add unilabos/workflow and entrypoint

This commit is contained in:
Junhan Chang
2025-12-07 15:23:51 +08:00
parent 11b2c99836
commit 71c9a777ba
7 changed files with 915 additions and 494 deletions

View File

@@ -2,7 +2,6 @@ import json
import logging
import traceback
import uuid
import xml.etree.ElementTree as ET
from typing import Any, Dict, List
import networkx as nx
@@ -25,7 +24,15 @@ class SimpleGraph:
def add_edge(self, source, target, **attrs):
"""添加边"""
edge = {"source": source, "target": target, **attrs}
# edge = {"source": source, "target": target, **attrs}
edge = {
"source": source, "target": target,
"source_node_uuid": source,
"target_node_uuid": target,
"source_handle_io": "source",
"target_handle_io": "target",
**attrs
}
self.edges.append(edge)
def to_dict(self):
@@ -42,6 +49,7 @@ class SimpleGraph:
"multigraph": False,
"graph": {},
"nodes": nodes_list,
"edges": self.edges,
"links": self.edges,
}
@@ -58,495 +66,8 @@ def extract_json_from_markdown(text: str) -> str:
return text
def convert_to_type(val: str) -> Any:
"""将字符串值转换为适当的数据类型"""
if val == "True":
return True
if val == "False":
return False
if val == "?":
return None
if val.endswith(" g"):
return float(val.split(" ")[0])
if val.endswith("mg"):
return float(val.split("mg")[0])
elif val.endswith("mmol"):
return float(val.split("mmol")[0]) / 1000
elif val.endswith("mol"):
return float(val.split("mol")[0])
elif val.endswith("ml"):
return float(val.split("ml")[0])
elif val.endswith("RPM"):
return float(val.split("RPM")[0])
elif val.endswith(" °C"):
return float(val.split(" ")[0])
elif val.endswith(" %"):
return float(val.split(" ")[0])
return val
def refactor_data(data: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
"""统一的数据重构函数,根据操作类型自动选择模板"""
refactored_data = []
# 定义操作映射,包含生物实验和有机化学的所有操作
OPERATION_MAPPING = {
# 生物实验操作
"transfer_liquid": "SynBioFactory-liquid_handler.prcxi-transfer_liquid",
"transfer": "SynBioFactory-liquid_handler.biomek-transfer",
"incubation": "SynBioFactory-liquid_handler.biomek-incubation",
"move_labware": "SynBioFactory-liquid_handler.biomek-move_labware",
"oscillation": "SynBioFactory-liquid_handler.biomek-oscillation",
# 有机化学操作
"HeatChillToTemp": "SynBioFactory-workstation-HeatChillProtocol",
"StopHeatChill": "SynBioFactory-workstation-HeatChillStopProtocol",
"StartHeatChill": "SynBioFactory-workstation-HeatChillStartProtocol",
"HeatChill": "SynBioFactory-workstation-HeatChillProtocol",
"Dissolve": "SynBioFactory-workstation-DissolveProtocol",
"Transfer": "SynBioFactory-workstation-TransferProtocol",
"Evaporate": "SynBioFactory-workstation-EvaporateProtocol",
"Recrystallize": "SynBioFactory-workstation-RecrystallizeProtocol",
"Filter": "SynBioFactory-workstation-FilterProtocol",
"Dry": "SynBioFactory-workstation-DryProtocol",
"Add": "SynBioFactory-workstation-AddProtocol",
}
UNSUPPORTED_OPERATIONS = ["Purge", "Wait", "Stir", "ResetHandling"]
for step in data:
operation = step.get("action")
if not operation or operation in UNSUPPORTED_OPERATIONS:
continue
# 处理重复操作
if operation == "Repeat":
times = step.get("times", step.get("parameters", {}).get("times", 1))
sub_steps = step.get("steps", step.get("parameters", {}).get("steps", []))
for i in range(int(times)):
sub_data = refactor_data(sub_steps)
refactored_data.extend(sub_data)
continue
# 获取模板名称
template = OPERATION_MAPPING.get(operation)
if not template:
# 自动推断模板类型
if operation.lower() in ["transfer", "incubation", "move_labware", "oscillation"]:
template = f"SynBioFactory-liquid_handler.biomek-{operation}"
else:
template = f"SynBioFactory-workstation-{operation}Protocol"
# 创建步骤数据
step_data = {
"template": template,
"description": step.get("description", step.get("purpose", f"{operation} operation")),
"lab_node_type": "Device",
"parameters": step.get("parameters", step.get("action_args", {})),
}
refactored_data.append(step_data)
return refactored_data
def build_protocol_graph(
labware_info: List[Dict[str, Any]], protocol_steps: List[Dict[str, Any]], workstation_name: str
) -> SimpleGraph:
"""统一的协议图构建函数,根据设备类型自动选择构建逻辑"""
G = SimpleGraph()
resource_last_writer = {}
LAB_NAME = "SynBioFactory"
protocol_steps = refactor_data(protocol_steps)
# 检查协议步骤中的模板来判断协议类型
has_biomek_template = any(
("biomek" in step.get("template", "")) or ("prcxi" in step.get("template", ""))
for step in protocol_steps
)
if has_biomek_template:
# 生物实验协议图构建
for labware_id, labware in labware_info.items():
node_id = str(uuid.uuid4())
labware_attrs = labware.copy()
labware_id = labware_attrs.pop("id", labware_attrs.get("name", f"labware_{uuid.uuid4()}"))
labware_attrs["description"] = labware_id
labware_attrs["lab_node_type"] = (
"Reagent" if "Plate" in str(labware_id) else "Labware" if "Rack" in str(labware_id) else "Sample"
)
labware_attrs["device_id"] = workstation_name
G.add_node(node_id, template=f"{LAB_NAME}-host_node-create_resource", **labware_attrs)
resource_last_writer[labware_id] = f"{node_id}:labware"
# 处理协议步骤
prev_node = None
for i, step in enumerate(protocol_steps):
node_id = str(uuid.uuid4())
G.add_node(node_id, **step)
