Compare commits

..

1 Commits

Author SHA1 Message Date
hanhua
882c33bd22 update action
update action
2026-01-15 10:05:03 +08:00
55 changed files with 5406 additions and 8356 deletions

View File

@@ -1,60 +0,0 @@
# unilabos: Production package (depends on unilabos-env + pip unilabos)
# For production deployment
package:
name: unilabos
version: 0.10.17
source:
path: ../../unilabos
target_directory: unilabos
build:
python:
entry_points:
- unilab = unilabos.app.main:main
script:
- set PIP_NO_INDEX=
- if: win
then:
- copy %RECIPE_DIR%\..\..\MANIFEST.in %SRC_DIR%
- copy %RECIPE_DIR%\..\..\setup.cfg %SRC_DIR%
- copy %RECIPE_DIR%\..\..\setup.py %SRC_DIR%
- pip install %SRC_DIR%
- if: unix
then:
- cp $RECIPE_DIR/../../MANIFEST.in $SRC_DIR
- cp $RECIPE_DIR/../../setup.cfg $SRC_DIR
- cp $RECIPE_DIR/../../setup.py $SRC_DIR
- pip install $SRC_DIR
requirements:
host:
- python ==3.11.14
- pip
- setuptools
- zstd
- zstandard
run:
- zstd
- zstandard
- networkx
- typing_extensions
- websockets
- pint
- fastapi
- jinja2
- requests
- uvicorn
- opcua # [not osx]
- pyserial
- pandas
- pymodbus
- matplotlib
- pylibftdi
- uni-lab::unilabos-env ==0.10.17
about:
repository: https://github.com/deepmodeling/Uni-Lab-OS
license: GPL-3.0-only
description: "UniLabOS - Production package with minimal ROS2 dependencies"

View File

@@ -1,39 +0,0 @@
# unilabos-env: conda environment dependencies (ROS2 + conda packages)
package:
name: unilabos-env
version: 0.10.17
build:
noarch: generic
requirements:
run:
# Python
- zstd
- zstandard
- conda-forge::python ==3.11.14
- conda-forge::opencv
# ROS2 dependencies (from ci-check.yml)
- robostack-staging::ros-humble-ros-core
- robostack-staging::ros-humble-action-msgs
- robostack-staging::ros-humble-std-msgs
- robostack-staging::ros-humble-geometry-msgs
- robostack-staging::ros-humble-control-msgs
- robostack-staging::ros-humble-nav2-msgs
- robostack-staging::ros-humble-cv-bridge
- robostack-staging::ros-humble-vision-opencv
- robostack-staging::ros-humble-tf-transformations
- robostack-staging::ros-humble-moveit-msgs
- robostack-staging::ros-humble-tf2-ros
- robostack-staging::ros-humble-tf2-ros-py
- conda-forge::transforms3d
- conda-forge::uv
# UniLabOS custom messages
- uni-lab::ros-humble-unilabos-msgs
about:
repository: https://github.com/deepmodeling/Uni-Lab-OS
license: GPL-3.0-only
description: "UniLabOS Environment - ROS2 and conda dependencies"

View File

@@ -1,42 +0,0 @@
# unilabos-full: Full package with all features
# Depends on unilabos + complete ROS2 desktop + dev tools
package:
name: unilabos-full
version: 0.10.17
build:
noarch: generic
requirements:
run:
# Base unilabos package (includes unilabos-env)
- uni-lab::unilabos ==0.10.17
# Documentation tools
- sphinx
- sphinx_rtd_theme
# Web UI
- gradio
- flask
# Interactive development
- ipython
- jupyter
- jupyros
- colcon-common-extensions
# ROS2 full desktop (includes rviz2, gazebo, etc.)
- robostack-staging::ros-humble-desktop-full
# Navigation and motion control
- ros-humble-navigation2
- ros-humble-ros2-control
- ros-humble-robot-state-publisher
- ros-humble-joint-state-publisher
# MoveIt motion planning
- ros-humble-moveit
- ros-humble-moveit-servo
# Simulation
- ros-humble-simulation
about:
repository: https://github.com/deepmodeling/Uni-Lab-OS
license: GPL-3.0-only
description: "UniLabOS Full - Complete package with ROS2 Desktop, MoveIt, Navigation2, Gazebo, Jupyter"

91
.conda/recipe.yaml Normal file
View File

@@ -0,0 +1,91 @@
package:
name: unilabos
version: 0.10.15
source:
path: ../unilabos
target_directory: unilabos
build:
python:
entry_points:
- unilab = unilabos.app.main:main
script:
- set PIP_NO_INDEX=
- if: win
then:
- copy %RECIPE_DIR%\..\MANIFEST.in %SRC_DIR%
- copy %RECIPE_DIR%\..\setup.cfg %SRC_DIR%
- copy %RECIPE_DIR%\..\setup.py %SRC_DIR%
- call %PYTHON% -m pip install %SRC_DIR%
- if: unix
then:
- cp $RECIPE_DIR/../MANIFEST.in $SRC_DIR
- cp $RECIPE_DIR/../setup.cfg $SRC_DIR
- cp $RECIPE_DIR/../setup.py $SRC_DIR
- $PYTHON -m pip install $SRC_DIR
requirements:
host:
- python ==3.11.11
- pip
- setuptools
- zstd
- zstandard
run:
- conda-forge::python ==3.11.11
- compilers
- cmake
- zstd
- zstandard
- ninja
- if: unix
then:
- make
- sphinx
- sphinx_rtd_theme
- numpy
- scipy
- pandas
- networkx
- matplotlib
- pint
- pyserial
- pyusb
- pylibftdi
- pymodbus
- python-can
- pyvisa
- opencv
- pydantic
- fastapi
- uvicorn
- gradio
- flask
- websockets
- ipython
- jupyter
- jupyros
- colcon-common-extensions
- robostack-staging::ros-humble-desktop-full
- robostack-staging::ros-humble-control-msgs
- robostack-staging::ros-humble-sensor-msgs
- robostack-staging::ros-humble-trajectory-msgs
- ros-humble-navigation2
- ros-humble-ros2-control
- ros-humble-robot-state-publisher
- ros-humble-joint-state-publisher
- ros-humble-rosbridge-server
- ros-humble-cv-bridge
- ros-humble-tf2
- ros-humble-moveit
- ros-humble-moveit-servo
- ros-humble-simulation
- ros-humble-tf-transformations
- transforms3d
- uni-lab::ros-humble-unilabos-msgs
about:
repository: https://github.com/deepmodeling/Uni-Lab-OS
license: GPL-3.0-only
description: "Uni-Lab-OS"

View File

@@ -1,67 +0,0 @@
name: CI Check
on:
push:
branches: [main, dev]
pull_request:
branches: [main, dev]
jobs:
registry-check:
runs-on: windows-latest
env:
# Fix Unicode encoding issue on Windows runner (cp1252 -> utf-8)
PYTHONIOENCODING: utf-8
PYTHONUTF8: 1
defaults:
run:
shell: cmd
steps:
- uses: actions/checkout@v6
with:
fetch-depth: 0
- name: Setup Miniforge
uses: conda-incubator/setup-miniconda@v3
with:
miniforge-version: latest
use-mamba: true
channels: robostack-staging,conda-forge,uni-lab
channel-priority: flexible
activate-environment: check-env
auto-update-conda: false
show-channel-urls: true
- name: Install ROS dependencies, uv and unilabos-msgs
run: |
echo Installing ROS dependencies...
mamba install -n check-env conda-forge::uv conda-forge::opencv robostack-staging::ros-humble-ros-core robostack-staging::ros-humble-action-msgs robostack-staging::ros-humble-std-msgs robostack-staging::ros-humble-geometry-msgs robostack-staging::ros-humble-control-msgs robostack-staging::ros-humble-nav2-msgs uni-lab::ros-humble-unilabos-msgs robostack-staging::ros-humble-cv-bridge robostack-staging::ros-humble-vision-opencv robostack-staging::ros-humble-tf-transformations robostack-staging::ros-humble-moveit-msgs robostack-staging::ros-humble-tf2-ros robostack-staging::ros-humble-tf2-ros-py conda-forge::transforms3d -c robostack-staging -c conda-forge -c uni-lab -y
- name: Install pip dependencies and unilabos
run: |
call conda activate check-env
echo Installing pip dependencies...
uv pip install -r unilabos/utils/requirements.txt
uv pip install pywinauto git+https://github.com/Xuwznln/pylabrobot.git
uv pip uninstall enum34 || echo enum34 not installed, skipping
uv pip install .
- name: Run check mode (complete_registry)
run: |
call conda activate check-env
echo Running check mode...
python -m unilabos --check_mode --skip_env_check
- name: Check for uncommitted changes
shell: bash
run: |
if ! git diff --exit-code; then
echo "::error::检测到文件变化!请先在本地运行 'python -m unilabos --complete_registry' 并提交变更"
echo "变化的文件:"
git diff --name-only
exit 1
fi
echo "检查通过:无文件变化"

View File

@@ -13,11 +13,6 @@ on:
required: false
default: 'win-64'
type: string
build_full:
description: '是否构建完整版 unilabos-full (默认构建轻量版 unilabos)'
required: false
default: false
type: boolean
jobs:
build-conda-pack:
@@ -62,7 +57,7 @@ jobs:
echo "should_build=false" >> $GITHUB_OUTPUT
fi
- uses: actions/checkout@v6
- uses: actions/checkout@v4
if: steps.should_build.outputs.should_build == 'true'
with:
ref: ${{ github.event.inputs.branch }}
@@ -74,7 +69,7 @@ jobs:
with:
miniforge-version: latest
use-mamba: true
python-version: '3.11.14'
python-version: '3.11.11'
channels: conda-forge,robostack-staging,uni-lab,defaults
channel-priority: flexible
activate-environment: unilab
@@ -86,14 +81,7 @@ jobs:
run: |
echo Installing unilabos and dependencies to unilab environment...
echo Using mamba for faster and more reliable dependency resolution...
echo Build full: ${{ github.event.inputs.build_full }}
if "${{ github.event.inputs.build_full }}"=="true" (
echo Installing unilabos-full ^(complete package^)...
mamba install -n unilab uni-lab::unilabos-full conda-pack -c uni-lab -c robostack-staging -c conda-forge -y
) else (
echo Installing unilabos ^(minimal package^)...
mamba install -n unilab uni-lab::unilabos conda-pack -c uni-lab -c robostack-staging -c conda-forge -y
)
mamba install -n unilab uni-lab::unilabos conda-pack -c uni-lab -c robostack-staging -c conda-forge -y
- name: Install conda-pack, unilabos and dependencies (Unix)
if: steps.should_build.outputs.should_build == 'true' && matrix.platform != 'win-64'
@@ -101,14 +89,7 @@ jobs:
run: |
echo "Installing unilabos and dependencies to unilab environment..."
echo "Using mamba for faster and more reliable dependency resolution..."
echo "Build full: ${{ github.event.inputs.build_full }}"
if [[ "${{ github.event.inputs.build_full }}" == "true" ]]; then
echo "Installing unilabos-full (complete package)..."
mamba install -n unilab uni-lab::unilabos-full conda-pack -c uni-lab -c robostack-staging -c conda-forge -y
else
echo "Installing unilabos (minimal package)..."
mamba install -n unilab uni-lab::unilabos conda-pack -c uni-lab -c robostack-staging -c conda-forge -y
fi
mamba install -n unilab uni-lab::unilabos conda-pack -c uni-lab -c robostack-staging -c conda-forge -y
- name: Get latest ros-humble-unilabos-msgs version (Windows)
if: steps.should_build.outputs.should_build == 'true' && matrix.platform == 'win-64'
@@ -312,7 +293,7 @@ jobs:
- name: Upload distribution package
if: steps.should_build.outputs.should_build == 'true'
uses: actions/upload-artifact@v6
uses: actions/upload-artifact@v4
with:
name: unilab-pack-${{ matrix.platform }}-${{ github.event.inputs.branch }}
path: dist-package/
@@ -327,12 +308,7 @@ jobs:
echo ==========================================
echo Platform: ${{ matrix.platform }}
echo Branch: ${{ github.event.inputs.branch }}
echo Python version: 3.11.14
if "${{ github.event.inputs.build_full }}"=="true" (
echo Package: unilabos-full ^(complete^)
) else (
echo Package: unilabos ^(minimal^)
)
echo Python version: 3.11.11
echo.
echo Distribution package contents:
dir dist-package
@@ -352,12 +328,7 @@ jobs:
echo "=========================================="
echo "Platform: ${{ matrix.platform }}"
echo "Branch: ${{ github.event.inputs.branch }}"
echo "Python version: 3.11.14"
if [[ "${{ github.event.inputs.build_full }}" == "true" ]]; then
echo "Package: unilabos-full (complete)"
else
echo "Package: unilabos (minimal)"
fi
echo "Python version: 3.11.11"
echo ""
echo "Distribution package contents:"
ls -lh dist-package/

View File

@@ -1,12 +1,10 @@
name: Deploy Docs
on:
# 在 CI Check 成功后自动触发(仅 main 分支)
workflow_run:
workflows: ["CI Check"]
types: [completed]
push:
branches: [main]
pull_request:
branches: [main]
# 手动触发
workflow_dispatch:
inputs:
branch:
@@ -35,19 +33,12 @@ concurrency:
jobs:
# Build documentation
build:
# 只在以下情况运行:
# 1. workflow_run 触发且 CI Check 成功
# 2. 手动触发
if: |
github.event_name == 'workflow_dispatch' ||
(github.event_name == 'workflow_run' && github.event.workflow_run.conclusion == 'success')
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v6
uses: actions/checkout@v4
with:
# workflow_run 时使用触发工作流的分支,手动触发时使用输入的分支
ref: ${{ github.event.workflow_run.head_branch || github.event.inputs.branch || github.ref }}
ref: ${{ github.event.inputs.branch || github.ref }}
fetch-depth: 0
- name: Setup Miniforge (with mamba)
@@ -55,7 +46,7 @@ jobs:
with:
miniforge-version: latest
use-mamba: true
python-version: '3.11.14'
python-version: '3.11.11'
channels: conda-forge,robostack-staging,uni-lab,defaults
channel-priority: flexible
activate-environment: unilab
@@ -84,10 +75,8 @@ jobs:
- name: Setup Pages
id: pages
uses: actions/configure-pages@v5
if: |
github.event.workflow_run.head_branch == 'main' ||
(github.event_name == 'workflow_dispatch' && github.event.inputs.deploy_to_pages == 'true')
uses: actions/configure-pages@v4
if: github.ref == 'refs/heads/main' || (github.event_name == 'workflow_dispatch' && github.event.inputs.deploy_to_pages == 'true')
- name: Build Sphinx documentation
run: |
@@ -105,18 +94,14 @@ jobs:
test -f docs/_build/html/index.html && echo "✓ index.html exists" || echo "✗ index.html missing"
- name: Upload build artifacts
uses: actions/upload-pages-artifact@v4
if: |
github.event.workflow_run.head_branch == 'main' ||
(github.event_name == 'workflow_dispatch' && github.event.inputs.deploy_to_pages == 'true')
uses: actions/upload-pages-artifact@v3
if: github.ref == 'refs/heads/main' || (github.event_name == 'workflow_dispatch' && github.event.inputs.deploy_to_pages == 'true')
with:
path: docs/_build/html
# Deploy to GitHub Pages
deploy:
if: |
github.event.workflow_run.head_branch == 'main' ||
(github.event_name == 'workflow_dispatch' && github.event.inputs.deploy_to_pages == 'true')
if: github.ref == 'refs/heads/main' || (github.event_name == 'workflow_dispatch' && github.event.inputs.deploy_to_pages == 'true')
environment:
name: github-pages
url: ${{ steps.deployment.outputs.page_url }}

