz 渲染
A = to_agraph(G)
A.graph_attr.update(rankdir=rankdir, splines="true", concentrate="false", fontsize="10")
A.node_attr.update(
shape="box", style="rounded,filled", fillcolor="lightyellow", color="#999999", fontname="Helvetica"
)
A.edge_attr.update(arrowsize="0.8", color="#666666")
# 3) 为需要命名端口的节点设置 record 形状与 label
# 左列 = 输入端口;中间 = 核心标签;右列 = 输出端口
for n in A.nodes():
node = A.get_node(n)
core = G.nodes[n].get("_core_label", n)
in_ports = sorted(in_ports_by_node.get(n, []))
out_ports = sorted(out_ports_by_node.get(n, []))
# 如果该节点涉及命名端口,则用 record否则保留原 box
if in_ports or out_ports:
def port_fields(ports):
if not ports:
return " " # 必须留一个空槽占位
# 每个端口一个小格子,<p> name
return "|".join(f"<{re.sub(r'[^A-Za-z0-9_:.|-]', '_', p)}> {p}" for p in ports)
left = port_fields(in_ports)
right = port_fields(out_ports)
# 三栏:左(入) | 中(节点名) | 右(出)
record_label = f"{{ {left} | {core} | {right} }}"
node.attr.update(shape="record", label=record_label)
else:
# 没有命名端口:普通盒子,显示核心标签
node.attr.update(label=str(core))
# 4) 给边设置 headport / tailport
# - 若端口为 compass直接用 compasse.g., headport="e"
# - 若端口为命名端口:使用在 record 中定义的 <port> 名(同名即可)
for u, v, sp, tp in edges_data:
e = A.get_edge(u, v)
# Graphviz 属性tail 是源head 是目标
if sp:
if _is_compass(sp):
e.attr["tailport"] = sp.lower()
else:
# 与 record label 中 <port> 名一致;特殊字符已在 label 中做了清洗
e.attr["tailport"] = re.sub(r"[^A-Za-z0-9_:.|-]", "_", str(sp))
if tp:
if _is_compass(tp):
e.attr["headport"] = tp.lower()
else:
e.attr["headport"] = re.sub(r"[^A-Za-z0-9_:.|-]", "_", str(tp))
# 可选:若想让边更贴边缘,可设置 constraint/spline 等
# e.attr["arrowhead"] = "vee"
# 5) 输出
A.draw(output_path, prog="dot")
print(f" - Port-aware workflow rendered to '{output_path}'")
# ---------------- Registry Adapter ----------------
class RegistryAdapter:
"""根据 module 的类名(冒号右侧)反查 registry 的 resource_name原 device_class并抽取参数顺序"""
def __init__(self, device_registry: Dict[str, Any]):
self.device_registry = device_registry or {}
self.module_class_to_resource = self._build_module_class_index()
def _build_module_class_index(self) -> Dict[str, str]:
idx = {}
for resource_name, info in self.device_registry.items():
module = info.get("module")
if isinstance(module, str) and ":" in module:
cls = module.split(":")[-1]
idx[cls] = resource_name
idx[cls.lower()] = resource_name
return idx
def resolve_resource_by_classname(self, class_name: str) -> Optional[str]:
if not class_name:
return None
return self.module_class_to_resource.get(class_name) or self.module_class_to_resource.get(class_name.lower())
def get_device_module(self, resource_name: Optional[str]) -> Optional[str]:
if not resource_name:
return None
return self.device_registry.get(resource_name, {}).get("module")
def get_actions(self, resource_name: Optional[str]) -> Dict[str, Any]:
if not resource_name:
return {}
return (self.device_registry.get(resource_name, {}).get("class", {}).get("action_value_mappings", {})) or {}
def get_action_schema(self, resource_name: Optional[str], template_name: str) -> Optional[Json]:
return (self.get_actions(resource_name).get(template_name) or {}).get("schema")
def get_action_goal_default(self, resource_name: Optional[str], template_name: str) -> Json:
return (self.get_actions(resource_name).get(template_name) or {}).get("goal_default", {}) or {}
def get_action_input_keys(self, resource_name: Optional[str], template_name: str) -> List[str]:
schema = self.get_action_schema(resource_name, template_name) or {}
goal = (schema.get("properties") or {}).get("goal") or {}
props = goal.get("properties") or {}
required = goal.get("required") or []
return list(dict.fromkeys(required + list(props.keys())))

View File

@@ -0,0 +1,315 @@
"""
JSON 工作流转换模块
将 workflow/reagent 格式的 JSON 转换为统一工作流格式。
输入格式:
{
"workflow": [
{"action": "...", "action_args": {...}},
...