# 添加控制流边
if prev_node is not None:
G.add_edge(prev_node, node_id, source_port="ready", target_port="ready")
prev_node = node_id
# 处理物料流
params = step.get("parameters", {})
if "sources" in params and params["sources"] in resource_last_writer:
source_node, source_port = resource_last_writer[params["sources"]].split(":")
G.add_edge(source_node, node_id, source_port=source_port, target_port="labware")
if "targets" in params:
resource_last_writer[params["targets"]] = f"{node_id}:labware"
# 添加协议结束节点
end_id = str(uuid.uuid4())
G.add_node(end_id, template=f"{LAB_NAME}-liquid_handler.biomek-run_protocol")
if prev_node is not None:
G.add_edge(prev_node, end_id, source_port="ready", target_port="ready")
else:
# 有机化学协议图构建
WORKSTATION_ID = workstation_name
# 为所有labware创建资源节点
for item_id, item in labware_info.items():
# item_id = item.get("id") or item.get("name", f"item_{uuid.uuid4()}")
node_id = str(uuid.uuid4())
# 判断节点类型
if item.get("type") == "hardware" or "reactor" in str(item_id).lower():
if "reactor" not in str(item_id).lower():
continue
lab_node_type = "Sample"
description = f"Prepare Reactor: {item_id}"
liquid_type = []
liquid_volume = []
else:
lab_node_type = "Reagent"
description = f"Add Reagent to Flask: {item_id}"
liquid_type = [item_id]
liquid_volume = [1e5]
G.add_node(
node_id,
template=f"{LAB_NAME}-host_node-create_resource",
description=description,
lab_node_type=lab_node_type,
res_id=item_id,
device_id=WORKSTATION_ID,
class_name="container",
parent=WORKSTATION_ID,
bind_locations={"x": 0.0, "y": 0.0, "z": 0.0},
liquid_input_slot=[-1],
liquid_type=liquid_type,
liquid_volume=liquid_volume,
slot_on_deck="",
role=item.get("role", ""),
)
resource_last_writer[item_id] = f"{node_id}:labware"
last_control_node_id = None
# 处理协议步骤
for step in protocol_steps:
node_id = str(uuid.uuid4())
G.add_node(node_id, **step)
# 控制流
if last_control_node_id is not None:
G.add_edge(last_control_node_id, node_id, source_port="ready", target_port="ready")
last_control_node_id = node_id
# 物料流
params = step.get("parameters", {})
input_resources = {
"Vessel": params.get("vessel"),
"ToVessel": params.get("to_vessel"),
"FromVessel": params.get("from_vessel"),
"reagent": params.get("reagent"),
"solvent": params.get("solvent"),
"compound": params.get("compound"),
"sources": params.get("sources"),
"targets": params.get("targets"),
}
for target_port, resource_name in input_resources.items():
if resource_name and resource_name in resource_last_writer:
source_node, source_port = resource_last_writer[resource_name].split(":")
G.add_edge(source_node, node_id, source_port=source_port, target_port=target_port)
output_resources = {
"VesselOut": params.get("vessel"),
"FromVesselOut": params.get("from_vessel"),
"ToVesselOut": params.get("to_vessel"),
"FiltrateOut": params.get("filtrate_vessel"),
"reagent": params.get("reagent"),
"solvent": params.get("solvent"),
"compound": params.get("compound"),
"sources_out": params.get("sources"),
"targets_out": params.get("targets"),
}
for source_port, resource_name in output_resources.items():
if resource_name:
resource_last_writer[resource_name] = f"{node_id}:{source_port}"
return G
def draw_protocol_graph(protocol_graph: SimpleGraph, output_path: str):
"""
(辅助功能) 使用 networkx 和 matplotlib 绘制协议工作流图,用于可视化。
"""
if not protocol_graph:
print("Cannot draw graph: Graph object is empty.")
return
G = nx.DiGraph()
for node_id, attrs in protocol_graph.nodes.items():
label = attrs.get("description", attrs.get("template", node_id[:8]))
G.add_node(node_id, label=label, **attrs)
for edge in protocol_graph.edges:
G.add_edge(edge["source"], edge["target"])
plt.figure(figsize=(20, 15))
try:
pos = nx.nx_agraph.graphviz_layout(G, prog="dot")
except Exception:
pos = nx.shell_layout(G) # Fallback layout
node_labels = {node: data["label"] for node, data in G.nodes(data=True)}
nx.draw(
G,
pos,
with_labels=False,
node_size=2500,
node_color="skyblue",
node_shape="o",
edge_color="gray",
width=1.5,
arrowsize=15,
)
nx.draw_networkx_labels(G, pos, labels=node_labels, font_size=8, font_weight="bold")
plt.title("Chemical Protocol Workflow Graph", size=15)
plt.savefig(output_path, dpi=300, bbox_inches="tight")
plt.close()
print(f" - Visualization saved to '{output_path}'")
from networkx.drawing.nx_agraph import to_agraph
import re
COMPASS = {"n","e","s","w","ne","nw","se","sw","c"}
def _is_compass(port: str) -> bool:
return isinstance(port, str) and port.lower() in COMPASS
def draw_protocol_graph_with_ports(protocol_graph, output_path: str, rankdir: str = "LR"):
"""
使用 Graphviz 端口语法绘制协议工作流图。
- 若边上的 source_port/target_port 是 compassn/e/s/w/...),直接用 compass。
- 否则自动为节点创建 record 形状并定义命名端口 <portname>。
最终由 PyGraphviz 渲染并输出到 output_path后缀决定格式如 .png/.svg/.pdf
"""
if not protocol_graph:
print("Cannot draw graph: Graph object is empty.")
return
# 1) 先用 networkx 搭建有向图,保留端口属性
G = nx.DiGraph()
for node_id, attrs in protocol_graph.nodes.items():
label = attrs.get("description", attrs.get("template", node_id[:8]))
# 保留一个干净的“中心标签”,用于放在 record 的中间槽
G.add_node(node_id, _core_label=str(label), **{k:v for k,v in attrs.items() if k not in ("label",)})