View File

@@ -1,16 +1,11 @@
name: Multi-Platform Conda Build
on:
# 在 CI Check 工作流完成后触发(仅限 main/dev 分支)
workflow_run:
workflows: ["CI Check"]
types:
- completed
branches: [main, dev]
# 支持 tag 推送(不依赖 CI Check
push:
branches: [main, dev]
tags: ['v*']
# 手动触发
pull_request:
branches: [main, dev]
workflow_dispatch:
inputs:
platforms:
@@ -22,37 +17,9 @@ on:
required: false
default: false
type: boolean
skip_ci_check:
description: '跳过等待 CI Check (手动触发时可选)'
required: false
default: false
type: boolean
jobs:
# 等待 CI Check 完成的 job (仅用于 workflow_run 触发)
wait-for-ci:
runs-on: ubuntu-latest
if: github.event_name == 'workflow_run'
outputs:
should_continue: ${{ steps.check.outputs.should_continue }}
steps:
- name: Check CI status
id: check
run: |
if [[ "${{ github.event.workflow_run.conclusion }}" == "success" ]]; then
echo "should_continue=true" >> $GITHUB_OUTPUT
echo "CI Check passed, proceeding with build"
else
echo "should_continue=false" >> $GITHUB_OUTPUT
echo "CI Check did not succeed (status: ${{ github.event.workflow_run.conclusion }}), skipping build"
fi
build:
needs: [wait-for-ci]
# 运行条件workflow_run 触发且 CI 成功,或者其他触发方式
if: |
always() &&
(needs.wait-for-ci.result == 'skipped' || needs.wait-for-ci.outputs.should_continue == 'true')
strategy:
fail-fast: false
matrix:
@@ -77,10 +44,8 @@ jobs:
shell: bash -l {0}
steps:
- uses: actions/checkout@v6
- uses: actions/checkout@v4
with:
# 如果是 workflow_run 触发,使用触发 CI Check 的 commit
ref: ${{ github.event.workflow_run.head_sha || github.ref }}
fetch-depth: 0
- name: Check if platform should be built
@@ -104,6 +69,7 @@ jobs:
channels: conda-forge,robostack-staging,defaults
channel-priority: strict
activate-environment: build-env
auto-activate-base: false
auto-update-conda: false
show-channel-urls: true
@@ -149,7 +115,7 @@ jobs:
- name: Upload conda package artifacts
if: steps.should_build.outputs.should_build == 'true'
uses: actions/upload-artifact@v6
uses: actions/upload-artifact@v4
with:
name: conda-package-${{ matrix.platform }}
path: conda-packages-temp

View File

@@ -1,62 +1,25 @@
name: UniLabOS Conda Build
on:
# 在 CI Check 成功后自动触发
workflow_run:
workflows: ["CI Check"]
types: [completed]
branches: [main, dev]
# 标签推送时直接触发(发布版本)
push:
branches: [main, dev]
tags: ['v*']
# 手动触发
pull_request:
branches: [main, dev]
workflow_dispatch:
inputs:
platforms:
description: '选择构建平台 (逗号分隔): linux-64, osx-64, osx-arm64, win-64'
required: false
default: 'linux-64'
build_full:
description: '是否构建 unilabos-full 完整包 (默认只构建 unilabos 基础包)'
required: false
default: false
type: boolean
upload_to_anaconda:
description: '是否上传到Anaconda.org'
required: false
default: false
type: boolean
skip_ci_check:
description: '跳过等待 CI Check (手动触发时可选)'
required: false
default: false
type: boolean
jobs:
# 等待 CI Check 完成的 job (仅用于 workflow_run 触发)
wait-for-ci:
runs-on: ubuntu-latest
if: github.event_name == 'workflow_run'
outputs:
should_continue: ${{ steps.check.outputs.should_continue }}
steps:
- name: Check CI status
id: check
run: |
if [[ "${{ github.event.workflow_run.conclusion }}" == "success" ]]; then
echo "should_continue=true" >> $GITHUB_OUTPUT
echo "CI Check passed, proceeding with build"
else
echo "should_continue=false" >> $GITHUB_OUTPUT
echo "CI Check did not succeed (status: ${{ github.event.workflow_run.conclusion }}), skipping build"
fi
build:
needs: [wait-for-ci]
# 运行条件workflow_run 触发且 CI 成功,或者其他触发方式
if: |
always() &&
(needs.wait-for-ci.result == 'skipped' || needs.wait-for-ci.outputs.should_continue == 'true')
strategy:
fail-fast: false
matrix:
@@ -77,10 +40,8 @@ jobs:
shell: bash -l {0}
steps:
- uses: actions/checkout@v6
- uses: actions/checkout@v4
with:
# 如果是 workflow_run 触发,使用触发 CI Check 的 commit
ref: ${{ github.event.workflow_run.head_sha || github.ref }}
fetch-depth: 0
- name: Check if platform should be built
@@ -104,6 +65,7 @@ jobs:
channels: conda-forge,robostack-staging,uni-lab,defaults
channel-priority: strict
activate-environment: build-env
auto-activate-base: false
auto-update-conda: false
show-channel-urls: true
@@ -119,61 +81,12 @@ jobs:
conda list | grep -E "(rattler-build|anaconda-client)"
echo "Platform: ${{ matrix.platform }}"
echo "OS: ${{ matrix.os }}"
echo "Build full package: ${{ github.event.inputs.build_full || 'false' }}"
echo "Building packages:"
echo " - unilabos-env (environment dependencies)"
echo " - unilabos (with pip package)"
if [[ "${{ github.event.inputs.build_full }}" == "true" ]]; then
echo " - unilabos-full (complete package)"
fi
echo "Building UniLabOS package"
- name: Build unilabos-env (conda environment only, noarch)
- name: Build conda package
if: steps.should_build.outputs.should_build == 'true'
run: |
echo "Building unilabos-env (conda environment dependencies)..."
rattler-build build -r .conda/environment/recipe.yaml -c uni-lab -c robostack-staging -c conda-forge
- name: Upload unilabos-env to Anaconda.org (if enabled)
if: steps.should_build.outputs.should_build == 'true' && github.event.inputs.upload_to_anaconda == 'true'
run: |
echo "Uploading unilabos-env to uni-lab organization..."
for package in $(find ./output -name "unilabos-env*.conda"); do
anaconda -t ${{ secrets.ANACONDA_API_TOKEN }} upload --user uni-lab --force "$package"
done
- name: Build unilabos (with pip package)
if: steps.should_build.outputs.should_build == 'true'
run: |
echo "Building unilabos package..."
# 如果已上传到 Anaconda从 uni-lab channel 获取 unilabos-env否则从本地 output 获取
rattler-build build -r .conda/base/recipe.yaml -c uni-lab -c robostack-staging -c conda-forge --channel ./output
- name: Upload unilabos to Anaconda.org (if enabled)
if: steps.should_build.outputs.should_build == 'true' && github.event.inputs.upload_to_anaconda == 'true'
run: |
echo "Uploading unilabos to uni-lab organization..."
for package in $(find ./output -name "unilabos-0*.conda" -o -name "unilabos-[0-9]*.conda"); do
anaconda -t ${{ secrets.ANACONDA_API_TOKEN }} upload --user uni-lab --force "$package"
done
- name: Build unilabos-full - Only when explicitly requested
if: |
steps.should_build.outputs.should_build == 'true' &&
github.event.inputs.build_full == 'true'
run: |
echo "Building unilabos-full package on ${{ matrix.platform }}..."
rattler-build build -r .conda/full/recipe.yaml -c uni-lab -c robostack-staging -c conda-forge --channel ./output
- name: Upload unilabos-full to Anaconda.org (if enabled)
if: |
steps.should_build.outputs.should_build == 'true' &&
github.event.inputs.build_full == 'true' &&
github.event.inputs.upload_to_anaconda == 'true'
run: |
echo "Uploading unilabos-full to uni-lab organization..."
for package in $(find ./output -name "unilabos-full*.conda"); do
anaconda -t ${{ secrets.ANACONDA_API_TOKEN }} upload --user uni-lab --force "$package"
done
rattler-build build -r .conda/recipe.yaml -c uni-lab -c robostack-staging -c conda-forge
- name: List built packages
if: steps.should_build.outputs.should_build == 'true'
@@ -195,9 +108,17 @@ jobs:
- name: Upload conda package artifacts
if: steps.should_build.outputs.should_build == 'true'
uses: actions/upload-artifact@v6
uses: actions/upload-artifact@v4
with:
name: conda-package-unilabos-${{ matrix.platform }}
path: conda-packages-temp
if-no-files-found: warn
retention-days: 30
- name: Upload to Anaconda.org (uni-lab organization)
if: github.event.inputs.upload_to_anaconda == 'true'
run: |
for package in $(find ./output -name "*.conda"); do
echo "Uploading $package to uni-lab organization..."
anaconda -t ${{ secrets.ANACONDA_API_TOKEN }} upload --user uni-lab --force "$package"
done

View File

@@ -1,5 +1,4 @@
recursive-include unilabos/test *
recursive-include unilabos/utils *
recursive-include unilabos/registry *.yaml
recursive-include unilabos/app/web/static *
recursive-include unilabos/app/web/templates *

View File

@@ -31,46 +31,26 @@ Detailed documentation can be found at:
## Quick Start
### 1. Setup Conda Environment
1. Setup Conda Environment
Uni-Lab-OS recommends using `mamba` for environment management. Choose the package that fits your needs:
| Package | Use Case | Contents |
|---------|----------|----------|
| `unilabos` | **Recommended for most users** | Complete package, ready to use |
| `unilabos-env` | Developers (editable install) | Environment only, install unilabos via pip |
| `unilabos-full` | Simulation/Visualization | unilabos + ROS2 Desktop + Gazebo + MoveIt |
Uni-Lab-OS recommends using `mamba` for environment management:
```bash
# Create new environment
mamba create -n unilab python=3.11.14
mamba create -n unilab python=3.11.11
mamba activate unilab
# Option A: Standard installation (recommended for most users)
mamba install uni-lab::unilabos -c robostack-staging -c conda-forge
# Option B: For developers (editable mode development)
mamba install uni-lab::unilabos-env -c robostack-staging -c conda-forge
# Then install unilabos and dependencies:
git clone https://github.com/deepmodeling/Uni-Lab-OS.git && cd Uni-Lab-OS
pip install -e .
uv pip install -r unilabos/utils/requirements.txt
# Option C: Full installation (simulation/visualization)
mamba install uni-lab::unilabos-full -c robostack-staging -c conda-forge
mamba install -n unilab uni-lab::unilabos -c robostack-staging -c conda-forge
```
**When to use which?**
- **unilabos**: Standard installation for production deployment and general usage (recommended)
- **unilabos-env**: For developers who need `pip install -e .` editable mode, modify source code
- **unilabos-full**: For simulation (Gazebo), visualization (rviz2), and Jupyter notebooks
### 2. Clone Repository (Optional, for developers)
2. Install Dev Uni-Lab-OS
```bash
# Clone the repository (only needed for development or examples)
# Clone the repository
git clone https://github.com/deepmodeling/Uni-Lab-OS.git
cd Uni-Lab-OS
# Install Uni-Lab-OS
pip install .
```
3. Start Uni-Lab System

View File

@@ -31,46 +31,26 @@ Uni-Lab-OS 是一个用于实验室自动化的综合平台,旨在连接和控
## 快速开始
### 1. 配置 Conda 环境
1. 配置 Conda 环境
Uni-Lab-OS 建议使用 `mamba` 管理环境。根据您的需求选择合适的安装包:
| 安装包 | 适用场景 | 包含内容 |
|--------|----------|----------|
| `unilabos` | **推荐大多数用户** | 完整安装包,开箱即用 |
| `unilabos-env` | 开发者(可编辑安装) | 仅环境依赖,通过 pip 安装 unilabos |
| `unilabos-full` | 仿真/可视化 | unilabos + ROS2 桌面版 + Gazebo + MoveIt |
Uni-Lab-OS 建议使用 `mamba` 管理环境。根据您的操作系统选择适当的环境文件:
```bash
# 创建新环境
mamba create -n unilab python=3.11.14
mamba create -n unilab python=3.11.11
mamba activate unilab
# 方案 A标准安装推荐大多数用户
mamba install uni-lab::unilabos -c robostack-staging -c conda-forge
# 方案 B开发者环境可编辑模式开发
mamba install uni-lab::unilabos-env -c robostack-staging -c conda-forge
# 然后安装 unilabos 和依赖:
git clone https://github.com/deepmodeling/Uni-Lab-OS.git && cd Uni-Lab-OS
pip install -e .
uv pip install -r unilabos/utils/requirements.txt
# 方案 C完整安装仿真/可视化)
mamba install uni-lab::unilabos-full -c robostack-staging -c conda-forge
mamba install -n unilab uni-lab::unilabos -c robostack-staging -c conda-forge
```
**如何选择?**
- **unilabos**:标准安装,适用于生产部署和日常使用(推荐)
- **unilabos-env**:开发者使用,支持 `pip install -e .` 可编辑模式,可修改源代码
- **unilabos-full**需要仿真Gazebo、可视化rviz2或 Jupyter Notebook
### 2. 克隆仓库(可选,供开发者使用)
2. 安装开发版 Uni-Lab-OS:
```bash
# 克隆仓库(仅开发或查看示例时需要)
# 克隆仓库
git clone https://github.com/deepmodeling/Uni-Lab-OS.git
cd Uni-Lab-OS
# 安装 Uni-Lab-OS
pip install .
```
3. 启动 Uni-Lab 系统