],
"reagent": {
"reagent_name": {"slot": int, "well": [...], "labware": "..."},
...
}
}
"""
import json
from os import PathLike
from pathlib import Path
from typing import Any, Dict, List, Optional, Tuple, Union
from unilabos.workflow.common import WorkflowGraph, build_protocol_graph
from unilabos.registry.registry import lab_registry
# ==================== 字段映射配置 ====================
# action 到 resource_name 的映射
ACTION_RESOURCE_MAPPING: Dict[str, str] = {
# 生物实验操作
"transfer_liquid": "liquid_handler.prcxi",
"transfer": "liquid_handler.prcxi",
"incubation": "incubator.prcxi",
"move_labware": "labware_mover.prcxi",
"oscillation": "shaker.prcxi",
# 有机化学操作
"HeatChillToTemp": "heatchill.chemputer",
"StopHeatChill": "heatchill.chemputer",
"StartHeatChill": "heatchill.chemputer",
"HeatChill": "heatchill.chemputer",
"Dissolve": "stirrer.chemputer",
"Transfer": "liquid_handler.chemputer",
"Evaporate": "rotavap.chemputer",
"Recrystallize": "reactor.chemputer",
"Filter": "filter.chemputer",
"Dry": "dryer.chemputer",
"Add": "liquid_handler.chemputer",
}
# action_args 字段到 parameters 字段的映射
# 格式: {"old_key": "new_key"}, 仅映射需要重命名的字段
ARGS_FIELD_MAPPING: Dict[str, str] = {
# 如果需要字段重命名,在这里配置
# "old_field_name": "new_field_name",
}
# 默认工作站名称
DEFAULT_WORKSTATION = "PRCXI"
# ==================== 核心转换函数 ====================
def get_action_handles(resource_name: str, template_name: str) -> Dict[str, List[str]]:
"""
从 registry 获取指定设备和动作的 handles 配置
Args:
resource_name: 设备资源名称,如 "liquid_handler.prcxi"
template_name: 动作模板名称,如 "transfer_liquid"
Returns:
包含 source 和 target handler_keys 的字典:
{"source": ["sources_out", "targets_out", ...], "target": ["sources", "targets", ...]}
"""
result = {"source": [], "target": []}
device_info = lab_registry.device_type_registry.get(resource_name, {})
if not device_info:
return result
action_mappings = device_info.get("class", {}).get("action_value_mappings", {})
action_config = action_mappings.get(template_name, {})
handles = action_config.get("handles", {})
if isinstance(handles, dict):
for handle in handles.get("input", []):
handler_key = handle.get("handler_key", "")
if handler_key:
result["source"].append(handler_key)
for handle in handles.get("output", []):
handler_key = handle.get("handler_key", "")
if handler_key:
result["target"].append(handler_key)
return result
def validate_workflow_handles(graph: WorkflowGraph) -> Tuple[bool, List[str]]:
"""
校验工作流图中所有边的句柄配置是否正确
Args:
graph: 工作流图对象
Returns:
(is_valid, errors): 是否有效,错误信息列表
"""
errors = []
nodes = graph.nodes
for edge in graph.edges:
left_uuid = edge.get("source")
right_uuid = edge.get("target")
right_source_conn_key = edge.get("target_handle_key", "")
left_target_conn_key = edge.get("source_handle_key", "")
left_node = nodes.get(left_uuid, {})
right_node = nodes.get(right_uuid, {})
left_res_name = left_node.get("resource_name", "")
left_template_name = left_node.get("template_name", "")
right_res_name = right_node.get("resource_name", "")
right_template_name = right_node.get("template_name", "")
left_node_handles = get_action_handles(left_res_name, left_template_name)
target_valid_keys = left_node_handles.get("target", [])
target_valid_keys.append("ready")
right_node_handles = get_action_handles(right_res_name, right_template_name)
source_valid_keys = right_node_handles.get("source", [])