edges_data = []
in_ports_by_node = {} # 收集命名输入端口
out_ports_by_node = {} # 收集命名输出端口
for edge in protocol_graph.edges:
u = edge["source"]
v = edge["target"]
sp = edge.get("source_port")
tp = edge.get("target_port")
# 记录到图里(保留原始端口信息)
G.add_edge(u, v, source_port=sp, target_port=tp)
edges_data.append((u, v, sp, tp))
# 如果不是 compass就按“命名端口”先归类等会儿给节点造 record
if sp and not _is_compass(sp):
out_ports_by_node.setdefault(u, set()).add(str(sp))
if tp and not _is_compass(tp):
in_ports_by_node.setdefault(v, set()).add(str(tp))
# 2) 转为 AGraph使用 Graphviz 渲染
A = to_agraph(G)
A.graph_attr.update(rankdir=rankdir, splines="true", concentrate="false", fontsize="10")
A.node_attr.update(shape="box", style="rounded,filled", fillcolor="lightyellow", color="#999999", fontname="Helvetica")
A.edge_attr.update(arrowsize="0.8", color="#666666")
# 3) 为需要命名端口的节点设置 record 形状与 label
# 左列 = 输入端口;中间 = 核心标签;右列 = 输出端口
for n in A.nodes():
node = A.get_node(n)
core = G.nodes[n].get("_core_label", n)
in_ports = sorted(in_ports_by_node.get(n, []))
out_ports = sorted(out_ports_by_node.get(n, []))
# 如果该节点涉及命名端口,则用 record否则保留原 box
if in_ports or out_ports:
def port_fields(ports):
if not ports:
return " " # 必须留一个空槽占位
# 每个端口一个小格子,<p> name
return "|".join(f"<{re.sub(r'[^A-Za-z0-9_:.|-]', '_', p)}> {p}" for p in ports)
left = port_fields(in_ports)
right = port_fields(out_ports)
# 三栏:左(入) | 中(节点名) | 右(出)
record_label = f"{{ {left} | {core} | {right} }}"
node.attr.update(shape="record", label=record_label)
else:
# 没有命名端口:普通盒子,显示核心标签
node.attr.update(label=str(core))
# 4) 给边设置 headport / tailport
# - 若端口为 compass直接用 compasse.g., headport="e"
# - 若端口为命名端口:使用在 record 中定义的 <port> 名(同名即可)
for (u, v, sp, tp) in edges_data:
e = A.get_edge(u, v)
# Graphviz 属性tail 是源head 是目标
if sp:
if _is_compass(sp):
e.attr["tailport"] = sp.lower()
else:
# 与 record label 中 <port> 名一致;特殊字符已在 label 中做了清洗
e.attr["tailport"] = re.sub(r'[^A-Za-z0-9_:.|-]', '_', str(sp))
if tp:
if _is_compass(tp):
e.attr["headport"] = tp.lower()
else:
e.attr["headport"] = re.sub(r'[^A-Za-z0-9_:.|-]', '_', str(tp))
# 可选:若想让边更贴边缘,可设置 constraint/spline 等
# e.attr["arrowhead"] = "vee"
# 5) 输出
A.draw(output_path, prog="dot")
print(f" - Port-aware workflow rendered to '{output_path}'")
def flatten_xdl_procedure(procedure_elem: ET.Element) -> List[ET.Element]:
"""展平嵌套的XDL程序结构"""
flattened_operations = []
TEMP_UNSUPPORTED_PROTOCOL = ["Purge", "Wait", "Stir", "ResetHandling"]
def extract_operations(element: ET.Element):
if element.tag not in ["Prep", "Reaction", "Workup", "Purification", "Procedure"]:
if element.tag not in TEMP_UNSUPPORTED_PROTOCOL:
flattened_operations.append(element)
for child in element:
extract_operations(child)
for child in procedure_elem:
extract_operations(child)
return flattened_operations
def parse_xdl_content(xdl_content: str) -> tuple:
"""解析XDL内容"""
try:
xdl_content_cleaned = "".join(c for c in xdl_content if c.isprintable())
root = ET.fromstring(xdl_content_cleaned)
synthesis_elem = root.find("Synthesis")
if synthesis_elem is None:
return None, None, None
# 解析硬件组件
hardware_elem = synthesis_elem.find("Hardware")
hardware = []
if hardware_elem is not None:
hardware = [{"id": c.get("id"), "type": c.get("type")} for c in hardware_elem.findall("Component")]
# 解析试剂
reagents_elem = synthesis_elem.find("Reagents")
reagents = []
if reagents_elem is not None:
reagents = [{"name": r.get("name"), "role": r.get("role", "")} for r in reagents_elem.findall("Reagent")]
# 解析程序
procedure_elem = synthesis_elem.find("Procedure")
if procedure_elem is None:
return None, None, None
flattened_operations = flatten_xdl_procedure(procedure_elem)
return hardware, reagents, flattened_operations
except ET.ParseError as e:
raise ValueError(f"Invalid XDL format: {e}")
def convert_xdl_to_dict(xdl_content: str) -> Dict[str, Any]:
"""
将XDL XML格式转换为标准的字典格式
Args:
xdl_content: XDL XML内容
Returns:
转换结果,包含步骤和器材信息
"""
try:
hardware, reagents, flattened_operations = parse_xdl_content(xdl_content)
if hardware is None:
return {"error": "Failed to parse XDL content", "success": False}
# 将XDL元素转换为字典格式
steps_data = []
for elem in flattened_operations:
# 转换参数类型
parameters = {}
for key, val in elem.attrib.items():
converted_val = convert_to_type(val)
if converted_val is not None:
parameters[key] = converted_val
step_dict = {
"operation": elem.tag,
"parameters": parameters,
"description": elem.get("purpose", f"Operation: {elem.tag}"),
}
steps_data.append(step_dict)
# 合并硬件和试剂为统一的labware_info格式
labware_data = []
labware_data.extend({"id": hw["id"], "type": "hardware", **hw} for hw in hardware)
labware_data.extend({"name": reagent["name"], "type": "reagent", **reagent} for reagent in reagents)
return {
"success": True,
"steps": steps_data,
"labware": labware_data,
"message": f"Successfully converted XDL to dict format. Found {len(steps_data)} steps and {len(labware_data)} labware items.",
}
except Exception as e:
error_msg = f"XDL conversion failed: {str(e)}"
logger.error(error_msg)
return {"error": error_msg, "success": False}
def create_workflow(