View File

@@ -31,14 +31,6 @@
详细的安装步骤请参考 [安装指南](installation.md)。
**选择合适的安装包:**
| 安装包 | 适用场景 | 包含组件 |
|--------|----------|----------|
| `unilabos` | **推荐大多数用户**,生产部署 | 完整安装包,开箱即用 |
| `unilabos-env` | 开发者(可编辑安装) | 仅环境依赖,通过 pip 安装 unilabos |
| `unilabos-full` | 仿真/可视化 | unilabos + 完整 ROS2 桌面版 + Gazebo + MoveIt |
**关键步骤:**
```bash
@@ -46,30 +38,15 @@
# 下载 Miniforge: https://github.com/conda-forge/miniforge/releases
# 2. 创建 Conda 环境
mamba create -n unilab python=3.11.14
mamba create -n unilab python=3.11.11
# 3. 激活环境
mamba activate unilab
# 4. 安装 Uni-Lab-OS(选择其一)
# 方案 A标准安装推荐大多数用户
# 4. 安装 Uni-Lab-OS
mamba install uni-lab::unilabos -c robostack-staging -c conda-forge
# 方案 B开发者环境可编辑模式开发
mamba install uni-lab::unilabos-env -c robostack-staging -c conda-forge
pip install -e /path/to/Uni-Lab-OS # 可编辑安装
uv pip install -r unilabos/utils/requirements.txt # 安装 pip 依赖
# 方案 C完整版仿真/可视化)
mamba install uni-lab::unilabos-full -c robostack-staging -c conda-forge
```
**选择建议:**
- **日常使用/生产部署**:使用 `unilabos`(推荐),完整功能,开箱即用
- **开发者**:使用 `unilabos-env` + `pip install -e .` + `uv pip install -r unilabos/utils/requirements.txt`,代码修改立即生效
- **仿真/可视化**:使用 `unilabos-full`,含 Gazebo、rviz2、MoveIt
#### 1.2 验证安装
```bash
@@ -439,9 +416,6 @@ unilab --ak your_ak --sk your_sk -g test/experiments/mock_devices/mock_all.json
1. 访问 Web 界面,进入"仪器耗材"模块
2. 在"仪器设备"区域找到并添加上述设备
3. 在"物料耗材"区域找到并添加容器
4. 在workstation中配置protocol_type包含PumpTransferProtocol
![添加Protocol类型](image/add_protocol.png)
![物料列表](image/material.png)
@@ -794,43 +768,7 @@ Waiting for host service...
详细的设备驱动编写指南请参考 [添加设备驱动](../developer_guide/add_device.md)。
#### 9.1 开发环境准备
**推荐使用 `unilabos-env` + `pip install -e .` + `uv pip install`** 进行设备开发:
```bash
# 1. 创建环境并安装 unilabos-envROS2 + conda 依赖 + uv
mamba create -n unilab python=3.11.14
conda activate unilab
mamba install uni-lab::unilabos-env -c robostack-staging -c conda-forge
# 2. 克隆代码
git clone https://github.com/deepmodeling/Uni-Lab-OS.git
cd Uni-Lab-OS
# 3. 以可编辑模式安装(推荐使用脚本,自动检测中文环境)
python scripts/dev_install.py
# 或手动安装:
pip install -e .
uv pip install -r unilabos/utils/requirements.txt
```
**为什么使用这种方式?**
- `unilabos-env` 提供 ROS2 核心组件和 uv通过 conda 安装,避免编译)
- `unilabos/utils/requirements.txt` 包含所有运行时需要的 pip 依赖
- `dev_install.py` 自动检测中文环境,中文系统自动使用清华镜像
- 使用 `uv` 替代 `pip`,安装速度更快
- 可编辑模式:代码修改**立即生效**,无需重新安装
**如果安装失败或速度太慢**,可以手动执行(使用清华镜像):
```bash
pip install -e . -i https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple
uv pip install -r unilabos/utils/requirements.txt -i https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple
```
#### 9.2 为什么需要自定义设备?
#### 9.1 为什么需要自定义设备?
Uni-Lab-OS 内置了常见设备,但您的实验室可能有特殊设备需要集成:
@@ -839,7 +777,7 @@ Uni-Lab-OS 内置了常见设备,但您的实验室可能有特殊设备需要
- 特殊的实验流程
- 第三方设备集成
#### 9.3 创建 Python 包
#### 9.2 创建 Python 包
为了方便开发和管理,建议为您的实验室创建独立的 Python 包。
@@ -876,7 +814,7 @@ touch my_lab_devices/my_lab_devices/__init__.py
touch my_lab_devices/my_lab_devices/devices/__init__.py
```
#### 9.4 创建 setup.py
#### 9.3 创建 setup.py
```python
# my_lab_devices/setup.py
@@ -907,7 +845,7 @@ setup(
)
```
#### 9.5 开发安装
#### 9.4 开发安装
使用 `-e` 参数进行可编辑安装,这样代码修改后立即生效:
@@ -922,7 +860,7 @@ pip install -e . -i https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple
- 方便调试和测试
- 支持版本控制git
#### 9.6 编写设备驱动
#### 9.5 编写设备驱动
创建设备驱动文件:
@@ -1063,7 +1001,7 @@ class MyPump:
- **返回 Dict**:所有动作方法返回字典类型
- **文档字符串**:详细说明参数和功能
#### 9.7 测试设备驱动
#### 9.6 测试设备驱动
创建简单的测试脚本:

Binary file not shown.