source_valid_keys.append("ready")
# 验证目标节点right的输入端口
if not right_source_conn_key:
node_name = right_node.get("name", right_uuid[:8])
errors.append(f"目标节点 '{node_name}' 的输入端口 (target_handle_key) 为空,应设置为: {source_valid_keys}")
elif right_source_conn_key not in source_valid_keys:
node_name = right_node.get("name", right_uuid[:8])
errors.append(
f"目标节点 '{node_name}' 的输入端口 '{right_source_conn_key}' 不存在,支持的输入端口: {source_valid_keys}"
)
# 验证源节点left的输出端口
if not left_target_conn_key:
node_name = left_node.get("name", left_uuid[:8])
errors.append(f"源节点 '{node_name}' 的输出端口 (source_handle_key) 为空,应设置为: {target_valid_keys}")
elif left_target_conn_key not in target_valid_keys:
node_name = left_node.get("name", left_uuid[:8])
errors.append(
f"源节点 '{node_name}' 的输出端口 '{left_target_conn_key}' 不存在,支持的输出端口: {target_valid_keys}"
)
return len(errors) == 0, errors
def normalize_workflow_steps(workflow: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
"""
将 workflow 格式的步骤数据规范化
输入格式:
[{"action": "...", "action_args": {...}}, ...]
输出格式:
[{"action": "...", "parameters": {...}, "step_number": int}, ...]
Args:
workflow: workflow 数组
Returns:
规范化后的步骤列表
"""
normalized = []
for idx, step in enumerate(workflow):
action = step.get("action")
if not action:
continue
# 获取参数: action_args
raw_params = step.get("action_args", {})
params = {}
# 应用字段映射
for key, value in raw_params.items():
mapped_key = ARGS_FIELD_MAPPING.get(key, key)
params[mapped_key] = value
step_dict = {
"action": action,
"parameters": params,
"step_number": idx + 1,
}
# 保留描述字段
if "description" in step:
step_dict["description"] = step["description"]
normalized.append(step_dict)
return normalized
def convert_from_json(
data: Union[str, PathLike, Dict[str, Any]],
workstation_name: str = DEFAULT_WORKSTATION,
validate: bool = True,
) -> WorkflowGraph:
"""
从 JSON 数据或文件转换为 WorkflowGraph
JSON 格式:
{"workflow": [...], "reagent": {...}}
Args:
data: JSON 文件路径、字典数据、或 JSON 字符串
workstation_name: 工作站名称,默认 "PRCXi"
validate: 是否校验句柄配置,默认 True
Returns:
WorkflowGraph: 构建好的工作流图
Raises:
ValueError: 不支持的 JSON 格式
FileNotFoundError: 文件不存在
json.JSONDecodeError: JSON 解析失败
"""
# 处理输入数据
if isinstance(data, (str, PathLike)):
path = Path(data)
if path.exists():
with path.open("r", encoding="utf-8") as fp:
json_data = json.load(fp)
elif isinstance(data, str):
json_data = json.loads(data)
else:
raise FileNotFoundError(f"文件不存在: {data}")
elif isinstance(data, dict):
json_data = data
else:
raise TypeError(f"不支持的数据类型: {type(data)}")
# 校验格式
if "workflow" not in json_data or "reagent" not in json_data:
raise ValueError(
"不支持的 JSON 格式。请使用标准格式:\n"
'{"workflow": [{"action": "...", "action_args": {...}}, ...], '
'"reagent": {"name": {"slot": int, "well": [...], "labware": "..."}, ...}}'
)
# 提取数据
workflow = json_data["workflow"]
reagent = json_data["reagent"]
# 规范化步骤数据
protocol_steps = normalize_workflow_steps(workflow)
# reagent 已经是字典格式,直接使用
labware_info = reagent
# 构建工作流图
graph = build_protocol_graph(
labware_info=labware_info,
protocol_steps=protocol_steps,
workstation_name=workstation_name,
action_resource_mapping=ACTION_RESOURCE_MAPPING,
)
# 校验句柄配置
if validate:
is_valid, errors = validate_workflow_handles(graph)
if not is_valid:
import warnings
for error in errors:
warnings.warn(f"句柄校验警告: {error}")
return graph
def convert_json_to_node_link(