View File

@@ -49,6 +49,8 @@ def convert_argv_dashes_to_underscores(args: argparse.ArgumentParser):
def parse_args():
"""解析命令行参数"""
parser = argparse.ArgumentParser(description="Start Uni-Lab Edge server.")
subparsers = parser.add_subparsers(title="Valid subcommands", dest="command")
parser.add_argument("-g", "--graph", help="Physical setup graph file path.")
parser.add_argument("-c", "--controllers", default=None, help="Controllers config file path.")
parser.add_argument(
@@ -153,6 +155,14 @@ def parse_args():
default=False,
help="Complete registry information",
)
# label
workflow_parser = subparsers.add_parser(
"workflow_upload",
help="Upload workflow from xdl/json/python files",
)
workflow_parser.add_argument("-t", "--labeltype", default="singlepoint", type=str,
help="QM calculation type, support 'singlepoint', 'optimize' and 'dimer' currently")
return parser
@@ -163,6 +173,9 @@ def main():
convert_argv_dashes_to_underscores(args)
args_dict = vars(args.parse_args())
# 显示启动横幅
print_unilab_banner(args_dict)
# 环境检查 - 检查并自动安装必需的包 (可选)
if not args_dict.get("skip_env_check", False):
from unilabos.utils.environment_check import check_environment
@@ -239,7 +252,18 @@ def main():
if args_dict.get("sk", ""):
BasicConfig.sk = args_dict.get("sk", "")
print_status("传入了sk参数优先采用传入参数", "info")
BasicConfig.working_dir = working_dir
# 显示启动横幅
print_unilab_banner(args_dict)
#####################################
######## 启动设备接入端(主入口) ########
#####################################
launch(args_dict)
def launch(args_dict: Dict[str, Any]):
# 使用远程资源启动
if args_dict["use_remote_resource"]:
print_status("使用远程资源启动", "info")
@@ -254,7 +278,6 @@ def main():
BasicConfig.port = args_dict["port"] if args_dict["port"] else BasicConfig.port
BasicConfig.disable_browser = args_dict["disable_browser"] or BasicConfig.disable_browser
BasicConfig.working_dir = working_dir
BasicConfig.is_host_mode = not args_dict.get("is_slave", False)
BasicConfig.slave_no_host = args_dict.get("slave_no_host", False)
BasicConfig.upload_registry = args_dict.get("upload_registry", False)
@@ -278,9 +301,6 @@ def main():
from unilabos.resources.graphio import modify_to_backend_format
from unilabos.ros.nodes.resource_tracker import ResourceTreeSet, ResourceDict
# 显示启动横幅
print_unilab_banner(args_dict)
# 注册表
lab_registry = build_registry(
args_dict["registry_path"], args_dict.get("complete_registry", False), args_dict["upload_registry"]

View File

@@ -9,7 +9,7 @@ if str(ROOT_DIR) not in sys.path:
import pytest
from scripts.workflow import build_protocol_graph, draw_protocol_graph, draw_protocol_graph_with_ports
from unilabos.workflow.common import build_protocol_graph, draw_protocol_graph, draw_protocol_graph_with_ports
ROOT_DIR = Path(__file__).resolve().parents[2]