Before

Width:  |  Height:  |  Size: 81 KiB

View File

@@ -13,26 +13,15 @@
- 开发者需要 Git 和基本的 Python 开发知识
- 自定义 msgs 需要 GitHub 账号
## 安装包选择
Uni-Lab-OS 提供三个安装包版本,根据您的需求选择:
| 安装包 | 适用场景 | 包含组件 | 磁盘占用 |
|--------|----------|----------|----------|
| **unilabos** | **推荐大多数用户**,生产部署 | 完整安装包,开箱即用 | ~2-3 GB |
| **unilabos-env** | 开发者环境(可编辑安装) | 仅环境依赖,通过 pip 安装 unilabos | ~2 GB |
| **unilabos-full** | 仿真可视化、完整功能体验 | unilabos + 完整 ROS2 桌面版 + Gazebo + MoveIt | ~8-10 GB |
## 安装方式选择
根据您的使用场景,选择合适的安装方式:
| 安装方式 | 适用人群 | 推荐安装包 | 特点 | 安装时间 |
| ---------------------- | -------------------- | ----------------- | ------------------------------ | ---------------------------- |
| **方式一:一键安装** | 快速体验、演示 | 预打包环境 | 离线可用,无需配置 | 5-10 分钟 (网络良好的情况下) |
| **方式二:手动安装** | **大多数用户** | `unilabos` | 完整功能,开箱即用 | 10-20 分钟 |
| **方式三:开发者安装** | 开发者、需要修改源码 | `unilabos-env` | 可编辑模式,支持自定义开发 | 20-30 分钟 |
| **仿真/可视化** | 仿真测试、可视化调试 | `unilabos-full` | 含 Gazebo、rviz2、MoveIt | 30-60 分钟 |
| 安装方式 | 适用人群 | 特点 | 安装时间 |
| ---------------------- | -------------------- | ------------------------------ | ---------------------------- |
| **方式一:一键安装** | 实验室用户、快速体验 | 预打包环境,离线可用,无需配置 | 5-10 分钟 (网络良好的情况下) |
| **方式二:手动安装** | 标准用户、生产环境 | 灵活配置,版本可控 | 10-20 分钟 |
| **方式三:开发者安装** | 开发者、需要修改源码 | 可编辑模式,支持自定义 msgs | 20-30 分钟 |
---
@@ -155,38 +144,17 @@ bash Miniforge3-$(uname)-$(uname -m).sh
使用以下命令创建 Uni-Lab 专用环境:
```bash
mamba create -n unilab python=3.11.14 # 目前ros2组件依赖版本大多为3.11.14
mamba create -n unilab python=3.11.11 # 目前ros2组件依赖版本大多为3.11.11
mamba activate unilab
# 选择安装包(三选一):
# 方案 A标准安装推荐大多数用户
mamba install uni-lab::unilabos -c robostack-staging -c conda-forge
# 方案 B开发者环境可编辑模式开发
mamba install uni-lab::unilabos-env -c robostack-staging -c conda-forge
# 然后安装 unilabos 和 pip 依赖:
git clone https://github.com/deepmodeling/Uni-Lab-OS.git && cd Uni-Lab-OS
pip install -e .
uv pip install -r unilabos/utils/requirements.txt
# 方案 C完整版含仿真和可视化工具
mamba install uni-lab::unilabos-full -c robostack-staging -c conda-forge
mamba install -n unilab uni-lab::unilabos -c robostack-staging -c conda-forge
```
**参数说明**:
- `-n unilab`: 创建名为 "unilab" 的环境
- `uni-lab::unilabos`: 安装 unilabos 完整包,开箱即用(推荐)
- `uni-lab::unilabos-env`: 仅安装环境依赖,适合开发者使用 `pip install -e .`
- `uni-lab::unilabos-full`: 安装完整包(含 ROS2 Desktop、Gazebo、MoveIt 等)
- `uni-lab::unilabos`: 从 uni-lab channel 安装 unilabos 包
- `-c robostack-staging -c conda-forge`: 添加额外的软件源
**包选择建议**
- **日常使用/生产部署**:安装 `unilabos`(推荐,完整功能,开箱即用)
- **开发者**:安装 `unilabos-env`,然后使用 `uv pip install -r unilabos/utils/requirements.txt` 安装依赖,再 `pip install -e .` 进行可编辑安装
- **仿真/可视化**:安装 `unilabos-full`Gazebo、rviz2、MoveIt
**如果遇到网络问题**,可以使用清华镜像源加速下载:
```bash
@@ -195,14 +163,8 @@ mamba config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/m
mamba config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
mamba config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
# 然后重新执行安装命令(推荐标准安装)
# 然后重新执行安装命令
mamba create -n unilab uni-lab::unilabos -c robostack-staging
# 或完整版(仿真/可视化)
mamba create -n unilab uni-lab::unilabos-full -c robostack-staging
# pip 安装时使用清华镜像(开发者安装时使用)
uv pip install -r unilabos/utils/requirements.txt -i https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple
```
### 第三步:激活环境
@@ -241,87 +203,58 @@ cd Uni-Lab-OS
cd Uni-Lab-OS
```
### 第二步:安装开发环境unilabos-env
### 第二步:安装基础环境
**重要**:开发者请使用 `unilabos-env` 包,它专为开发者设计:
- 包含 ROS2 核心组件和消息包ros-humble-ros-core、std-msgs、geometry-msgs 等)
- 包含 transforms3d、cv-bridge、tf2 等 conda 依赖
- 包含 `uv` 工具,用于快速安装 pip 依赖
- **不包含** pip 依赖和 unilabos 包(由 `pip install -e .` 和 `uv pip install` 安装)
**推荐方式**:先通过**方式一(一键安装)**或**方式二(手动安装)**完成基础环境的安装这将包含所有必需的依赖项ROS2、msgs 等)。
#### 选项 A通过一键安装推荐
参考上文"方式一:一键安装",完成基础环境的安装后,激活环境:
```bash
# 创建并激活环境
mamba create -n unilab python=3.11.14
conda activate unilab
# 安装开发者环境包ROS2 + conda 依赖 + uv
mamba install uni-lab::unilabos-env -c robostack-staging -c conda-forge
```
### 第三步:安装 pip 依赖和可编辑模式安装
#### 选项 B通过手动安装
克隆代码并安装依赖
参考上文"方式二:手动安装",创建并安装环境
```bash
mamba create -n unilab python=3.11.11
conda activate unilab
mamba install -n unilab uni-lab::unilabos -c robostack-staging -c conda-forge
```
**说明**:这会安装包括 Python 3.11.11、ROS2 Humble、ros-humble-unilabos-msgs 和所有必需依赖
### 第三步:切换到开发版本
现在你已经有了一个完整可用的 Uni-Lab 环境,接下来将 unilabos 包切换为开发版本:
```bash
# 确保环境已激活
conda activate unilab
# 克隆仓库(如果还未克隆
git clone https://github.com/deepmodeling/Uni-Lab-OS.git
cd Uni-Lab-OS
# 卸载 pip 安装的 unilabos保留所有 conda 依赖
pip uninstall unilabos -y
# 切换到 dev 分支(可选
# 克隆 dev 分支(如果还未克隆
cd /path/to/your/workspace
git clone -b dev https://github.com/deepmodeling/Uni-Lab-OS.git
# 或者如果已经克隆,切换到 dev 分支
cd Uni-Lab-OS
git checkout dev
git pull
```
**推荐:使用安装脚本**(自动检测中文环境,使用 uv 加速):
```bash
# 自动检测中文环境,如果是中文系统则使用清华镜像
python scripts/dev_install.py
# 或者手动指定:
python scripts/dev_install.py --china # 强制使用清华镜像
python scripts/dev_install.py --no-mirror # 强制使用 PyPI
python scripts/dev_install.py --skip-deps # 跳过 pip 依赖安装
python scripts/dev_install.py --use-pip # 使用 pip 而非 uv
```
**手动安装**(如果脚本安装失败或速度太慢):
```bash
# 1. 安装 unilabos可编辑模式
pip install -e .
# 2. 使用 uv 安装 pip 依赖(推荐,速度更快)
uv pip install -r unilabos/utils/requirements.txt
# 国内用户使用清华镜像:
# 以可编辑模式安装开发版 unilabos
pip install -e . -i https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple
uv pip install -r unilabos/utils/requirements.txt -i https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple
```
**注意**
- `uv` 已包含在 `unilabos-env` 中,无需单独安装
- `unilabos/utils/requirements.txt` 包含运行 unilabos 所需的所有 pip 依赖
- 部分特殊包(如 pylabrobot会在运行时由 unilabos 自动检测并安装
**参数说明**
**为什么使用可编辑模式?**
- `-e` (editable mode):代码修改**立即生效**,无需重新安装
- 适合开发调试:修改代码后直接运行测试
- 与 `unilabos-env` 配合:环境依赖由 conda 管理unilabos 代码由 pip 管理
**验证安装**
```bash
# 检查 unilabos 版本
python -c "import unilabos; print(unilabos.__version__)"
# 检查安装位置(应该指向你的代码目录)
pip show unilabos | grep Location
```
- `-e`: editable mode可编辑模式代码修改立即生效无需重新安装
- `-i`: 使用清华镜像源加速下载
- `pip uninstall unilabos`: 只卸载 pip 安装的 unilabos 包,不影响 conda 安装的其他依赖(如 ROS2、msgs 等)
### 第四步:安装或自定义 ros-humble-unilabos-msgs可选
@@ -531,45 +464,7 @@ cd $CONDA_PREFIX/envs/unilab
### 问题 8: 环境很大,有办法减小吗?
**解决方案**:
1. **使用 `unilabos` 标准版**(推荐大多数用户):
```bash
mamba install uni-lab::unilabos -c robostack-staging -c conda-forge
```
标准版包含完整功能,环境大小约 2-3GB相比完整版的 8-10GB
2. **使用 `unilabos-env` 开发者版**(最小化):
```bash
mamba install uni-lab::unilabos-env -c robostack-staging -c conda-forge
# 然后手动安装依赖
pip install -e .
uv pip install -r unilabos/utils/requirements.txt
```
开发者版只包含环境依赖,体积最小约 2GB。
3. **按需安装额外组件**
如果后续需要特定功能,可以单独安装:
```bash
# 需要 Jupyter
mamba install jupyter jupyros
# 需要可视化
mamba install matplotlib opencv
# 需要仿真(注意:这会安装大量依赖)
mamba install ros-humble-gazebo-ros
```
4. **预打包环境问题**
预打包环境(方式一)包含所有依赖,通常较大(压缩后 2-5GB。这是为了确保离线安装和完整功能。
**包选择建议**
| 需求 | 推荐包 | 预估大小 |
|------|--------|----------|
| 日常使用/生产部署 | `unilabos` | ~2-3 GB |
| 开发调试(可编辑模式) | `unilabos-env` | ~2 GB |
| 仿真/可视化 | `unilabos-full` | ~8-10 GB |
**解决方案**: 预打包的环境包含所有依赖,通常较大(压缩后 2-5GB。这是为了确保离线安装和完整功能。如果空间有限考虑使用方式二手动安装只安装需要的组件。
### 问题 9: 如何更新到最新版本?
@@ -616,7 +511,6 @@ mamba update ros-humble-unilabos-msgs -c uni-lab -c robostack-staging -c conda-f
**提示**:
- **大多数用户**推荐使用方式二(手动安装)的 `unilabos` 标准版
- **开发者**推荐使用方式三(开发者安装),安装 `unilabos-env` 后使用 `uv pip install -r unilabos/utils/requirements.txt` 安装依赖
- **仿真/可视化**推荐安装 `unilabos-full` 完整版
- **快速体验和演示**推荐使用方式一(一键安装)
- 生产环境推荐使用方式二(手动安装)的稳定版本
- 开发和测试推荐使用方式三(开发者安装)
- 快速体验和演示推荐使用方式一(一键安装)

View File

@@ -1,6 +1,6 @@
package:
name: ros-humble-unilabos-msgs
version: 0.10.17
version: 0.10.15
source:
path: ../../unilabos_msgs
target_directory: src
@@ -25,7 +25,7 @@ requirements:
build:
- ${{ compiler('cxx') }}
- ${{ compiler('c') }}
- python ==3.11.14
- python ==3.11.11
- numpy
- if: build_platform != target_platform
then:
@@ -63,14 +63,14 @@ requirements:
- robostack-staging::ros-humble-rosidl-default-generators
- robostack-staging::ros-humble-std-msgs
- robostack-staging::ros-humble-geometry-msgs
- robostack-staging::ros2-distro-mutex=0.7
- robostack-staging::ros2-distro-mutex=0.6
run:
- robostack-staging::ros-humble-action-msgs
- robostack-staging::ros-humble-ros-workspace
- robostack-staging::ros-humble-rosidl-default-runtime
- robostack-staging::ros-humble-std-msgs
- robostack-staging::ros-humble-geometry-msgs
- robostack-staging::ros2-distro-mutex=0.7
- robostack-staging::ros2-distro-mutex=0.6
- if: osx and x86_64
then:
- __osx >=${{ MACOSX_DEPLOYMENT_TARGET|default('10.14') }}

View File

@@ -1,6 +1,6 @@
package:
name: unilabos
version: "0.10.17"
version: "0.10.15"
source:
path: ../..

View File

@@ -85,7 +85,7 @@ Verification:
-------------
The verify_installation.py script will check:
- Python version (3.11.14)
- Python version (3.11.11)
- ROS2 rclpy installation
- UniLabOS installation and dependencies
@@ -104,7 +104,7 @@ Build Information:
Branch: {branch}
Platform: {platform}
Python: 3.11.14
Python: 3.11.11
Date: {build_date}
Troubleshooting:

View File

@@ -1,214 +0,0 @@
#!/usr/bin/env python3
"""
Development installation script for UniLabOS.
Auto-detects Chinese locale and uses appropriate mirror.
Usage:
python scripts/dev_install.py
python scripts/dev_install.py --no-mirror # Force no mirror
python scripts/dev_install.py --china # Force China mirror
python scripts/dev_install.py --skip-deps # Skip pip dependencies installation
Flow:
1. pip install -e . (install unilabos in editable mode)
2. Detect Chinese locale
3. Use uv to install pip dependencies from requirements.txt
4. Special packages (like pylabrobot) are handled by environment_check.py at runtime
"""
import locale
import subprocess
import sys
import argparse
from pathlib import Path
# Tsinghua mirror URL
TSINGHUA_MIRROR = "https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple"
def is_chinese_locale() -> bool:
"""
Detect if system is in Chinese locale.
Same logic as EnvironmentChecker._is_chinese_locale()
"""
try:
lang = locale.getdefaultlocale()[0]
if lang and ("zh" in lang.lower() or "chinese" in lang.lower()):
return True
except Exception:
pass
return False
def run_command(cmd: list, description: str, retry: int = 2) -> bool:
"""Run command with retry support."""
print(f"[INFO] {description}")
print(f"[CMD] {' '.join(cmd)}")
for attempt in range(retry + 1):
try:
result = subprocess.run(cmd, check=True, timeout=600)
print(f"[OK] {description}")
return True
except subprocess.CalledProcessError as e:
if attempt < retry:
print(f"[WARN] Attempt {attempt + 1} failed, retrying...")
else:
print(f"[ERROR] {description} failed: {e}")
return False
except subprocess.TimeoutExpired:
print(f"[ERROR] {description} timed out")
return False
return False
def install_editable(project_root: Path, use_mirror: bool) -> bool:
"""Install unilabos in editable mode using pip."""
cmd = [sys.executable, "-m", "pip", "install", "-e", str(project_root)]
if use_mirror:
cmd.extend(["-i", TSINGHUA_MIRROR])
return run_command(cmd, "Installing unilabos in editable mode")
def install_requirements_uv(requirements_file: Path, use_mirror: bool) -> bool:
"""Install pip dependencies using uv (installed via conda-forge::uv)."""
cmd = ["uv", "pip", "install", "-r", str(requirements_file)]
if use_mirror:
cmd.extend(["-i", TSINGHUA_MIRROR])
return run_command(cmd, "Installing pip dependencies with uv", retry=2)
def install_requirements_pip(requirements_file: Path, use_mirror: bool) -> bool:
"""Fallback: Install pip dependencies using pip."""
cmd = [sys.executable, "-m", "pip", "install", "-r", str(requirements_file)]
if use_mirror:
cmd.extend(["-i", TSINGHUA_MIRROR])
return run_command(cmd, "Installing pip dependencies with pip", retry=2)
def check_uv_available() -> bool:
"""Check if uv is available (installed via conda-forge::uv)."""
try:
subprocess.run(["uv", "--version"], capture_output=True, check=True)
return True
except (subprocess.CalledProcessError, FileNotFoundError):
return False
def main():
parser = argparse.ArgumentParser(description="Development installation script for UniLabOS")
parser.add_argument("--china", action="store_true", help="Force use China mirror (Tsinghua)")
parser.add_argument("--no-mirror", action="store_true", help="Force use default PyPI (no mirror)")
parser.add_argument(
"--skip-deps", action="store_true", help="Skip pip dependencies installation (only install unilabos)"
)
parser.add_argument("--use-pip", action="store_true", help="Use pip instead of uv for dependencies")
args = parser.parse_args()
# Determine project root
script_dir = Path(__file__).parent
project_root = script_dir.parent
requirements_file = project_root / "unilabos" / "utils" / "requirements.txt"
if not (project_root / "setup.py").exists():
print(f"[ERROR] setup.py not found in {project_root}")
sys.exit(1)
print("=" * 60)
print("UniLabOS Development Installation")
print("=" * 60)
print(f"Project root: {project_root}")
print()
# Determine mirror usage based on locale
if args.no_mirror:
use_mirror = False
print("[INFO] Mirror disabled by --no-mirror flag")
elif args.china:
use_mirror = True
print("[INFO] China mirror enabled by --china flag")
else:
use_mirror = is_chinese_locale()
if use_mirror:
print("[INFO] Chinese locale detected, using Tsinghua mirror")
else:
print("[INFO] Non-Chinese locale detected, using default PyPI")
print()
# Step 1: Install unilabos in editable mode
print("[STEP 1] Installing unilabos in editable mode...")
if not install_editable(project_root, use_mirror):
print("[ERROR] Failed to install unilabos")
print()
print("Manual fallback:")
if use_mirror:
print(f" pip install -e {project_root} -i {TSINGHUA_MIRROR}")
else:
print(f" pip install -e {project_root}")
sys.exit(1)
print()
# Step 2: Install pip dependencies
if args.skip_deps:
print("[INFO] Skipping pip dependencies installation (--skip-deps)")
else:
print("[STEP 2] Installing pip dependencies...")
if not requirements_file.exists():
print(f"[WARN] Requirements file not found: {requirements_file}")
print("[INFO] Skipping dependencies installation")
else:
# Try uv first (faster), fallback to pip
if args.use_pip:
print("[INFO] Using pip (--use-pip flag)")
success = install_requirements_pip(requirements_file, use_mirror)
elif check_uv_available():
print("[INFO] Using uv (installed via conda-forge::uv)")
success = install_requirements_uv(requirements_file, use_mirror)
if not success:
print("[WARN] uv failed, falling back to pip...")
success = install_requirements_pip(requirements_file, use_mirror)
else:
print("[WARN] uv not available (should be installed via: mamba install conda-forge::uv)")
print("[INFO] Falling back to pip...")
success = install_requirements_pip(requirements_file, use_mirror)
if not success:
print()
print("[WARN] Failed to install some dependencies automatically.")
print("You can manually install them:")
if use_mirror:
print(f" uv pip install -r {requirements_file} -i {TSINGHUA_MIRROR}")
print(" or:")
print(f" pip install -r {requirements_file} -i {TSINGHUA_MIRROR}")
else:
print(f" uv pip install -r {requirements_file}")
print(" or:")