data: Union[str, PathLike, Dict[str, Any]],
workstation_name: str = DEFAULT_WORKSTATION,
) -> Dict[str, Any]:
"""
将 JSON 数据转换为 node-link 格式的字典
Args:
data: JSON 文件路径、字典数据、或 JSON 字符串
workstation_name: 工作站名称,默认 "PRCXi"
Returns:
Dict: node-link 格式的工作流数据
"""
graph = convert_from_json(data, workstation_name)
return graph.to_node_link_dict()
def convert_json_to_workflow_list(
data: Union[str, PathLike, Dict[str, Any]],
workstation_name: str = DEFAULT_WORKSTATION,
) -> List[Dict[str, Any]]:
"""
将 JSON 数据转换为工作流列表格式
Args:
data: JSON 文件路径、字典数据、或 JSON 字符串
workstation_name: 工作站名称,默认 "PRCXi"
Returns:
List: 工作流节点列表
"""
graph = convert_from_json(data, workstation_name)
return graph.to_dict()

View File

@@ -0,0 +1,356 @@
"""
JSON 工作流转换模块
提供从多种 JSON 格式转换为统一工作流格式的功能。
支持的格式:
1. workflow/reagent 格式
2. steps_info/labware_info 格式
"""
import json
from os import PathLike
from pathlib import Path
from typing import Any, Dict, List, Optional, Set, Tuple, Union
from unilabos.workflow.common import WorkflowGraph, build_protocol_graph
from unilabos.registry.registry import lab_registry
def get_action_handles(resource_name: str, template_name: str) -> Dict[str, List[str]]:
"""
从 registry 获取指定设备和动作的 handles 配置
Args:
resource_name: 设备资源名称,如 "liquid_handler.prcxi"
template_name: 动作模板名称,如 "transfer_liquid"
Returns:
包含 source 和 target handler_keys 的字典:
{"source": ["sources_out", "targets_out", ...], "target": ["sources", "targets", ...]}
"""
result = {"source": [], "target": []}
device_info = lab_registry.device_type_registry.get(resource_name, {})
if not device_info:
return result
action_mappings = device_info.get("class", {}).get("action_value_mappings", {})
action_config = action_mappings.get(template_name, {})
handles = action_config.get("handles", {})
if isinstance(handles, dict):
# 处理 input handles (作为 target)
for handle in handles.get("input", []):
handler_key = handle.get("handler_key", "")
if handler_key:
result["source"].append(handler_key)
# 处理 output handles (作为 source)
for handle in handles.get("output", []):
handler_key = handle.get("handler_key", "")
if handler_key:
result["target"].append(handler_key)
return result
def validate_workflow_handles(graph: WorkflowGraph) -> Tuple[bool, List[str]]:
"""
校验工作流图中所有边的句柄配置是否正确
Args:
graph: 工作流图对象
Returns:
(is_valid, errors): 是否有效,错误信息列表
"""
errors = []
nodes = graph.nodes
for edge in graph.edges:
left_uuid = edge.get("source")
right_uuid = edge.get("target")
# target_handle_key是target, right的输入节点入节点
# source_handle_key是source, left的输出节点出节点
right_source_conn_key = edge.get("target_handle_key", "")
left_target_conn_key = edge.get("source_handle_key", "")
# 获取源节点和目标节点信息
left_node = nodes.get(left_uuid, {})
right_node = nodes.get(right_uuid, {})
left_res_name = left_node.get("resource_name", "")
left_template_name = left_node.get("template_name", "")
right_res_name = right_node.get("resource_name", "")
right_template_name = right_node.get("template_name", "")
# 获取源节点的 output handles
left_node_handles = get_action_handles(left_res_name, left_template_name)
target_valid_keys = left_node_handles.get("target", [])
target_valid_keys.append("ready")
# 获取目标节点的 input handles
right_node_handles = get_action_handles(right_res_name, right_template_name)
source_valid_keys = right_node_handles.get("source", [])
source_valid_keys.append("ready")