484
unilabos/workflow/common.py Normal file
View File

@@ -0,0 +1,484 @@
import re
import uuid
import networkx as nx
from networkx.drawing.nx_agraph import to_agraph
import matplotlib.pyplot as plt
from typing import Dict, List, Any, Tuple, Optional
Json = Dict[str, Any]
# ---------------- Graph ----------------
class WorkflowGraph:
"""简单的有向图实现:使用 params 单层参数inputs 内含连线;支持 node-link 导出"""
def __init__(self):
self.nodes: Dict[str, Dict[str, Any]] = {}
self.edges: List[Dict[str, Any]] = []
def add_node(self, node_id: str, **attrs):
self.nodes[node_id] = attrs
def add_edge(self, source: str, target: str, **attrs):
edge = {
"source": source,
"target": target,
"source_node_uuid": source,
"target_node_uuid": target,
"source_handle_io": attrs.pop("source_handle_io", "source"),
"target_handle_io": attrs.pop("target_handle_io", "target"),
**attrs
}
self.edges.append(edge)
def _materialize_wiring_into_inputs(self, obj: Any, inputs: Dict[str, Any],
variable_sources: Dict[str, Dict[str, Any]],
target_node_id: str, base_path: List[str]):
has_var = False
def walk(node: Any, path: List[str]):
nonlocal has_var
if isinstance(node, dict):
if "__var__" in node:
has_var = True
varname = node["__var__"]
placeholder = f"${{{varname}}}"
src = variable_sources.get(varname)
if src:
key = ".".join(path) # e.g. "params.foo.bar.0"
inputs[key] = {"node": src["node_id"], "output": src.get("output_name", "result")}
self.add_edge(str(src["node_id"]), target_node_id,
source_handle_io=src.get("output_name", "result"),
target_handle_io=key)
return placeholder
return {k: walk(v, path + [k]) for k, v in node.items()}
if isinstance(node, list):
return [walk(v, path + [str(i)]) for i, v in enumerate(node)]
return node
replaced = walk(obj, base_path[:])
return replaced, has_var
def add_workflow_node(self,
node_id: int,
*,
device_key: Optional[str] = None, # 实例名,如 "ser"
resource_name: Optional[str] = None, # registry key原 device_class
module: Optional[str] = None,
template_name: Optional[str] = None, # 动作/模板名(原 action_key
params: Dict[str, Any],
variable_sources: Dict[str, Dict[str, Any]],
add_ready_if_no_vars: bool = True,
prev_node_id: Optional[int] = None,
**extra_attrs) -> None:
"""添加工作流节点params 单层;自动变量连线与 ready 串联;支持附加属性"""
node_id_str = str(node_id)
inputs: Dict[str, Any] = {}
params, has_var = self._materialize_wiring_into_inputs(
params, inputs, variable_sources, node_id_str, base_path=["params"]
)
if add_ready_if_no_vars and not has_var:
last_id = str(prev_node_id) if prev_node_id is not None else "-1"
inputs["ready"] = {"node": int(last_id), "output": "ready"}
self.add_edge(last_id, node_id_str, source_handle_io="ready", target_handle_io="ready")
node_obj = {
"device_key": device_key,
"resource_name": resource_name, # ✅ 新名字
"module": module,
"template_name": template_name, # ✅ 新名字
"params": params,
"inputs": inputs,
}
node_obj.update(extra_attrs or {})
self.add_node(node_id_str, parameters=node_obj)
# 顺序工作流导出(连线在 inputs不返回 edges
def to_dict(self) -> List[Dict[str, Any]]:
result = []
for node_id, attrs in self.nodes.items():
node = {"id": node_id}
params = dict(attrs.get("parameters", {}) or {})
flat = {k: v for k, v in attrs.items() if k != "parameters"}
flat.update(params)
node.update(flat)
result.append(node)
return sorted(result, key=lambda n: int(n["id"]) if str(n["id"]).isdigit() else n["id"])
# node-link 导出(含 edges
def to_node_link_dict(self) -> Dict[str, Any]:
nodes_list = []
for node_id, attrs in self.nodes.items():
node_attrs = attrs.copy()
params = node_attrs.pop("parameters", {}) or {}
node_attrs.update(params)
nodes_list.append({"id": node_id, **node_attrs})
return {"directed": True, "multigraph": False, "graph": {}, "nodes": nodes_list, "edges": self.edges, "links": self.edges}
def refactor_data(data: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
"""统一的数据重构函数,根据操作类型自动选择模板"""
refactored_data = []
# 定义操作映射,包含生物实验和有机化学的所有操作
OPERATION_MAPPING = {
# 生物实验操作
"transfer_liquid": "transfer_liquid",
"transfer": "transfer",
"incubation": "incubation",
"move_labware": "move_labware",
"oscillation": "oscillation",
# 有机化学操作
"HeatChillToTemp": "HeatChillProtocol",
"StopHeatChill": "HeatChillStopProtocol",
"StartHeatChill": "HeatChillStartProtocol",
"HeatChill": "HeatChillProtocol",
"Dissolve": "DissolveProtocol",
"Transfer": "TransferProtocol",
"Evaporate": "EvaporateProtocol",
"Recrystallize": "RecrystallizeProtocol",
"Filter": "FilterProtocol",
"Dry": "DryProtocol",
"Add": "AddProtocol",
}
UNSUPPORTED_OPERATIONS = ["Purge", "Wait", "Stir", "ResetHandling"]
for step in data:
operation = step.get("action")
if not operation or operation in UNSUPPORTED_OPERATIONS:
continue
# 处理重复操作
if operation == "Repeat":
times = step.get("times", step.get("parameters", {}).get("times", 1))
sub_steps = step.get("steps", step.get("parameters", {}).get("steps", []))
for i in range(int(times)):
sub_data = refactor_data(sub_steps)
refactored_data.extend(sub_data)
continue
# 获取模板名称
template = OPERATION_MAPPING.get(operation)
if not template:
# 自动推断模板类型
if operation.lower() in ["transfer", "incubation", "move_labware", "oscillation"]:
template = f"biomek-{operation}"
else:
template = f"{operation}Protocol"
# 创建步骤数据
step_data = {
"template": template,
"description": step.get("description", step.get("purpose", f"{operation} operation")),
"lab_node_type": "Device",
"parameters": step.get("parameters", step.get("action_args", {})),
}
refactored_data.append(step_data)
return refactored_data
def build_protocol_graph(
labware_info: List[Dict[str, Any]], protocol_steps: List[Dict[str, Any]], workstation_name: str
) -> WorkflowGraph:
"""统一的协议图构建函数,根据设备类型自动选择构建逻辑"""
G = WorkflowGraph()
resource_last_writer = {}
protocol_steps = refactor_data(protocol_steps)
# 有机化学&移液站协议图构建
WORKSTATION_ID = workstation_name
# 为所有labware创建资源节点
for labware_id, item in labware_info.items():
# item_id = item.get("id") or item.get("name", f"item_{uuid.uuid4()}")
node_id = str(uuid.uuid4())
# 判断节点类型
if "Rack" in str(labware_id) or "Tip" in str(labware_id):
lab_node_type = "Labware"
description = f"Prepare Labware: {labware_id}"
liquid_type = []
liquid_volume = []
elif item.get("type") == "hardware" or "reactor" in str(labware_id).lower():
if "reactor" not in str(labware_id).lower():
continue
lab_node_type = "Sample"
description = f"Prepare Reactor: {labware_id}"
liquid_type = []
liquid_volume = []
else:
lab_node_type = "Reagent"
description = f"Add Reagent to Flask: {labware_id}"
liquid_type = [labware_id]
liquid_volume = [1e5]
G.add_node(
node_id,
template_name=f"create_resource",
resource_name="host_node",
description=description,
lab_node_type=lab_node_type,
params={
"res_id": labware_id,
"device_id": WORKSTATION_ID,
"class_name": "container",
"parent": WORKSTATION_ID,
"bind_locations": {"x": 0.0, "y": 0.0, "z": 0.0},
"liquid_input_slot": [-1],
"liquid_type": liquid_type,
"liquid_volume": liquid_volume,
"slot_on_deck": "",
},
role=item.get("role", ""),
)
resource_last_writer[labware_id] = f"{node_id}:labware"
last_control_node_id = None
# 处理协议步骤
for step in protocol_steps:
node_id = str(uuid.uuid4())
G.add_node(node_id, **step)
# 控制流
if last_control_node_id is not None:
G.add_edge(last_control_node_id, node_id, source_port="ready", target_port="ready")
last_control_node_id = node_id
# 物料流
params = step.get("parameters", {})
input_resources_possible_names = [
"vessel",
"to_vessel",
"from_vessel",
"reagent",
"solvent",
"compound",
"sources",
"targets",
]
for target_port in input_resources_possible_names:
resource_name = params.get(target_port)
if resource_name and resource_name in resource_last_writer:
source_node, source_port = resource_last_writer[resource_name].split(":")
G.add_edge(source_node, node_id, source_port=source_port, target_port=target_port)
output_resources = {
"vessel_out": params.get("vessel"),
"from_vessel_out": params.get("from_vessel"),
"to_vessel_out": params.get("to_vessel"),
"filtrate_out": params.get("filtrate_vessel"),
"reagent": params.get("reagent"),
"solvent": params.get("solvent"),
"compound": params.get("compound"),
"sources_out": params.get("sources"),
"targets_out": params.get("targets"),
}
for source_port, resource_name in output_resources.items():
if resource_name:
resource_last_writer[resource_name] = f"{node_id}:{source_port}"
return G
def draw_protocol_graph(protocol_graph: WorkflowGraph, output_path: str):
"""
(辅助功能) 使用 networkx 和 matplotlib 绘制协议工作流图,用于可视化。
"""
if not protocol_graph:
print("Cannot draw graph: Graph object is empty.")
return
G = nx.DiGraph()
for node_id, attrs in protocol_graph.nodes.items():
label = attrs.get("description", attrs.get("template", node_id[:8]))
G.add_node(node_id, label=label, **attrs)
for edge in protocol_graph.edges:
G.add_edge(edge["source"], edge["target"])
plt.figure(figsize=(20, 15))
try:
pos = nx.nx_agraph.graphviz_layout(G, prog="dot")
except Exception:
pos = nx.shell_layout(G) # Fallback layout
node_labels = {node: data["label"] for node, data in G.nodes(data=True)}
nx.draw(
G,
pos,
with_labels=False,
node_size=2500,
node_color="skyblue",
node_shape="o",
edge_color="gray",
width=1.5,
arrowsize=15,
)
nx.draw_networkx_labels(G, pos, labels=node_labels, font_size=8, font_weight="bold")
plt.title("Chemical Protocol Workflow Graph", size=15)
plt.savefig(output_path, dpi=300, bbox_inches="tight")
plt.close()
print(f" - Visualization saved to '{output_path}'")
COMPASS = {"n","e","s","w","ne","nw","se","sw","c"}
def _is_compass(port: str) -> bool:
return isinstance(port, str) and port.lower() in COMPASS
def draw_protocol_graph_with_ports(protocol_graph, output_path: str, rankdir: str = "LR"):
"""
使用 Graphviz 端口语法绘制协议工作流图。
- 若边上的 source_port/target_port 是 compassn/e/s/w/...),直接用 compass。
- 否则自动为节点创建 record 形状并定义命名端口 <portname>。
最终由 PyGraphviz 渲染并输出到 output_path后缀决定格式如 .png/.svg/.pdf
"""
if not protocol_graph:
print("Cannot draw graph: Graph object is empty.")
return
# 1) 先用 networkx 搭建有向图,保留端口属性
G = nx.DiGraph()
for node_id, attrs in protocol_graph.nodes.items():
label = attrs.get("description", attrs.get("template", node_id[:8]))
# 保留一个干净的“中心标签”,用于放在 record 的中间槽
G.add_node(node_id, _core_label=str(label), **{k:v for k,v in attrs.items() if k not in ("label",)})
edges_data = []
in_ports_by_node = {} # 收集命名输入端口
out_ports_by_node = {} # 收集命名输出端口
for edge in protocol_graph.edges:
u = edge["source"]
v = edge["target"]
sp = edge.get("source_port")
tp = edge.get("target_port")
# 记录到图里(保留原始端口信息)
G.add_edge(u, v, source_port=sp, target_port=tp)
edges_data.append((u, v, sp, tp))
# 如果不是 compass就按“命名端口”先归类等会儿给节点造 record
if sp and not _is_compass(sp):
out_ports_by_node.setdefault(u, set()).add(str(sp))
if tp and not _is_compass(tp):
in_ports_by_node.setdefault(v, set()).add(str(tp))
# 2) 转为 AGraph使用 Graphviz 渲染
A = to_agraph(G)
A.graph_attr.update(rankdir=rankdir, splines="true", concentrate="false", fontsize="10")
A.node_attr.update(shape="box", style="rounded,filled", fillcolor="lightyellow", color="#999999", fontname="Helvetica")
A.edge_attr.update(arrowsize="0.8", color="#666666")
# 3) 为需要命名端口的节点设置 record 形状与 label
# 左列 = 输入端口;中间 = 核心标签;右列 = 输出端口
for n in A.nodes():
node = A.get_node(n)
core = G.nodes[n].get("_core_label", n)
in_ports = sorted(in_ports_by_node.get(n, []))
out_ports = sorted(out_ports_by_node.get(n, []))
# 如果该节点涉及命名端口,则用 record否则保留原 box
if in_ports or out_ports:
def port_fields(ports):
if not ports:
return " " # 必须留一个空槽占位
# 每个端口一个小格子,<p> name
return "|".join(f"<{re.sub(r'[^A-Za-z0-9_:.|-]', '_', p)}> {p}" for p in ports)
left = port_fields(in_ports)
right = port_fields(out_ports)
# 三栏:左(入) | 中(节点名) | 右(出)
record_label = f"{{ {left} | {core} | {right} }}"
node.attr.update(shape="record", label=record_label)
else:
# 没有命名端口:普通盒子,显示核心标签
node.attr.update(label=str(core))
# 4) 给边设置 headport / tailport
# - 若端口为 compass直接用 compasse.g., headport="e"
# - 若端口为命名端口:使用在 record 中定义的 <port> 名(同名即可)
for (u, v, sp, tp) in edges_data:
e = A.get_edge(u, v)
# Graphviz 属性tail 是源head 是目标
if sp:
if _is_compass(sp):
e.attr["tailport"] = sp.lower()
else:
# 与 record label 中 <port> 名一致;特殊字符已在 label 中做了清洗
e.attr["tailport"] = re.sub(r'[^A-Za-z0-9_:.|-]', '_', str(sp))
if tp:
if _is_compass(tp):
e.attr["headport"] = tp.lower()
else:
e.attr["headport"] = re.sub(r'[^A-Za-z0-9_:.|-]', '_', str(tp))
# 可选:若想让边更贴边缘,可设置 constraint/spline 等
# e.attr["arrowhead"] = "vee"
# 5) 输出
A.draw(output_path, prog="dot")
print(f" - Port-aware workflow rendered to '{output_path}'")
# ---------------- Registry Adapter ----------------
class RegistryAdapter:
"""根据 module 的类名(冒号右侧)反查 registry 的 resource_name原 device_class并抽取参数顺序"""
def __init__(self, device_registry: Dict[str, Any]):
self.device_registry = device_registry or {}
self.module_class_to_resource = self._build_module_class_index()
def _build_module_class_index(self) -> Dict[str, str]:
idx = {}
for resource_name, info in self.device_registry.items():
module = info.get("module")
if isinstance(module, str) and ":" in module:
cls = module.split(":")[-1]
idx[cls] = resource_name
idx[cls.lower()] = resource_name
return idx
def resolve_resource_by_classname(self, class_name: str) -> Optional[str]:
if not class_name:
return None
return (self.module_class_to_resource.get(class_name)
or self.module_class_to_resource.get(class_name.lower()))
def get_device_module(self, resource_name: Optional[str]) -> Optional[str]:
if not resource_name:
return None
return self.device_registry.get(resource_name, {}).get("module")
def get_actions(self, resource_name: Optional[str]) -> Dict[str, Any]:
if not resource_name:
return {}
return (self.device_registry.get(resource_name, {})
.get("class", {})
.get("action_value_mappings", {})) or {}
def get_action_schema(self, resource_name: Optional[str], template_name: str) -> Optional[Json]:
return (self.get_actions(resource_name).get(template_name) or {}).get("schema")
def get_action_goal_default(self, resource_name: Optional[str], template_name: str) -> Json:
return (self.get_actions(resource_name).get(template_name) or {}).get("goal_default", {}) or {}
def get_action_input_keys(self, resource_name: Optional[str], template_name: str) -> List[str]:
schema = self.get_action_schema(resource_name, template_name) or {}
goal = (schema.get("properties") or {}).get("goal") or {}
props = goal.get("properties") or {}
required = goal.get("required") or []
return list(dict.fromkeys(required + list(props.keys())))