print(f" pip install -r {requirements_file}")
print()
print("=" * 60)
print("Installation complete!")
print("=" * 60)
print()
print("Note: Some special packages (like pylabrobot) are installed")
print("automatically at runtime by unilabos if needed.")
print()
print("Verify installation:")
print(' python -c "import unilabos; print(unilabos.__version__)"')
print()
print("If you encounter issues, you can manually install dependencies:")
if use_mirror:
print(f" uv pip install -r unilabos/utils/requirements.txt -i {TSINGHUA_MIRROR}")
else:
print(" uv pip install -r unilabos/utils/requirements.txt")
print()
if __name__ == "__main__":
main()

View File

@@ -4,7 +4,7 @@ package_name = 'unilabos'
setup(
name=package_name,
version='0.10.17',
version='0.10.15',
packages=find_packages(),
include_package_data=True,
install_requires=['setuptools'],

View File

@@ -1,15 +0,0 @@
# Liquid handling 集成测试
`test_transfer_liquid.py` 现在会调用 PRCXI 的 RViz 仿真 backend运行前请确保
1. 已安装包含 `pylabrobot``rclpy` 的运行环境;
2. 启动 ROS 依赖(`rviz` 可选,但是 `rviz_backend` 会创建 ROS 节点);
3. 在 shell 中设置 `UNILAB_SIM_TEST=1`,否则 pytest 会自动跳过这些慢速用例:
```bash
export UNILAB_SIM_TEST=1
pytest tests/devices/liquid_handling/test_transfer_liquid.py -m slow
```
如果只需验证逻辑层(不依赖仿真),可以直接运行 `tests/devices/liquid_handling/unit_test.py`,该文件使用 Fake backend适合作为 CI 的快速测试。***

View File

@@ -1,547 +0,0 @@
import asyncio
from dataclasses import dataclass
from typing import Any, Iterable, List, Optional, Sequence, Tuple
import pytest
from unilabos.devices.liquid_handling.liquid_handler_abstract import LiquidHandlerAbstract
@dataclass(frozen=True)
class DummyContainer:
name: str
def __repr__(self) -> str: # pragma: no cover
return f"DummyContainer({self.name})"
@dataclass(frozen=True)
class DummyTipSpot:
name: str
def __repr__(self) -> str: # pragma: no cover
return f"DummyTipSpot({self.name})"
def make_tip_iter(n: int = 256) -> Iterable[List[DummyTipSpot]]:
"""Yield lists so code can safely call `tip.extend(next(self.current_tip))`."""
for i in range(n):
yield [DummyTipSpot(f"tip_{i}")]
class FakeLiquidHandler(LiquidHandlerAbstract):
"""不初始化真实 backend/deck仅用来记录 transfer_liquid 内部调用序列。"""
def __init__(self, channel_num: int = 8):
# 不调用 super().__init__避免真实硬件/后端依赖
self.channel_num = channel_num
self.support_touch_tip = True
self.current_tip = iter(make_tip_iter())
self.calls: List[Tuple[str, Any]] = []
async def pick_up_tips(self, tip_spots, use_channels=None, offsets=None, **backend_kwargs):
self.calls.append(("pick_up_tips", {"tips": list(tip_spots), "use_channels": use_channels}))
async def aspirate(
self,
resources: Sequence[Any],
vols: List[float],
use_channels: Optional[List[int]] = None,
flow_rates: Optional[List[Optional[float]]] = None,
offsets: Any = None,
liquid_height: Any = None,
blow_out_air_volume: Any = None,
spread: str = "wide",
**backend_kwargs,
):
self.calls.append(
(
"aspirate",
{
"resources": list(resources),
"vols": list(vols),
"use_channels": list(use_channels) if use_channels is not None else None,
"flow_rates": list(flow_rates) if flow_rates is not None else None,
"offsets": list(offsets) if offsets is not None else None,
"liquid_height": list(liquid_height) if liquid_height is not None else None,
"blow_out_air_volume": list(blow_out_air_volume) if blow_out_air_volume is not None else None,
},
)
)
async def dispense(
self,
resources: Sequence[Any],
vols: List[float],
use_channels: Optional[List[int]] = None,
flow_rates: Optional[List[Optional[float]]] = None,
offsets: Any = None,
liquid_height: Any = None,
blow_out_air_volume: Any = None,
spread: str = "wide",
**backend_kwargs,
):
self.calls.append(
(
"dispense",
{
"resources": list(resources),
"vols": list(vols),
"use_channels": list(use_channels) if use_channels is not None else None,
"flow_rates": list(flow_rates) if flow_rates is not None else None,
"offsets": list(offsets) if offsets is not None else None,
"liquid_height": list(liquid_height) if liquid_height is not None else None,
"blow_out_air_volume": list(blow_out_air_volume) if blow_out_air_volume is not None else None,
},
)
)
async def discard_tips(self, use_channels=None, *args, **kwargs):
# 有的分支是 discard_tips(use_channels=[0]),有的分支是 discard_tips([0..7])(位置参数)
self.calls.append(("discard_tips", {"use_channels": list(use_channels) if use_channels is not None else None}))
async def custom_delay(self, seconds=0, msg=None):
self.calls.append(("custom_delay", {"seconds": seconds, "msg": msg}))
async def touch_tip(self, targets):
# 原实现会访问 targets.get_size_x() 等;测试里只记录调用
self.calls.append(("touch_tip", {"targets": targets}))
def run(coro):
return asyncio.run(coro)
def test_one_to_one_single_channel_basic_calls():
lh = FakeLiquidHandler(channel_num=1)
lh.current_tip = iter(make_tip_iter(64))
sources = [DummyContainer(f"S{i}") for i in range(3)]
targets = [DummyContainer(f"T{i}") for i in range(3)]
run(
lh.transfer_liquid(
sources=sources,
targets=targets,
tip_racks=[],
use_channels=[0],
asp_vols=[1, 2, 3],
dis_vols=[4, 5, 6],
mix_times=None, # 应该仍能执行(不 mix
)
)
assert [c[0] for c in lh.calls].count("pick_up_tips") == 3
assert [c[0] for c in lh.calls].count("aspirate") == 3
assert [c[0] for c in lh.calls].count("dispense") == 3
assert [c[0] for c in lh.calls].count("discard_tips") == 3
# 每次 aspirate/dispense 都是单孔列表
aspirates = [payload for name, payload in lh.calls if name == "aspirate"]
assert aspirates[0]["resources"] == [sources[0]]
assert aspirates[0]["vols"] == [1.0]
dispenses = [payload for name, payload in lh.calls if name == "dispense"]
assert dispenses[2]["resources"] == [targets[2]]
assert dispenses[2]["vols"] == [6.0]
def test_one_to_one_single_channel_before_stage_mixes_prior_to_aspirate():
lh = FakeLiquidHandler(channel_num=1)
lh.current_tip = iter(make_tip_iter(16))
source = DummyContainer("S0")
target = DummyContainer("T0")
run(
lh.transfer_liquid(
sources=[source],
targets=[target],
tip_racks=[],
use_channels=[0],
asp_vols=[5],
dis_vols=[5],
mix_stage="before",
mix_times=1,
mix_vol=3,
)
)
aspirate_calls = [(idx, payload) for idx, (name, payload) in enumerate(lh.calls) if name == "aspirate"]
assert len(aspirate_calls) >= 2
mix_idx, mix_payload = aspirate_calls[0]
assert mix_payload["resources"] == [target]
assert mix_payload["vols"] == [3]
transfer_idx, transfer_payload = aspirate_calls[1]
assert transfer_payload["resources"] == [source]
assert mix_idx < transfer_idx
def test_one_to_one_eight_channel_groups_by_8():
lh = FakeLiquidHandler(channel_num=8)
lh.current_tip = iter(make_tip_iter(256))
sources = [DummyContainer(f"S{i}") for i in range(16)]
targets = [DummyContainer(f"T{i}") for i in range(16)]
asp_vols = list(range(1, 17))
dis_vols = list(range(101, 117))
run(
lh.transfer_liquid(
sources=sources,
targets=targets,
tip_racks=[],
use_channels=list(range(8)),
asp_vols=asp_vols,
dis_vols=dis_vols,
mix_times=0, # 触发逻辑但不 mix
)
)
# 16 个任务 -> 2 组,每组 8 通道一起做
assert [c[0] for c in lh.calls].count("pick_up_tips") == 2
aspirates = [payload for name, payload in lh.calls if name == "aspirate"]
dispenses = [payload for name, payload in lh.calls if name == "dispense"]
assert len(aspirates) == 2
assert len(dispenses) == 2
assert aspirates[0]["resources"] == sources[0:8]
assert aspirates[0]["vols"] == [float(v) for v in asp_vols[0:8]]
assert dispenses[1]["resources"] == targets[8:16]
assert dispenses[1]["vols"] == [float(v) for v in dis_vols[8:16]]
def test_one_to_one_eight_channel_requires_multiple_of_8_targets():
lh = FakeLiquidHandler(channel_num=8)
lh.current_tip = iter(make_tip_iter(64))
sources = [DummyContainer(f"S{i}") for i in range(9)]
targets = [DummyContainer(f"T{i}") for i in range(9)]
with pytest.raises(ValueError, match="multiple of 8"):
run(
lh.transfer_liquid(
sources=sources,
targets=targets,
tip_racks=[],
use_channels=list(range(8)),
asp_vols=[1] * 9,
dis_vols=[1] * 9,
mix_times=0,
)
)
def test_one_to_one_eight_channel_parameter_lists_are_chunked_per_8():
lh = FakeLiquidHandler(channel_num=8)
lh.current_tip = iter(make_tip_iter(512))
sources = [DummyContainer(f"S{i}") for i in range(16)]
targets = [DummyContainer(f"T{i}") for i in range(16)]
asp_vols = [i + 1 for i in range(16)]
dis_vols = [200 + i for i in range(16)]
asp_flow_rates = [0.1 * (i + 1) for i in range(16)]
dis_flow_rates = [0.2 * (i + 1) for i in range(16)]
offsets = [f"offset_{i}" for i in range(16)]
liquid_heights = [i * 0.5 for i in range(16)]
blow_out_air_volume = [i + 0.05 for i in range(16)]
run(
lh.transfer_liquid(
sources=sources,
targets=targets,
tip_racks=[],
use_channels=list(range(8)),
asp_vols=asp_vols,
dis_vols=dis_vols,
asp_flow_rates=asp_flow_rates,
dis_flow_rates=dis_flow_rates,
offsets=offsets,
liquid_height=liquid_heights,
blow_out_air_volume=blow_out_air_volume,
mix_times=0,
)
)
aspirates = [payload for name, payload in lh.calls if name == "aspirate"]
dispenses = [payload for name, payload in lh.calls if name == "dispense"]
assert len(aspirates) == len(dispenses) == 2
for batch_idx in range(2):
start = batch_idx * 8
end = start + 8
asp_call = aspirates[batch_idx]
dis_call = dispenses[batch_idx]
assert asp_call["resources"] == sources[start:end]
assert asp_call["flow_rates"] == asp_flow_rates[start:end]
assert asp_call["offsets"] == offsets[start:end]
assert asp_call["liquid_height"] == liquid_heights[start:end]
assert asp_call["blow_out_air_volume"] == blow_out_air_volume[start:end]
assert dis_call["flow_rates"] == dis_flow_rates[start:end]
assert dis_call["offsets"] == offsets[start:end]
assert dis_call["liquid_height"] == liquid_heights[start:end]
assert dis_call["blow_out_air_volume"] == blow_out_air_volume[start:end]
def test_one_to_one_eight_channel_handles_32_tasks_four_batches():
lh = FakeLiquidHandler(channel_num=8)
lh.current_tip = iter(make_tip_iter(1024))
sources = [DummyContainer(f"S{i}") for i in range(32)]
targets = [DummyContainer(f"T{i}") for i in range(32)]
asp_vols = [i + 1 for i in range(32)]
dis_vols = [300 + i for i in range(32)]
run(
lh.transfer_liquid(
sources=sources,
targets=targets,
tip_racks=[],
use_channels=list(range(8)),
asp_vols=asp_vols,
dis_vols=dis_vols,
mix_times=0,
)
)
pick_calls = [name for name, _ in lh.calls if name == "pick_up_tips"]
aspirates = [payload for name, payload in lh.calls if name == "aspirate"]
dispenses = [payload for name, payload in lh.calls if name == "dispense"]
assert len(pick_calls) == 4
assert len(aspirates) == len(dispenses) == 4
assert aspirates[0]["resources"] == sources[0:8]
assert aspirates[-1]["resources"] == sources[24:32]
assert dispenses[0]["resources"] == targets[0:8]
assert dispenses[-1]["resources"] == targets[24:32]
def test_one_to_many_single_channel_aspirates_total_when_asp_vol_too_small():
lh = FakeLiquidHandler(channel_num=1)
lh.current_tip = iter(make_tip_iter(64))
source = DummyContainer("SRC")
targets = [DummyContainer(f"T{i}") for i in range(3)]
dis_vols = [10, 20, 30] # sum=60
run(
lh.transfer_liquid(
sources=[source],
targets=targets,
tip_racks=[],
use_channels=[0],
asp_vols=10, # 小于 sum(dis_vols) -> 应吸 60
dis_vols=dis_vols,
mix_times=0,
)
)
aspirates = [payload for name, payload in lh.calls if name == "aspirate"]
assert len(aspirates) == 1
assert aspirates[0]["resources"] == [source]
assert aspirates[0]["vols"] == [60.0]
assert aspirates[0]["use_channels"] == [0]
dispenses = [payload for name, payload in lh.calls if name == "dispense"]
assert [d["vols"][0] for d in dispenses] == [10.0, 20.0, 30.0]
def test_one_to_many_eight_channel_basic():
lh = FakeLiquidHandler(channel_num=8)
lh.current_tip = iter(make_tip_iter(128))
source = DummyContainer("SRC")
targets = [DummyContainer(f"T{i}") for i in range(8)]
dis_vols = [i + 1 for i in range(8)]
run(
lh.transfer_liquid(
sources=[source],
targets=targets,
tip_racks=[],
use_channels=list(range(8)),
asp_vols=999, # one-to-many 8ch 会按 dis_vols 吸(每通道各自)
dis_vols=dis_vols,
mix_times=0,
)
)
aspirates = [payload for name, payload in lh.calls if name == "aspirate"]
assert aspirates[0]["resources"] == [source] * 8
assert aspirates[0]["vols"] == [float(v) for v in dis_vols]
dispenses = [payload for name, payload in lh.calls if name == "dispense"]
assert dispenses[0]["resources"] == targets
assert dispenses[0]["vols"] == [float(v) for v in dis_vols]
def test_many_to_one_single_channel_standard_dispense_equals_asp_by_default():
lh = FakeLiquidHandler(channel_num=1)
lh.current_tip = iter(make_tip_iter(128))
sources = [DummyContainer(f"S{i}") for i in range(3)]
target = DummyContainer("T")
asp_vols = [5, 6, 7]
run(
lh.transfer_liquid(
sources=sources,
targets=[target],
tip_racks=[],
use_channels=[0],
asp_vols=asp_vols,
dis_vols=1, # many-to-one 允许标量;非比例模式下实际每次分液=对应 asp_vol
mix_times=0,
)
)
dispenses = [payload for name, payload in lh.calls if name == "dispense"]
assert [d["vols"][0] for d in dispenses] == [float(v) for v in asp_vols]
assert all(d["resources"] == [target] for d in dispenses)
def test_many_to_one_single_channel_before_stage_mixes_target_once():
lh = FakeLiquidHandler(channel_num=1)
lh.current_tip = iter(make_tip_iter(128))
sources = [DummyContainer("S0"), DummyContainer("S1")]
target = DummyContainer("T")
run(
lh.transfer_liquid(
sources=sources,
targets=[target],
tip_racks=[],
use_channels=[0],
asp_vols=[5, 6],
dis_vols=1,
mix_stage="before",
mix_times=2,
mix_vol=4,
)
)
aspirate_calls = [(idx, payload) for idx, (name, payload) in enumerate(lh.calls) if name == "aspirate"]
assert len(aspirate_calls) >= 1
mix_idx, mix_payload = aspirate_calls[0]
assert mix_payload["resources"] == [target]
assert mix_payload["vols"] == [4]
# 第一個 mix 之後會真正開始吸 source
assert any(call["resources"] == [sources[0]] for _, call in aspirate_calls[1:])
def test_many_to_one_single_channel_proportional_mixing_uses_dis_vols_per_source():
lh = FakeLiquidHandler(channel_num=1)
lh.current_tip = iter(make_tip_iter(128))
sources = [DummyContainer(f"S{i}") for i in range(3)]
target = DummyContainer("T")
asp_vols = [5, 6, 7]
dis_vols = [1, 2, 3]
run(
lh.transfer_liquid(
sources=sources,
targets=[target],
tip_racks=[],
use_channels=[0],
asp_vols=asp_vols,
dis_vols=dis_vols, # 比例模式
mix_times=0,
)
)
dispenses = [payload for name, payload in lh.calls if name == "dispense"]
assert [d["vols"][0] for d in dispenses] == [float(v) for v in dis_vols]
def test_many_to_one_eight_channel_basic():
lh = FakeLiquidHandler(channel_num=8)
lh.current_tip = iter(make_tip_iter(256))
sources = [DummyContainer(f"S{i}") for i in range(8)]
target = DummyContainer("T")
asp_vols = [10 + i for i in range(8)]
run(
lh.transfer_liquid(
sources=sources,
targets=[target],
tip_racks=[],
use_channels=list(range(8)),
asp_vols=asp_vols,
dis_vols=999, # 非比例模式下每通道分液=对应 asp_vol
mix_times=0,
)
)
aspirates = [payload for name, payload in lh.calls if name == "aspirate"]
dispenses = [payload for name, payload in lh.calls if name == "dispense"]
assert aspirates[0]["resources"] == sources
assert aspirates[0]["vols"] == [float(v) for v in asp_vols]