# 如果节点配置了 output handles则 source_port 必须有效
if not right_source_conn_key:
node_name = left_node.get("name", left_uuid[:8])
errors.append(f"源节点 '{node_name}' 的 source_handle_key 为空," f"应设置为: {source_valid_keys}")
elif right_source_conn_key not in source_valid_keys:
node_name = left_node.get("name", left_uuid[:8])
errors.append(
f"源节点 '{node_name}' 的 source 端点 '{right_source_conn_key}' 不存在," f"支持的端点: {source_valid_keys}"
)
# 如果节点配置了 input handles则 target_port 必须有效
if not left_target_conn_key:
node_name = right_node.get("name", right_uuid[:8])
errors.append(f"目标节点 '{node_name}' 的 target_handle_key 为空," f"应设置为: {target_valid_keys}")
elif left_target_conn_key not in target_valid_keys:
node_name = right_node.get("name", right_uuid[:8])
errors.append(
f"目标节点 '{node_name}' 的 target 端点 '{left_target_conn_key}' 不存在,"
f"支持的端点: {target_valid_keys}"
)
return len(errors) == 0, errors
# action 到 resource_name 的映射
ACTION_RESOURCE_MAPPING: Dict[str, str] = {
# 生物实验操作
"transfer_liquid": "liquid_handler.prcxi",
"transfer": "liquid_handler.prcxi",
"incubation": "incubator.prcxi",
"move_labware": "labware_mover.prcxi",
"oscillation": "shaker.prcxi",
# 有机化学操作
"HeatChillToTemp": "heatchill.chemputer",
"StopHeatChill": "heatchill.chemputer",
"StartHeatChill": "heatchill.chemputer",
"HeatChill": "heatchill.chemputer",
"Dissolve": "stirrer.chemputer",
"Transfer": "liquid_handler.chemputer",
"Evaporate": "rotavap.chemputer",
"Recrystallize": "reactor.chemputer",
"Filter": "filter.chemputer",
"Dry": "dryer.chemputer",
"Add": "liquid_handler.chemputer",
}
def normalize_steps(data: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
"""
将不同格式的步骤数据规范化为统一格式
支持的输入格式:
- action + parameters
- action + action_args
- operation + parameters
Args:
data: 原始步骤数据列表
Returns:
规范化后的步骤列表,格式为 [{"action": str, "parameters": dict, "description": str?, "step_number": int?}, ...]
"""
normalized = []
for idx, step in enumerate(data):
# 获取动作名称(支持 action 或 operation 字段)
action = step.get("action") or step.get("operation")
if not action:
continue
# 获取参数(支持 parameters 或 action_args 字段)
raw_params = step.get("parameters") or step.get("action_args") or {}
params = dict(raw_params)
# 规范化 source/target -> sources/targets
if "source" in raw_params and "sources" not in raw_params:
params["sources"] = raw_params["source"]
if "target" in raw_params and "targets" not in raw_params:
params["targets"] = raw_params["target"]
# 获取描述(支持 description 或 purpose 字段)
description = step.get("description") or step.get("purpose")
# 获取步骤编号(优先使用原始数据中的 step_number否则使用索引+1
step_number = step.get("step_number", idx + 1)
step_dict = {"action": action, "parameters": params, "step_number": step_number}
if description:
step_dict["description"] = description
normalized.append(step_dict)
return normalized
def normalize_labware(data: List[Dict[str, Any]]) -> Dict[str, Dict[str, Any]]:
"""
将不同格式的 labware 数据规范化为统一的字典格式
支持的输入格式:
- reagent_name + material_name + positions
- name + labware + slot
Args:
data: 原始 labware 数据列表
Returns:
规范化后的 labware 字典,格式为 {name: {"slot": int, "labware": str, "well": list, "type": str, "role": str, "name": str}, ...}
"""
labware = {}
for item in data:
# 获取 key 名称(优先使用 reagent_name其次是 material_name 或 name
reagent_name = item.get("reagent_name")
key = reagent_name or item.get("material_name") or item.get("name")