View File

@@ -0,0 +1,24 @@
import json
from os import PathLike
from unilabos.workflow.common import build_protocol_graph
def from_labwares_and_steps(data_path: PathLike):
with data_path.open("r", encoding="utf-8") as fp:
d = json.load(fp)
if "workflow" in d and "reagent" in d:
protocol_steps = d["workflow"]
labware_info = d["reagent"]
elif "steps_info" in d and "labware_info" in d:
protocol_steps = _normalize_steps(d["steps_info"])
labware_info = _normalize_labware(d["labware_info"])
else:
raise ValueError("Unsupported protocol format")
graph = build_protocol_graph(
labware_info=labware_info,
protocol_steps=protocol_steps,
workstation_name="PRCXi",
)

View File

@@ -0,0 +1,241 @@
import ast
import json
from typing import Dict, List, Any, Tuple, Optional
from .common import WorkflowGraph, RegistryAdapter
Json = Dict[str, Any]
# ---------------- Converter ----------------
class DeviceMethodConverter:
"""
- 字段统一resource_name原 device_class、template_name原 action_key
- params 单层inputs 使用 'params.' 前缀
- SimpleGraph.add_workflow_node 负责变量连线与边
"""
def __init__(self, device_registry: Optional[Dict[str, Any]] = None):
self.graph = WorkflowGraph()
self.variable_sources: Dict[str, Dict[str, Any]] = {} # var -> {node_id, output_name}
self.instance_to_resource: Dict[str, Optional[str]] = {} # 实例名 -> resource_name
self.node_id_counter: int = 0
self.registry = RegistryAdapter(device_registry or {})
# ---- helpers ----
def _new_node_id(self) -> int:
nid = self.node_id_counter
self.node_id_counter += 1
return nid
def _assign_targets(self, targets) -> List[str]:
names: List[str] = []
import ast
if isinstance(targets, ast.Tuple):
for elt in targets.elts:
if isinstance(elt, ast.Name):
names.append(elt.id)
elif isinstance(targets, ast.Name):
names.append(targets.id)
return names
def _extract_device_instantiation(self, node) -> Optional[Tuple[str, str]]:
import ast
if not isinstance(node.value, ast.Call):
return None
callee = node.value.func
if isinstance(callee, ast.Name):
class_name = callee.id
elif isinstance(callee, ast.Attribute) and isinstance(callee.value, ast.Name):
class_name = callee.attr
else:
return None
if isinstance(node.targets[0], ast.Name):
instance = node.targets[0].id
return instance, class_name
return None
def _extract_call(self, call) -> Tuple[str, str, Dict[str, Any], str]:
import ast
owner_name, method_name, call_kind = "", "", "func"
if isinstance(call.func, ast.Attribute):
method_name = call.func.attr
if isinstance(call.func.value, ast.Name):
owner_name = call.func.value.id
call_kind = "instance" if owner_name in self.instance_to_resource else "class_or_module"
elif isinstance(call.func.value, ast.Attribute) and isinstance(call.func.value.value, ast.Name):
owner_name = call.func.value.attr
call_kind = "class_or_module"
elif isinstance(call.func, ast.Name):
method_name = call.func.id
call_kind = "func"
def pack(node):
if isinstance(node, ast.Name):
return {"type": "variable", "value": node.id}
if isinstance(node, ast.Constant):
return {"type": "constant", "value": node.value}
if isinstance(node, ast.Dict):
return {"type": "dict", "value": self._parse_dict(node)}
if isinstance(node, ast.List):
return {"type": "list", "value": self._parse_list(node)}
return {"type": "raw", "value": ast.unparse(node) if hasattr(ast, "unparse") else str(node)}
args: Dict[str, Any] = {}
pos: List[Any] = []
for a in call.args:
pos.append(pack(a))
for kw in call.keywords:
args[kw.arg] = pack(kw.value)
if pos:
args["_positional"] = pos
return owner_name, method_name, args, call_kind
def _parse_dict(self, node) -> Dict[str, Any]:
import ast
out: Dict[str, Any] = {}
for k, v in zip(node.keys, node.values):
if isinstance(k, ast.Constant):
key = str(k.value)
if isinstance(v, ast.Name):
out[key] = f"var:{v.id}"
elif isinstance(v, ast.Constant):
out[key] = v.value
elif isinstance(v, ast.Dict):
out[key] = self._parse_dict(v)
elif isinstance(v, ast.List):
out[key] = self._parse_list(v)
return out
def _parse_list(self, node) -> List[Any]:
import ast
out: List[Any] = []
for elt in node.elts:
if isinstance(elt, ast.Name):
out.append(f"var:{elt.id}")
elif isinstance(elt, ast.Constant):
out.append(elt.value)
elif isinstance(elt, ast.Dict):
out.append(self._parse_dict(elt))
elif isinstance(elt, ast.List):
out.append(self._parse_list(elt))
return out
def _normalize_var_tokens(self, x: Any) -> Any:
if isinstance(x, str) and x.startswith("var:"):
return {"__var__": x[4:]}
if isinstance(x, list):
return [self._normalize_var_tokens(i) for i in x]
if isinstance(x, dict):
return {k: self._normalize_var_tokens(v) for k, v in x.items()}
return x
def _make_params_payload(self, resource_name: Optional[str], template_name: str, call_args: Dict[str, Any]) -> Dict[str, Any]:
input_keys = self.registry.get_action_input_keys(resource_name, template_name) if resource_name else []
defaults = self.registry.get_action_goal_default(resource_name, template_name) if resource_name else {}
params: Dict[str, Any] = dict(defaults)
def unpack(p):
t, v = p.get("type"), p.get("value")
if t == "variable":
return {"__var__": v}
if t == "dict":
return self._normalize_var_tokens(v)
if t == "list":
return self._normalize_var_tokens(v)
return v
for k, p in call_args.items():
if k == "_positional":
continue
params[k] = unpack(p)
pos = call_args.get("_positional", [])
if pos:
if input_keys:
for i, p in enumerate(pos):
if i >= len(input_keys):
break
name = input_keys[i]
if name in params:
continue
params[name] = unpack(p)
else:
for i, p in enumerate(pos):
params[f"arg_{i}"] = unpack(p)
return params
# ---- handlers ----
def _on_assign(self, stmt):
import ast
inst = self._extract_device_instantiation(stmt)
if inst:
instance, code_class = inst
resource_name = self.registry.resolve_resource_by_classname(code_class)
self.instance_to_resource[instance] = resource_name
return
if isinstance(stmt.value, ast.Call):
owner, method, call_args, kind = self._extract_call(stmt.value)
if kind == "instance":
device_key = owner
resource_name = self.instance_to_resource.get(owner)
else:
device_key = owner
resource_name = self.registry.resolve_resource_by_classname(owner)
module = self.registry.get_device_module(resource_name)
params = self._make_params_payload(resource_name, method, call_args)
nid = self._new_node_id()
self.graph.add_workflow_node(
nid,
device_key=device_key,
resource_name=resource_name, # ✅
module=module,
template_name=method, # ✅
params=params,
variable_sources=self.variable_sources,
add_ready_if_no_vars=True,
prev_node_id=(nid - 1) if nid > 0 else None,
)
out_vars = self._assign_targets(stmt.targets[0])
for var in out_vars:
self.variable_sources[var] = {"node_id": nid, "output_name": "result"}
def _on_expr(self, stmt):
import ast
if not isinstance(stmt.value, ast.Call):
return
owner, method, call_args, kind = self._extract_call(stmt.value)
if kind == "instance":
device_key = owner
resource_name = self.instance_to_resource.get(owner)
else:
device_key = owner
resource_name = self.registry.resolve_resource_by_classname(owner)
module = self.registry.get_device_module(resource_name)
params = self._make_params_payload(resource_name, method, call_args)
nid = self._new_node_id()
self.graph.add_workflow_node(
nid,
device_key=device_key,
resource_name=resource_name, # ✅
module=module,
template_name=method, # ✅
params=params,
variable_sources=self.variable_sources,
add_ready_if_no_vars=True,
prev_node_id=(nid - 1) if nid > 0 else None,
)
def convert(self, python_code: str):
tree = ast.parse(python_code)
for stmt in tree.body:
if isinstance(stmt, ast.Assign):
self._on_assign(stmt)
elif isinstance(stmt, ast.Expr):
self._on_expr(stmt)
return self