assert dispenses[0]["resources"] == [target] * 8
assert dispenses[0]["vols"] == [float(v) for v in asp_vols]
def test_transfer_liquid_mode_detection_unsupported_shape_raises():
lh = FakeLiquidHandler(channel_num=8)
lh.current_tip = iter(make_tip_iter(64))
sources = [DummyContainer("S0"), DummyContainer("S1")]
targets = [DummyContainer("T0"), DummyContainer("T1"), DummyContainer("T2")]
with pytest.raises(ValueError, match="Unsupported transfer mode"):
run(
lh.transfer_liquid(
sources=sources,
targets=targets,
tip_racks=[],
use_channels=[0],
asp_vols=[1, 1],
dis_vols=[1, 1, 1],
mix_times=0,
)
)
def test_mix_single_target_produces_matching_cycles():
lh = FakeLiquidHandler(channel_num=1)
target = DummyContainer("T_mix")
run(lh.mix(targets=[target], mix_time=2, mix_vol=5))
aspirates = [payload for name, payload in lh.calls if name == "aspirate"]
dispenses = [payload for name, payload in lh.calls if name == "dispense"]
assert len(aspirates) == len(dispenses) == 2
assert all(call["resources"] == [target] for call in aspirates)
assert all(call["vols"] == [5] for call in aspirates)
assert all(call["resources"] == [target] for call in dispenses)
assert all(call["vols"] == [5] for call in dispenses)
def test_mix_multiple_targets_supports_per_target_offsets():
lh = FakeLiquidHandler(channel_num=1)
targets = [DummyContainer("T0"), DummyContainer("T1")]
offsets = ["left", "right"]
heights = [0.1, 0.2]
rates = [0.5, 1.0]
run(
lh.mix(
targets=targets,
mix_time=1,
mix_vol=3,
offsets=offsets,
height_to_bottom=heights,
mix_rate=rates,
)
)
aspirates = [payload for name, payload in lh.calls if name == "aspirate"]
assert len(aspirates) == 2
assert aspirates[0]["resources"] == [targets[0]]
assert aspirates[0]["offsets"] == [offsets[0]]
assert aspirates[0]["liquid_height"] == [heights[0]]
assert aspirates[0]["flow_rates"] == [rates[0]]
assert aspirates[1]["resources"] == [targets[1]]
assert aspirates[1]["offsets"] == [offsets[1]]
assert aspirates[1]["liquid_height"] == [heights[1]]
assert aspirates[1]["flow_rates"] == [rates[1]]

View File

@@ -1,213 +0,0 @@
{
"workflow": [
{
"action": "transfer_liquid",
"action_args": {
"sources": "cell_lines",
"targets": "Liquid_1",
"asp_vol": 100.0,
"dis_vol": 74.75,
"asp_flow_rate": 94.0,
"dis_flow_rate": 95.5
}
},
{
"action": "transfer_liquid",
"action_args": {
"sources": "cell_lines",
"targets": "Liquid_2",
"asp_vol": 100.0,
"dis_vol": 74.75,
"asp_flow_rate": 94.0,
"dis_flow_rate": 95.5
}
},
{
"action": "transfer_liquid",
"action_args": {
"sources": "cell_lines",
"targets": "Liquid_3",
"asp_vol": 100.0,
"dis_vol": 74.75,
"asp_flow_rate": 94.0,
"dis_flow_rate": 95.5
}
},
{
"action": "transfer_liquid",
"action_args": {
"sources": "cell_lines_2",
"targets": "Liquid_4",
"asp_vol": 100.0,
"dis_vol": 74.75,
"asp_flow_rate": 94.0,
"dis_flow_rate": 95.5
}
},
{
"action": "transfer_liquid",
"action_args": {
"sources": "cell_lines_2",
"targets": "Liquid_5",
"asp_vol": 100.0,
"dis_vol": 74.75,
"asp_flow_rate": 94.0,
"dis_flow_rate": 95.5
}
},
{
"action": "transfer_liquid",
"action_args": {
"sources": "cell_lines_2",
"targets": "Liquid_6",
"asp_vol": 100.0,
"dis_vol": 74.75,
"asp_flow_rate": 94.0,
"dis_flow_rate": 95.5
}
},
{
"action": "transfer_liquid",
"action_args": {
"sources": "cell_lines_3",
"targets": "dest_set",
"asp_vol": 100.0,
"dis_vol": 74.75,
"asp_flow_rate": 94.0,
"dis_flow_rate": 95.5
}
},
{
"action": "transfer_liquid",
"action_args": {
"sources": "cell_lines_3",
"targets": "dest_set_2",
"asp_vol": 100.0,
"dis_vol": 74.75,
"asp_flow_rate": 94.0,
"dis_flow_rate": 95.5
}
},
{
"action": "transfer_liquid",
"action_args": {
"sources": "cell_lines_3",
"targets": "dest_set_3",
"asp_vol": 100.0,
"dis_vol": 74.75,
"asp_flow_rate": 94.0,
"dis_flow_rate": 95.5
}
}
],
"reagent": {
"Liquid_1": {
"slot": 1,
"well": [
"A4",
"A7",
"A10"
],
"labware": "rep 1"
},
"Liquid_4": {
"slot": 1,
"well": [
"A4",
"A7",
"A10"
],
"labware": "rep 1"
},
"dest_set": {
"slot": 1,
"well": [
"A4",
"A7",
"A10"
],
"labware": "rep 1"
},
"Liquid_2": {
"slot": 2,
"well": [
"A3",
"A5",
"A8"
],
"labware": "rep 2"
},
"Liquid_5": {
"slot": 2,
"well": [
"A3",
"A5",
"A8"
],
"labware": "rep 2"
},
"dest_set_2": {
"slot": 2,
"well": [
"A3",
"A5",
"A8"
],
"labware": "rep 2"
},
"Liquid_3": {
"slot": 3,
"well": [
"A4",
"A6",
"A10"
],
"labware": "rep 3"
},
"Liquid_6": {
"slot": 3,
"well": [
"A4",
"A6",
"A10"
],
"labware": "rep 3"
},
"dest_set_3": {
"slot": 3,
"well": [
"A4",
"A6",
"A10"
],
"labware": "rep 3"
},
"cell_lines": {
"slot": 4,
"well": [
"A1",
"A3",
"A5"
],
"labware": "DRUG + YOYO-MEDIA"
},
"cell_lines_2": {
"slot": 4,
"well": [
"A1",
"A3",
"A5"
],
"labware": "DRUG + YOYO-MEDIA"
},
"cell_lines_3": {
"slot": 4,
"well": [
"A1",
"A3",
"A5"
],
"labware": "DRUG + YOYO-MEDIA"
}
}
}

View File

@@ -1 +1 @@
__version__ = "0.10.17"
__version__ = "0.10.15"

View File

@@ -7,6 +7,7 @@ import sys
import threading
import time
from typing import Dict, Any, List
import networkx as nx
import yaml
@@ -16,9 +17,9 @@ unilabos_dir = os.path.dirname(os.path.dirname(current_dir))
if unilabos_dir not in sys.path:
sys.path.append(unilabos_dir)
from unilabos.app.utils import cleanup_for_restart
from unilabos.utils.banner_print import print_status, print_unilab_banner
from unilabos.config.config import load_config, BasicConfig, HTTPConfig
from unilabos.app.utils import cleanup_for_restart
# Global restart flags (used by ws_client and web/server)
_restart_requested: bool = False
@@ -160,12 +161,6 @@ def parse_args():
default=False,
help="Complete registry information",
)
parser.add_argument(
"--check_mode",
action="store_true",
default=False,
help="Run in check mode for CI: validates registry imports and ensures no file changes",
)
parser.add_argument(
"--no_update_feedback",
action="store_true",
@@ -216,10 +211,7 @@ def main():
args_dict = vars(args)
# 环境检查 - 检查并自动安装必需的包 (可选)
skip_env_check = args_dict.get("skip_env_check", False)
check_mode = args_dict.get("check_mode", False)
if not skip_env_check:
if not args_dict.get("skip_env_check", False):
from unilabos.utils.environment_check import check_environment
if not check_environment(auto_install=True):
@@ -230,21 +222,7 @@ def main():
# 加载配置文件优先加载config然后从env读取
config_path = args_dict.get("config")
if check_mode:
args_dict["working_dir"] = os.path.abspath(os.getcwd())
# 当 skip_env_check 时,默认使用当前目录作为 working_dir
if skip_env_check and not args_dict.get("working_dir") and not config_path:
working_dir = os.path.abspath(os.getcwd())
print_status(f"跳过环境检查模式:使用当前目录作为工作目录 {working_dir}", "info")
# 检查当前目录是否有 local_config.py
local_config_in_cwd = os.path.join(working_dir, "local_config.py")
if os.path.exists(local_config_in_cwd):
config_path = local_config_in_cwd
print_status(f"发现本地配置文件: {config_path}", "info")
else:
print_status(f"未指定config路径可通过 --config 传入 local_config.py 文件路径", "info")
elif os.getcwd().endswith("unilabos_data"):
if os.getcwd().endswith("unilabos_data"):
working_dir = os.path.abspath(os.getcwd())
else:
working_dir = os.path.abspath(os.path.join(os.getcwd(), "unilabos_data"))
@@ -263,7 +241,7 @@ def main():
working_dir = os.path.dirname(config_path)
elif os.path.exists(working_dir) and os.path.exists(os.path.join(working_dir, "local_config.py")):
config_path = os.path.join(working_dir, "local_config.py")
elif not skip_env_check and not config_path and (
elif not config_path and (
not os.path.exists(working_dir) or not os.path.exists(os.path.join(working_dir, "local_config.py"))
):
print_status(f"未指定config路径可通过 --config 传入 local_config.py 文件路径", "info")
@@ -277,11 +255,9 @@ def main():
print_status(f"已创建 local_config.py 路径: {config_path}", "info")
else:
os._exit(1)
# 加载配置文件 (check_mode 跳过)
# 加载配置文件
print_status(f"当前工作目录为 {working_dir}", "info")
if not check_mode:
load_config_from_file(config_path)
load_config_from_file(config_path)
# 根据配置重新设置日志级别
from unilabos.utils.log import configure_logger, logger
@@ -337,7 +313,6 @@ def main():
machine_name = "".join([c if c.isalnum() or c == "_" else "_" for c in machine_name])
BasicConfig.machine_name = machine_name
BasicConfig.vis_2d_enable = args_dict["2d_vis"]
BasicConfig.check_mode = check_mode
from unilabos.resources.graphio import (
read_node_link_json,
@@ -356,14 +331,10 @@ def main():
# 显示启动横幅
print_unilab_banner(args_dict)
# 注册表 - check_mode 时强制启用 complete_registry
complete_registry = args_dict.get("complete_registry", False) or check_mode
lab_registry = build_registry(args_dict["registry_path"], complete_registry, BasicConfig.upload_registry)
# Check mode: complete_registry 完成后直接退出git diff 检测由 CI workflow 执行
if check_mode:
print_status("Check mode: complete_registry 完成,退出", "info")
os._exit(0)
# 注册表
lab_registry = build_registry(
args_dict["registry_path"], args_dict.get("complete_registry", False), BasicConfig.upload_registry
)
if BasicConfig.upload_registry:
# 设备注册到服务端 - 需要 ak 和 sk

View File

@@ -4,40 +4,8 @@ UniLabOS 应用工具函数
提供清理、重启等工具函数
"""
import glob
import os
import shutil
import sys
def patch_rclpy_dll_windows():
"""在 Windows + conda 环境下为 rclpy 打 DLL 加载补丁"""
if sys.platform != "win32" or not os.environ.get("CONDA_PREFIX"):
return
try:
import rclpy
return
except ImportError as e:
if not str(e).startswith("DLL load failed"):
return
cp = os.environ["CONDA_PREFIX"]
impl = os.path.join(cp, "Lib", "site-packages", "rclpy", "impl", "implementation_singleton.py")
pyd = glob.glob(os.path.join(cp, "Lib", "site-packages", "rclpy", "_rclpy_pybind11*.pyd"))
if not os.path.exists(impl) or not pyd:
return
with open(impl, "r", encoding="utf-8") as f:
content = f.read()
lib_bin = os.path.join(cp, "Library", "bin").replace("\\", "/")
patch = f'# UniLabOS DLL Patch\nimport os,ctypes\nos.add_dll_directory("{lib_bin}") if hasattr(os,"add_dll_directory") else None\ntry: ctypes.CDLL("{pyd[0].replace(chr(92),"/")}")\nexcept: pass\n# End Patch\n'
shutil.copy2(impl, impl + ".bak")
with open(impl, "w", encoding="utf-8") as f:
f.write(patch + content)
patch_rclpy_dll_windows()
import gc
import os
import threading
import time

View File

@@ -359,7 +359,9 @@ class HTTPClient:
Returns:
Dict: API响应数据包含 code 和 data (uuid, name)
"""
# target_lab_uuid 暂时使用默认值,后续由后端根据 ak/sk 获取
payload = {
"target_lab_uuid": "28c38bb0-63f6-4352-b0d8-b5b8eb1766d5",
"name": name,
"data": {
"workflow_uuid": workflow_uuid,

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -638,7 +638,7 @@ liquid_handler:
placeholder_keys: {}
result: {}
schema:
description: 吸头迭代函数。用于自动管理和切换枪头盒中的吸头,实现批量实验中的吸头自动分配和追踪。该函数监控吸头使用状态,自动切换到下一个可用吸头位置,确保实验流程的连续性。适用于高通量实验、批量处理、自动化流水线等需要大量吸头管理的应用场景。
description: 吸头迭代函数。用于自动管理和切换吸头架中的吸头,实现批量实验中的吸头自动分配和追踪。该函数监控吸头使用状态,自动切换到下一个可用吸头位置,确保实验流程的连续性。适用于高通量实验、批量处理、自动化流水线等需要大量吸头管理的应用场景。
properties:
feedback: {}
goal:
@@ -712,43 +712,6 @@ liquid_handler:
title: set_group参数
type: object
type: UniLabJsonCommand
auto-set_liquid_from_plate:
feedback: {}
goal: {}
goal_default:
liquid_names: null
plate: null
volumes: null
well_names: null
handles: {}
placeholder_keys: {}
result: {}
schema:
description: ''
properties:
feedback: {}
goal:
properties:
liquid_names:
type: string
plate:
type: string
volumes:
type: string
well_names:
type: string
required:
- plate
- well_names
- liquid_names
- volumes
type: object
result: {}
required:
- goal
title: set_liquid_from_plate参数
type: object
type: UniLabJsonCommand
auto-set_tiprack:
feedback: {}
goal: {}
@@ -758,7 +721,7 @@ liquid_handler:
placeholder_keys: {}
result: {}
schema:
description: 枪头盒设置函数。用于配置和初始化液体处理系统的枪头盒信息,包括枪头盒位置、类型、容量等参数。该函数建立吸头资源管理系统,为后续的吸头选择和使用提供基础配置。适用于系统初始化、枪头盒更换、实验配置等需要吸头资源管理的操作场景。
description: 吸头架设置函数。用于配置和初始化液体处理系统的吸头架信息,包括吸头架位置、类型、容量等参数。该函数建立吸头资源管理系统,为后续的吸头选择和使用提供基础配置。适用于系统初始化、吸头架更换、实验配置等需要吸头资源管理的操作场景。
properties:
feedback: {}
goal:
@@ -4130,43 +4093,32 @@ liquid_handler:
- 0
handles:
input:
- data_key: sources
- data_key: liquid
data_source: handle
data_type: resource
handler_key: sources
label: sources
- data_key: targets
data_source: handle
- data_key: liquid
data_source: executor
data_type: resource
handler_key: targets
label: targets
- data_key: tip_racks
data_source: handle
data_type: resource
handler_key: tip_racks
label: tip_racks
output:
- data_key: sources
data_source: handle
data_type: resource
handler_key: targets
label: 转移目标
- data_key: tip_racks
data_source: handle
- data_key: liquid
data_source: executor
data_type: resource
handler_key: tip_rack
label: 枪头盒
label: tip_rack
output:
- data_key: sources.@flatten
data_source: executor
- data_key: liquid
data_source: handle
data_type: resource
handler_key: sources_out
label: sources
- data_key: targets
data_source: handle
- data_key: liquid
data_source: executor
data_type: resource
handler_key: targets_out
label: 移液后目标孔
label: targets
placeholder_keys:
sources: unilabos_resources
targets: unilabos_resources
@@ -4812,13 +4764,13 @@ liquid_handler.biomek:
targets: ''
handles:
input:
- data_key: sources
- data_key: liquid
data_source: handle
data_type: resource
handler_key: sources
label: sources
output:
- data_key: targets
- data_key: liquid
data_source: handle
data_type: resource
handler_key: targets
@@ -4971,29 +4923,29 @@ liquid_handler.biomek:
volume: 0.0
handles:
input:
- data_key: sources
- data_key: liquid
data_source: handle
data_type: resource
handler_key: sources
label: sources
- data_key: targets
data_source: handle
- data_key: liquid
data_source: executor
data_type: resource
handler_key: targets
label: targets
- data_key: tip_racks
data_source: handle
- data_key: liquid
data_source: executor
data_type: resource
handler_key: tip_racks
label: tip_racks
handler_key: tip_rack
label: tip_rack
output:
- data_key: sources
- data_key: liquid
data_source: handle
data_type: resource
handler_key: sources_out
label: sources
- data_key: targets
data_source: handle
- data_key: liquid
data_source: executor
data_type: resource
handler_key: targets_out
label: targets
@@ -5162,32 +5114,19 @@ liquid_handler.biomek:
- 0
handles:
input:
- data_key: sources
- data_key: liquid
data_source: handle
data_type: resource
handler_key: sources
label: sources
- data_key: targets
data_source: handle
data_type: resource
handler_key: targets
label: targets
- data_key: tip_racks
data_source: handle
data_type: resource
handler_key: tip_racks
label: tip_racks
handler_key: liquid-input
io_type: target
label: Liquid Input
output:
- data_key: sources
data_source: handle
- data_key: liquid
data_source: executor
data_type: resource
handler_key: sources_out
label: sources
- data_key: targets
data_source: handle
data_type: resource
handler_key: targets_out
label: targets
handler_key: liquid-output
io_type: source
label: Liquid Output
placeholder_keys:
sources: unilabos_resources
targets: unilabos_resources
@@ -7665,43 +7604,6 @@ liquid_handler.prcxi:
title: iter_tips参数
type: object
type: UniLabJsonCommand
auto-magnetic_action:
feedback: {}
goal: {}
goal_default:
height: null
is_wait: null
module_no: null
time: null
handles: {}
placeholder_keys: {}
result: {}