if not key:
continue
key = str(key)
# 处理重复 key自动添加后缀
idx = 1
original_key = key
while key in labware:
idx += 1
key = f"{original_key}_{idx}"
labware[key] = {
"slot": item.get("positions") or item.get("slot"),
"labware": item.get("material_name") or item.get("labware"),
"well": item.get("well", []),
"type": item.get("type", "reagent"),
"role": item.get("role", ""),
"name": key,
}
return labware
def convert_from_json(
data: Union[str, PathLike, Dict[str, Any]],
workstation_name: str = "PRCXi",
validate: bool = True,
) -> WorkflowGraph:
"""
从 JSON 数据或文件转换为 WorkflowGraph
支持的 JSON 格式:
1. {"workflow": [...], "reagent": {...}} - 直接格式
2. {"steps_info": [...], "labware_info": [...]} - 需要规范化的格式
Args:
data: JSON 文件路径、字典数据、或 JSON 字符串
workstation_name: 工作站名称,默认 "PRCXi"
validate: 是否校验句柄配置,默认 True
Returns:
WorkflowGraph: 构建好的工作流图
Raises:
ValueError: 不支持的 JSON 格式 或 句柄校验失败
FileNotFoundError: 文件不存在
json.JSONDecodeError: JSON 解析失败
"""
# 处理输入数据
if isinstance(data, (str, PathLike)):
path = Path(data)
if path.exists():
with path.open("r", encoding="utf-8") as fp:
json_data = json.load(fp)
elif isinstance(data, str):
# 尝试作为 JSON 字符串解析
json_data = json.loads(data)
else:
raise FileNotFoundError(f"文件不存在: {data}")
elif isinstance(data, dict):
json_data = data
else:
raise TypeError(f"不支持的数据类型: {type(data)}")
# 根据格式解析数据
if "workflow" in json_data and "reagent" in json_data:
# 格式1: workflow/reagent已经是规范格式
protocol_steps = json_data["workflow"]
labware_info = json_data["reagent"]
elif "steps_info" in json_data and "labware_info" in json_data:
# 格式2: steps_info/labware_info需要规范化
protocol_steps = normalize_steps(json_data["steps_info"])
labware_info = normalize_labware(json_data["labware_info"])
elif "steps" in json_data and "labware" in json_data:
# 格式3: steps/labware另一种常见格式
protocol_steps = normalize_steps(json_data["steps"])
if isinstance(json_data["labware"], list):
labware_info = normalize_labware(json_data["labware"])
else:
labware_info = json_data["labware"]
else:
raise ValueError(
"不支持的 JSON 格式。支持的格式:\n"
"1. {'workflow': [...], 'reagent': {...}}\n"
"2. {'steps_info': [...], 'labware_info': [...]}\n"
"3. {'steps': [...], 'labware': [...]}"
)
# 构建工作流图
graph = build_protocol_graph(
labware_info=labware_info,
protocol_steps=protocol_steps,
workstation_name=workstation_name,
action_resource_mapping=ACTION_RESOURCE_MAPPING,
)
# 校验句柄配置
if validate:
is_valid, errors = validate_workflow_handles(graph)
if not is_valid:
import warnings
for error in errors:
warnings.warn(f"句柄校验警告: {error}")
return graph
def convert_json_to_node_link(
data: Union[str, PathLike, Dict[str, Any]],
workstation_name: str = "PRCXi",
) -> Dict[str, Any]:
"""
将 JSON 数据转换为 node-link 格式的字典
Args:
data: JSON 文件路径、字典数据、或 JSON 字符串
workstation_name: 工作站名称,默认 "PRCXi"
Returns:
Dict: node-link 格式的工作流数据
"""
graph = convert_from_json(data, workstation_name)
return graph.to_node_link_dict()
def convert_json_to_workflow_list(
data: Union[str, PathLike, Dict[str, Any]],
workstation_name: str = "PRCXi",
) -> List[Dict[str, Any]]:
"""
将 JSON 数据转换为工作流列表格式
Args:
data: JSON 文件路径、字典数据、或 JSON 字符串
workstation_name: 工作站名称,默认 "PRCXi"
Returns:
List: 工作流节点列表
"""
graph = convert_from_json(data, workstation_name)
return graph.to_dict()
# 为了向后兼容,保留下划线前缀的别名
_normalize_steps = normalize_steps
_normalize_labware = normalize_labware