View File

@@ -0,0 +1,131 @@
from typing import List, Any, Dict
import xml.etree.ElementTree as ET
def convert_to_type(val: str) -> Any:
"""将字符串值转换为适当的数据类型"""
if val == "True":
return True
if val == "False":
return False
if val == "?":
return None
if val.endswith(" g"):
return float(val.split(" ")[0])
if val.endswith("mg"):
return float(val.split("mg")[0])
elif val.endswith("mmol"):
return float(val.split("mmol")[0]) / 1000
elif val.endswith("mol"):
return float(val.split("mol")[0])
elif val.endswith("ml"):
return float(val.split("ml")[0])
elif val.endswith("RPM"):
return float(val.split("RPM")[0])
elif val.endswith(" °C"):
return float(val.split(" ")[0])
elif val.endswith(" %"):
return float(val.split(" ")[0])
return val
def flatten_xdl_procedure(procedure_elem: ET.Element) -> List[ET.Element]:
"""展平嵌套的XDL程序结构"""
flattened_operations = []
TEMP_UNSUPPORTED_PROTOCOL = ["Purge", "Wait", "Stir", "ResetHandling"]
def extract_operations(element: ET.Element):
if element.tag not in ["Prep", "Reaction", "Workup", "Purification", "Procedure"]:
if element.tag not in TEMP_UNSUPPORTED_PROTOCOL:
flattened_operations.append(element)
for child in element:
extract_operations(child)
for child in procedure_elem:
extract_operations(child)
return flattened_operations
def parse_xdl_content(xdl_content: str) -> tuple:
"""解析XDL内容"""
try:
xdl_content_cleaned = "".join(c for c in xdl_content if c.isprintable())
root = ET.fromstring(xdl_content_cleaned)
synthesis_elem = root.find("Synthesis")
if synthesis_elem is None:
return None, None, None
# 解析硬件组件
hardware_elem = synthesis_elem.find("Hardware")
hardware = []
if hardware_elem is not None:
hardware = [{"id": c.get("id"), "type": c.get("type")} for c in hardware_elem.findall("Component")]
# 解析试剂
reagents_elem = synthesis_elem.find("Reagents")
reagents = []
if reagents_elem is not None:
reagents = [{"name": r.get("name"), "role": r.get("role", "")} for r in reagents_elem.findall("Reagent")]
# 解析程序
procedure_elem = synthesis_elem.find("Procedure")
if procedure_elem is None:
return None, None, None
flattened_operations = flatten_xdl_procedure(procedure_elem)
return hardware, reagents, flattened_operations
except ET.ParseError as e:
raise ValueError(f"Invalid XDL format: {e}")
def convert_xdl_to_dict(xdl_content: str) -> Dict[str, Any]:
"""
将XDL XML格式转换为标准的字典格式
Args:
xdl_content: XDL XML内容
Returns:
转换结果,包含步骤和器材信息
"""
try:
hardware, reagents, flattened_operations = parse_xdl_content(xdl_content)
if hardware is None:
return {"error": "Failed to parse XDL content", "success": False}
# 将XDL元素转换为字典格式
steps_data = []
for elem in flattened_operations:
# 转换参数类型
parameters = {}
for key, val in elem.attrib.items():
converted_val = convert_to_type(val)
if converted_val is not None:
parameters[key] = converted_val
step_dict = {
"operation": elem.tag,
"parameters": parameters,
"description": elem.get("purpose", f"Operation: {elem.tag}"),
}
steps_data.append(step_dict)
# 合并硬件和试剂为统一的labware_info格式
labware_data = []
labware_data.extend({"id": hw["id"], "type": "hardware", **hw} for hw in hardware)
labware_data.extend({"name": reagent["name"], "type": "reagent", **reagent} for reagent in reagents)
return {
"success": True,
"steps": steps_data,
"labware": labware_data,
"message": f"Successfully converted XDL to dict format. Found {len(steps_data)} steps and {len(labware_data)} labware items.",
}
except Exception as e:
error_msg = f"XDL conversion failed: {str(e)}"
return {"error": error_msg, "success": False}