schema:
description: ''
properties:
feedback: {}
goal:
properties:
height:
type: integer
is_wait:
type: boolean
module_no:
type: integer
time:
type: integer
required:
- time
- module_no
- height
- is_wait
type: object
result: {}
required:
- goal
title: magnetic_action参数
type: object
type: UniLabJsonCommandAsync
auto-move_to:
feedback: {}
goal: {}
@@ -7735,31 +7637,6 @@ liquid_handler.prcxi:
title: move_to参数
type: object
type: UniLabJsonCommandAsync
auto-plr_pos_to_prcxi:
feedback: {}
goal: {}
goal_default:
resource: null
handles: {}
placeholder_keys: {}
result: {}
schema:
description: ''
properties:
feedback: {}
goal:
properties:
resource:
type: object
required:
- resource
type: object
result: {}
required:
- goal
title: plr_pos_to_prcxi参数
type: object
type: UniLabJsonCommand
auto-post_init:
feedback: {}
goal: {}
@@ -7880,47 +7757,6 @@ liquid_handler.prcxi:
title: shaker_action参数
type: object
type: UniLabJsonCommandAsync
auto-shaking_incubation_action:
feedback: {}
goal: {}
goal_default:
amplitude: null
is_wait: null
module_no: null
temperature: null
time: null
handles: {}
placeholder_keys: {}
result: {}
schema:
description: ''
properties:
feedback: {}
goal:
properties:
amplitude:
type: integer
is_wait:
type: boolean
module_no:
type: integer
temperature:
type: integer
time:
type: integer
required:
- time
- module_no
- amplitude
- is_wait
- temperature
type: object
result: {}
required:
- goal
title: shaking_incubation_action参数
type: object
type: UniLabJsonCommandAsync
auto-touch_tip:
feedback: {}
goal: {}
@@ -8655,19 +8491,7 @@ liquid_handler.prcxi:
z: 0.0
sample_id: ''
type: ''
handles:
input:
- data_key: plate
data_source: handle
data_type: resource
handler_key: plate
label: plate
output:
- data_key: plate
data_source: handle
data_type: resource
handler_key: plate
label: plate
handles: {}
placeholder_keys:
plate: unilabos_resources
to: unilabos_resources
@@ -9460,13 +9284,7 @@ liquid_handler.prcxi:
data_source: handle
data_type: resource
handler_key: input_wells
label: 待设定液体孔
output:
- data_key: wells.@flatten
data_source: executor
data_type: resource
handler_key: output_wells
label: 已设定液体孔
label: InputWells
placeholder_keys:
wells: unilabos_resources
result: {}
@@ -9582,165 +9400,6 @@ liquid_handler.prcxi:
title: LiquidHandlerSetLiquid
type: object
type: LiquidHandlerSetLiquid
set_liquid_from_plate:
feedback: {}
goal: {}
goal_default:
liquid_names: null
plate: null
volumes: null
well_names: null
handles:
input:
- data_key: plate
data_source: handle
data_type: resource
handler_key: input_plate
label: 待设定液体板
output:
- data_key: plate.@flatten
data_source: executor
data_type: resource
handler_key: output_plate
label: 已设定液体板
- data_key: wells.@flatten
data_source: executor
data_type: resource
handler_key: output_wells
label: 已设定液体孔
- data_key: volumes
data_source: executor
data_type: number_array
handler_key: output_volumes
label: 各孔设定体积
placeholder_keys:
plate: unilabos_resources
result: {}
schema:
description: ''
properties:
feedback: {}
goal:
properties:
liquid_names:
items:
type: string
type: array
plate:
items:
properties:
category:
type: string
children:
items:
type: string
type: array
config:
type: string
data:
type: string
id:
type: string
name:
type: string
parent:
type: string
pose:
properties:
orientation:
properties:
w:
type: number
x:
type: number
y:
type: number
z:
type: number
required:
- x
- y
- z
- w
title: orientation
type: object
position:
properties:
x:
type: number
y:
type: number
z:
type: number
required:
- x
- y
- z
title: position
type: object
required:
- position
- orientation
title: pose
type: object
sample_id:
type: string
type:
type: string
required:
- id
- name
- sample_id
- children
- parent
- type
- category
- pose
- config
- data
title: plate
type: object
title: plate
type: array
volumes:
items:
type: number
type: array
well_names:
items:
type: string
type: array
required:
- plate
- well_names
- liquid_names
- volumes
type: object
result:
properties:
plate:
items: {}
title: Plate
type: array
volumes:
items: {}
title: Volumes
type: array
wells:
items: {}
title: Wells
type: array
required:
- plate
- wells
- volumes
title: SetLiquidFromPlateReturn
type: object
required:
- goal
title: set_liquid_from_plate参数
type: object
type: UniLabJsonCommand
set_tiprack:
feedback: {}
goal:
@@ -10086,32 +9745,32 @@ liquid_handler.prcxi:
- 0
handles:
input:
- data_key: sources
- data_key: liquid
data_source: handle
data_type: resource
handler_key: sources
label: sources
- data_key: targets
data_source: handle
- data_key: liquid
data_source: executor
data_type: resource
handler_key: targets
label: targets
- data_key: tip_racks
data_source: handle
- data_key: liquid
data_source: executor
data_type: resource
handler_key: tip_racks
label: tip_racks
handler_key: tip_rack
label: tip_rack
output:
- data_key: sources
- data_key: liquid
data_source: handle
data_type: resource
handler_key: sources_out
label: sources
- data_key: targets
data_source: handle
- data_key: liquid
data_source: executor
data_type: resource
handler_key: targets_out
label: 移液后目标孔
label: targets
placeholder_keys:
sources: unilabos_resources
targets: unilabos_resources
@@ -10492,12 +10151,6 @@ liquid_handler.prcxi:
type: string
deck:
type: object
deck_y:
default: 400
type: string
deck_z:
default: 300
type: string
host:
type: string
is_9320:
@@ -10508,44 +10161,17 @@ liquid_handler.prcxi:
type: string
port:
type: integer
rail_interval:
default: 0
type: string
rail_nums:
default: 4
type: string
rail_width:
default: 27.5
type: string
setup:
default: true
type: string
simulator:
default: false
type: string
start_rail:
default: 2
type: string
step_mode:
default: false
type: string
timeout:
type: number
x_increase:
default: -0.003636
type: string
x_offset:
default: -0.8
type: string
xy_coupling:
default: -0.0045
type: string
y_increase:
default: -0.003636
type: string
y_offset:
default: -37.98
type: string
required:
- deck
- host

View File

@@ -5792,381 +5792,3 @@ virtual_vacuum_pump:
- status
type: object
version: 1.0.0
virtual_workbench:
category:
- virtual_device
class:
action_value_mappings:
auto-move_to_heating_station:
feedback: {}
goal: {}
goal_default:
material_number: null
handles:
input:
- data_key: material_number
data_source: handle
data_type: workbench_material
handler_key: material_input
label: 物料编号
output:
- data_key: station_id
data_source: executor
data_type: workbench_station
handler_key: heating_station_output
label: 加热台ID
- data_key: material_number
data_source: executor
data_type: workbench_material
handler_key: material_number_output
label: 物料编号
placeholder_keys: {}
result: {}
schema:
description: 将物料从An位置移动到空闲加热台返回分配的加热台ID
properties:
feedback: {}
goal:
properties:
material_number:
description: 物料编号1-5物料ID自动生成为A{n}
type: integer
required:
- material_number
type: object
result:
description: move_to_heating_station 返回类型
properties:
material_id:
title: Material Id
type: string
material_number:
title: Material Number
type: integer
message:
title: Message
type: string
station_id:
description: 分配的加热台ID
title: Station Id
type: integer
success:
title: Success
type: boolean
required:
- success
- station_id
- material_id
- material_number
- message
title: MoveToHeatingStationResult
type: object
required:
- goal
title: move_to_heating_station参数
type: object
type: UniLabJsonCommand
auto-move_to_output:
feedback: {}
goal: {}
goal_default:
material_number: null
station_id: null
handles:
input:
- data_key: station_id
data_source: handle
data_type: workbench_station
handler_key: output_station_input
label: 加热台ID
- data_key: material_number
data_source: handle
data_type: workbench_material
handler_key: output_material_input
label: 物料编号
placeholder_keys: {}
result: {}
schema:
description: 将物料从加热台移动到输出位置Cn
properties:
feedback: {}
goal:
properties:
material_number:
description: 物料编号用于确定输出位置Cn
type: integer
station_id:
description: 加热台ID1-3从上一节点传入
type: integer
required:
- station_id
- material_number
type: object
result:
description: move_to_output 返回类型
properties:
material_id:
title: Material Id
type: string
station_id:
title: Station Id
type: integer
success:
title: Success
type: boolean
required:
- success
- station_id
- material_id
title: MoveToOutputResult
type: object
required:
- goal
title: move_to_output参数
type: object
type: UniLabJsonCommand
auto-prepare_materials:
feedback: {}
goal: {}
goal_default:
count: 5
handles:
output:
- data_key: material_1
data_source: executor
data_type: workbench_material
handler_key: channel_1
label: 实验1
- data_key: material_2
data_source: executor
data_type: workbench_material
handler_key: channel_2
label: 实验2
- data_key: material_3
data_source: executor
data_type: workbench_material
handler_key: channel_3
label: 实验3
- data_key: material_4
data_source: executor
data_type: workbench_material
handler_key: channel_4
label: 实验4
- data_key: material_5
data_source: executor
data_type: workbench_material
handler_key: channel_5
label: 实验5
placeholder_keys: {}
result: {}
schema:
description: 批量准备物料 - 虚拟起始节点生成A1-A5物料输出5个handle供后续节点使用
properties:
feedback: {}
goal:
properties:
count:
default: 5
description: 待生成的物料数量默认5 (生成 A1-A5)
type: integer
required: []
type: object
result:
description: prepare_materials 返回类型 - 批量准备物料
properties:
count:
title: Count
type: integer
material_1:
title: Material 1
type: integer
material_2:
title: Material 2
type: integer
material_3:
title: Material 3
type: integer
material_4:
title: Material 4
type: integer
material_5:
title: Material 5
type: integer
message:
title: Message
type: string
success:
title: Success
type: boolean
required:
- success
- count
- material_1
- material_2
- material_3
- material_4
- material_5
- message
title: PrepareMaterialsResult
type: object
required:
- goal
title: prepare_materials参数
type: object
type: UniLabJsonCommand
auto-start_heating:
feedback: {}
goal: {}
goal_default:
material_number: null
station_id: null
handles:
input:
- data_key: station_id
data_source: handle
data_type: workbench_station
handler_key: station_id_input
label: 加热台ID
- data_key: material_number
data_source: handle
data_type: workbench_material
handler_key: material_number_input
label: 物料编号
output:
- data_key: station_id
data_source: executor
data_type: workbench_station
handler_key: heating_done_station
label: 加热完成-加热台ID
- data_key: material_number
data_source: executor
data_type: workbench_material
handler_key: heating_done_material
label: 加热完成-物料编号
placeholder_keys: {}
result: {}
schema:
description: 启动指定加热台的加热程序
properties:
feedback: {}
goal:
properties:
material_number:
description: 物料编号,从上一节点传入
type: integer
station_id:
description: 加热台ID1-3从上一节点传入
type: integer
required:
- station_id
- material_number
type: object
result:
description: start_heating 返回类型
properties:
material_id:
title: Material Id
type: string
material_number:
title: Material Number
type: integer
message:
title: Message
type: string
station_id:
title: Station Id
type: integer
success:
title: Success
type: boolean
required:
- success
- station_id
- material_id
- material_number
- message
title: StartHeatingResult
type: object
required:
- goal
title: start_heating参数
type: object
type: UniLabJsonCommand
module: unilabos.devices.virtual.workbench:VirtualWorkbench
status_types:
active_tasks_count: int
arm_current_task: str
arm_state: str
heating_station_1_material: str
heating_station_1_progress: float
heating_station_1_state: str
heating_station_2_material: str
heating_station_2_progress: float
heating_station_2_state: str
heating_station_3_material: str
heating_station_3_progress: float
heating_station_3_state: str
message: str
status: str
type: python
config_info: []
description: Virtual Workbench with 1 robotic arm and 3 heating stations for concurrent
material processing
handles: []
icon: ''
init_param_schema:
config:
properties:
config:
type: string
device_id:
type: string
required: []
type: object
data:
properties:
active_tasks_count:
type: integer
arm_current_task:
type: string
arm_state:
type: string
heating_station_1_material:
type: string
heating_station_1_progress:
type: number
heating_station_1_state:
type: string
heating_station_2_material:
type: string
heating_station_2_progress:
type: number
heating_station_2_state:
type: string
heating_station_3_material:
type: string
heating_station_3_progress:
type: number
heating_station_3_state:
type: string
message:
type: string
status:
type: string
required:
- status
- arm_state
- arm_current_task
- heating_station_1_state
- heating_station_1_material
- heating_station_1_progress
- heating_station_2_state
- heating_station_2_material
- heating_station_2_progress
- heating_station_3_state
- heating_station_3_material
- heating_station_3_progress
- active_tasks_count
- message
type: object
version: 1.0.0

View File

@@ -4,8 +4,6 @@ import os
import sys
import inspect
import importlib
import threading
from concurrent.futures import ThreadPoolExecutor, as_completed
from pathlib import Path
from typing import Any, Dict, List, Union, Tuple
@@ -62,7 +60,6 @@ class Registry:
self.device_module_to_registry = {}
self.resource_type_registry = {}
self._setup_called = False # 跟踪setup是否已调用
self._registry_lock = threading.Lock() # 多线程加载时的锁
# 其他状态变量
# self.is_host_mode = False # 移至BasicConfig中
@@ -74,20 +71,6 @@ class Registry:
from unilabos.app.web.utils.action_utils import get_yaml_from_goal_type
# 获取 HostNode 类的增强信息,用于自动生成 action schema
host_node_enhanced_info = get_enhanced_class_info(
"unilabos.ros.nodes.presets.host_node:HostNode", use_dynamic=True
)
# 为 test_latency 生成 schema保留原有 description
test_latency_method_info = host_node_enhanced_info.get("action_methods", {}).get("test_latency", {})
test_latency_schema = self._generate_unilab_json_command_schema(
test_latency_method_info.get("args", []),
"test_latency",
test_latency_method_info.get("return_annotation"),
)
test_latency_schema["description"] = "用于测试延迟的动作,返回延迟时间和时间差。"
self.device_type_registry.update(
{
"host_node": {
@@ -170,18 +153,14 @@ class Registry:
},
},
"test_latency": {
"type": (
"UniLabJsonCommandAsync"
if test_latency_method_info.get("is_async", False)
else "UniLabJsonCommand"
),
"type": self.EmptyIn,
"goal": {},
"feedback": {},
"result": {},
"schema": test_latency_schema,
"goal_default": {
arg["name"]: arg["default"] for arg in test_latency_method_info.get("args", [])
},
"schema": ros_action_to_json_schema(
self.EmptyIn, "用于测试延迟的动作,返回延迟时间和时间差。"
),
"goal_default": {},
"handles": {},
},
"auto-test_resource": {
@@ -264,115 +243,67 @@ class Registry:
# 标记setup已被调用
self._setup_called = True
def _load_single_resource_file(
self, file: Path, complete_registry: bool, upload_registry: bool
) -> Tuple[Dict[str, Any], Dict[str, Any], bool]:
"""
加载单个资源文件 (线程安全)
Returns:
(data, complete_data, is_valid): 资源数据, 完整数据, 是否有效
"""
try:
with open(file, encoding="utf-8", mode="r") as f:
data = yaml.safe_load(io.StringIO(f.read()))
except Exception as e:
logger.warning(f"[UniLab Registry] 读取资源文件失败: {file}, 错误: {e}")
return {}, {}, False
if not data:
return {}, {}, False
complete_data = {}
for resource_id, resource_info in data.items():
if "version" not in resource_info:
resource_info["version"] = "1.0.0"
if "category" not in resource_info:
resource_info["category"] = [file.stem]
elif file.stem not in resource_info["category"]:
resource_info["category"].append(file.stem)
elif not isinstance(resource_info.get("category"), list):
resource_info["category"] = [resource_info["category"]]
if "config_info" not in resource_info:
resource_info["config_info"] = []
if "icon" not in resource_info:
resource_info["icon"] = ""
if "handles" not in resource_info:
resource_info["handles"] = []
if "init_param_schema" not in resource_info:
resource_info["init_param_schema"] = {}
if "config_info" in resource_info:
del resource_info["config_info"]
if "file_path" in resource_info:
del resource_info["file_path"]
complete_data[resource_id] = copy.deepcopy(dict(sorted(resource_info.items())))
if upload_registry:
class_info = resource_info.get("class", {})
if len(class_info) and "module" in class_info:
if class_info.get("type") == "pylabrobot":
res_class = get_class(class_info["module"])
if callable(res_class) and not isinstance(res_class, type):
res_instance = res_class(res_class.__name__)
res_ulr = tree_to_list([resource_plr_to_ulab(res_instance)])
resource_info["config_info"] = res_ulr
resource_info["registry_type"] = "resource"
resource_info["file_path"] = str(file.absolute()).replace("\\", "/")
complete_data = dict(sorted(complete_data.items()))
complete_data = copy.deepcopy(complete_data)
if complete_registry:
try:
with open(file, "w", encoding="utf-8") as f:
yaml.dump(complete_data, f, allow_unicode=True, default_flow_style=False, Dumper=NoAliasDumper)
except Exception as e:
logger.warning(f"[UniLab Registry] 写入资源文件失败: {file}, 错误: {e}")
return data, complete_data, True
def load_resource_types(self, path: os.PathLike, complete_registry: bool, upload_registry: bool):
abs_path = Path(path).absolute()
resource_path = abs_path / "resources"
files = list(resource_path.glob("*/*.yaml"))
logger.debug(f"[UniLab Registry] resources: {resource_path.exists()}, total: {len(files)}")
if not files:
return
# 使用线程池并行加载
max_workers = min(8, len(files))
results = []
with ThreadPoolExecutor(max_workers=max_workers) as executor:
future_to_file = {
executor.submit(self._load_single_resource_file, file, complete_registry, upload_registry): file
for file in files
}
for future in as_completed(future_to_file):
file = future_to_file[future]
try:
data, complete_data, is_valid = future.result()
if is_valid:
results.append((file, data))
except Exception as e:
logger.warning(f"[UniLab Registry] 处理资源文件异常: {file}, 错误: {e}")
# 线程安全地更新注册表
logger.trace(f"[UniLab Registry] load resources? {resource_path.exists()}, total: {len(files)}")
current_resource_number = len(self.resource_type_registry) + 1
with self._registry_lock:
for i, (file, data) in enumerate(results):
for i, file in enumerate(files):
with open(file, encoding="utf-8", mode="r") as f:
data = yaml.safe_load(io.StringIO(f.read()))
complete_data = {}
if data:
# 为每个资源添加文件路径信息
for resource_id, resource_info in data.items():
if "version" not in resource_info:
resource_info["version"] = "1.0.0"
if "category" not in resource_info:
resource_info["category"] = [file.stem]
elif file.stem not in resource_info["category"]:
resource_info["category"].append(file.stem)
elif not isinstance(resource_info.get("category"), list):
resource_info["category"] = [resource_info["category"]]
if "config_info" not in resource_info:
resource_info["config_info"] = []
if "icon" not in resource_info:
resource_info["icon"] = ""
if "handles" not in resource_info:
resource_info["handles"] = []
if "init_param_schema" not in resource_info:
resource_info["init_param_schema"] = {}
if "config_info" in resource_info:
del resource_info["config_info"]
if "file_path" in resource_info:
del resource_info["file_path"]
complete_data[resource_id] = copy.deepcopy(dict(sorted(resource_info.items())))
if upload_registry:
class_info = resource_info.get("class", {})
if len(class_info) and "module" in class_info:
if class_info.get("type") == "pylabrobot":
res_class = get_class(class_info["module"])
if callable(res_class) and not isinstance(
res_class, type
): # 有的是类,有的是函数,这里暂时只登记函数类的
res_instance = res_class(res_class.__name__)
res_ulr = tree_to_list([resource_plr_to_ulab(res_instance)])
resource_info["config_info"] = res_ulr
resource_info["registry_type"] = "resource"
resource_info["file_path"] = str(file.absolute()).replace("\\", "/")
complete_data = dict(sorted(complete_data.items()))
complete_data = copy.deepcopy(complete_data)
if complete_registry:
with open(file, "w", encoding="utf-8") as f:
yaml.dump(complete_data, f, allow_unicode=True, default_flow_style=False, Dumper=NoAliasDumper)
self.resource_type_registry.update(data)
logger.trace(
f"[UniLab Registry] Resource-{current_resource_number} File-{i+1}/{len(results)} "
logger.trace( # type: ignore
f"[UniLab Registry] Resource-{current_resource_number} File-{i+1}/{len(files)} "
+ f"Add {list(data.keys())}"
)
current_resource_number += 1
# 记录无效文件
valid_files = {r[0] for r in results}
for file in files:
if file not in valid_files:
logger.debug(f"[UniLab Registry] Res File Not Valid YAML File: {file.absolute()}")
else:
logger.debug(f"[UniLab Registry] Res File-{i+1}/{len(files)} Not Valid YAML File: {file.absolute()}")
def _extract_class_docstrings(self, module_string: str) -> Dict[str, str]:
"""
@@ -549,11 +480,7 @@ class Registry:
return status_schema
def _generate_unilab_json_command_schema(
self,
method_args: List[Dict[str, Any]],
method_name: str,
return_annotation: Any = None,
previous_schema: Dict[str, Any] | None = None,
self, method_args: List[Dict[str, Any]], method_name: str, return_annotation: Any = None
) -> Dict[str, Any]:
"""
根据UniLabJsonCommand方法信息生成JSON Schema暂不支持嵌套类型
@@ -562,7 +489,6 @@ class Registry:
method_args: 方法信息字典包含args等
method_name: 方法名称
return_annotation: 返回类型注解用于生成result schema仅支持TypedDict
previous_schema: 之前的 schema用于保留 goal/feedback/result 下一级字段的 description
Returns:
JSON Schema格式的参数schema
@@ -596,7 +522,7 @@ class Registry:
if return_annotation is not None and self._is_typed_dict(return_annotation):
result_schema = self._generate_typed_dict_result_schema(return_annotation)
final_schema = {
return {
"title": f"{method_name}参数",
"description": f"",
"type": "object",
@@ -604,40 +530,6 @@ class Registry:
"required": ["goal"],
}
# 保留之前 schema 中 goal/feedback/result 下一级字段的 description
if previous_schema:
self._preserve_field_descriptions(final_schema, previous_schema)
return final_schema
def _preserve_field_descriptions(self, new_schema: Dict[str, Any], previous_schema: Dict[str, Any]) -> None:
"""
保留之前 schema 中 goal/feedback/result 下一级字段的 description 和 title
Args:
new_schema: 新生成的 schema会被修改
previous_schema: 之前的 schema
"""
for section in ["goal", "feedback", "result"]:
new_section = new_schema.get("properties", {}).get(section, {})
prev_section = previous_schema.get("properties", {}).get(section, {})
if not new_section or not prev_section:
continue
new_props = new_section.get("properties", {})
prev_props = prev_section.get("properties", {})
for field_name, field_schema in new_props.items():
if field_name in prev_props:
prev_field = prev_props[field_name]
# 保留字段的 description
if "description" in prev_field and prev_field["description"]:
field_schema["description"] = prev_field["description"]
# 保留字段的 title用户自定义的中文名
if "title" in prev_field and prev_field["title"]:
field_schema["title"] = prev_field["title"]
def _is_typed_dict(self, annotation: Any) -> bool:
"""
检查类型注解是否是TypedDict
@@ -724,244 +616,209 @@ class Registry:
"handles": {},
}
def _load_single_device_file(
self, file: Path, complete_registry: bool, get_yaml_from_goal_type
) -> Tuple[Dict[str, Any], Dict[str, Any], bool, List[str]]:
"""
加载单个设备文件 (线程安全)
Returns:
(data, complete_data, is_valid, device_ids): 设备数据, 完整数据, 是否有效, 设备ID列表
"""
try:
with open(file, encoding="utf-8", mode="r") as f:
data = yaml.safe_load(io.StringIO(f.read()))
except Exception as e:
logger.warning(f"[UniLab Registry] 读取设备文件失败: {file}, 错误: {e}")
return {}, {}, False, []
if not data:
return {}, {}, False, []
complete_data = {}
action_str_type_mapping = {
"UniLabJsonCommand": "UniLabJsonCommand",
"UniLabJsonCommandAsync": "UniLabJsonCommandAsync",
}
status_str_type_mapping = {}
device_ids = []
for device_id, device_config in data.items():
if "version" not in device_config:
device_config["version"] = "1.0.0"
if "category" not in device_config:
device_config["category"] = [file.stem]
elif file.stem not in device_config["category"]:
device_config["category"].append(file.stem)
if "config_info" not in device_config:
device_config["config_info"] = []
if "description" not in device_config:
device_config["description"] = ""
if "icon" not in device_config:
device_config["icon"] = ""
if "handles" not in device_config:
device_config["handles"] = []
if "init_param_schema" not in device_config:
device_config["init_param_schema"] = {}
if "class" in device_config:
if "status_types" not in device_config["class"] or device_config["class"]["status_types"] is None:
device_config["class"]["status_types"] = {}
if (
"action_value_mappings" not in device_config["class"]
or device_config["class"]["action_value_mappings"] is None
):
device_config["class"]["action_value_mappings"] = {}
enhanced_info = {}
if complete_registry:
device_config["class"]["status_types"].clear()
enhanced_info = get_enhanced_class_info(device_config["class"]["module"], use_dynamic=True)
if not enhanced_info.get("dynamic_import_success", False):
continue
device_config["class"]["status_types"].update(
{k: v["return_type"] for k, v in enhanced_info["status_methods"].items()}
)
for status_name, status_type in device_config["class"]["status_types"].items():
if isinstance(status_type, tuple) or status_type in ["Any", "None", "Unknown"]:
status_type = "String"
device_config["class"]["status_types"][status_name] = status_type
try:
target_type = self._replace_type_with_class(status_type, device_id, f"状态 {status_name}")
except ROSMsgNotFound:
continue
if target_type in [dict, list]:
target_type = String
status_str_type_mapping[status_type] = target_type
device_config["class"]["status_types"] = dict(sorted(device_config["class"]["status_types"].items()))
if complete_registry:
old_action_configs = {}
for action_name, action_config in device_config["class"]["action_value_mappings"].items():
old_action_configs[action_name] = action_config
device_config["class"]["action_value_mappings"] = {
k: v
for k, v in device_config["class"]["action_value_mappings"].items()
if not k.startswith("auto-")
}
device_config["class"]["action_value_mappings"].update(
{
f"auto-{k}": {
"type": "UniLabJsonCommandAsync" if v["is_async"] else "UniLabJsonCommand",
"goal": {},
"feedback": {},
"result": {},
"schema": self._generate_unilab_json_command_schema(
v["args"],
k,
v.get("return_annotation"),
old_action_configs.get(f"auto-{k}", {}).get("schema"),
),
"goal_default": {i["name"]: i["default"] for i in v["args"]},
"handles": old_action_configs.get(f"auto-{k}", {}).get("handles", []),
"placeholder_keys": {
i["name"]: (
"unilabos_resources"
if i["type"] == "unilabos.registry.placeholder_type:ResourceSlot"
or i["type"] == ("list", "unilabos.registry.placeholder_type:ResourceSlot")
else "unilabos_devices"
)
for i in v["args"]
if i.get("type", "")
in [
"unilabos.registry.placeholder_type:ResourceSlot",
"unilabos.registry.placeholder_type:DeviceSlot",
("list", "unilabos.registry.placeholder_type:ResourceSlot"),
("list", "unilabos.registry.placeholder_type:DeviceSlot"),
]
},
}
for k, v in enhanced_info["action_methods"].items()
if k not in device_config["class"]["action_value_mappings"]
}
)
for action_name, old_config in old_action_configs.items():
if action_name in device_config["class"]["action_value_mappings"]:
old_schema = old_config.get("schema", {})
if "description" in old_schema and old_schema["description"]:
device_config["class"]["action_value_mappings"][action_name]["schema"][
"description"
] = old_schema["description"]
device_config["init_param_schema"] = {}
device_config["init_param_schema"]["config"] = self._generate_unilab_json_command_schema(
enhanced_info["init_params"], "__init__"
)["properties"]["goal"]
device_config["init_param_schema"]["data"] = self._generate_status_types_schema(
enhanced_info["status_methods"]
)
device_config.pop("schema", None)
device_config["class"]["action_value_mappings"] = dict(
sorted(device_config["class"]["action_value_mappings"].items())
)
for action_name, action_config in device_config["class"]["action_value_mappings"].items():
if "handles" not in action_config:
action_config["handles"] = {}
elif isinstance(action_config["handles"], list):
if len(action_config["handles"]):
logger.error(f"设备{device_id} {action_name} 的handles配置错误应该是字典类型")
continue
else:
action_config["handles"] = {}
if "type" in action_config:
action_type_str: str = action_config["type"]
if not action_type_str.startswith("UniLabJsonCommand"):
try:
target_type = self._replace_type_with_class(
action_type_str, device_id, f"动作 {action_name}"
)
except ROSMsgNotFound:
continue
action_str_type_mapping[action_type_str] = target_type
if target_type is not None:
action_config["goal_default"] = yaml.safe_load(
io.StringIO(get_yaml_from_goal_type(target_type.Goal))
)
action_config["schema"] = ros_action_to_json_schema(target_type)
else:
logger.warning(
f"[UniLab Registry] 设备 {device_id} 的动作 {action_name} 类型为空,跳过替换"
)
complete_data[device_id] = copy.deepcopy(dict(sorted(device_config.items())))
for status_name, status_type in device_config["class"]["status_types"].items():
device_config["class"]["status_types"][status_name] = status_str_type_mapping[status_type]
for action_name, action_config in device_config["class"]["action_value_mappings"].items():
if action_config["type"] not in action_str_type_mapping:
continue
action_config["type"] = action_str_type_mapping[action_config["type"]]
self._add_builtin_actions(device_config, device_id)
device_config["file_path"] = str(file.absolute()).replace("\\", "/")
device_config["registry_type"] = "device"
device_ids.append(device_id)
complete_data = dict(sorted(complete_data.items()))
complete_data = copy.deepcopy(complete_data)
try:
with open(file, "w", encoding="utf-8") as f:
yaml.dump(complete_data, f, allow_unicode=True, default_flow_style=False, Dumper=NoAliasDumper)
except Exception as e:
logger.warning(f"[UniLab Registry] 写入设备文件失败: {file}, 错误: {e}")
return data, complete_data, True, device_ids
def load_device_types(self, path: os.PathLike, complete_registry: bool):
# return
abs_path = Path(path).absolute()
devices_path = abs_path / "devices"
device_comms_path = abs_path / "device_comms"
files = list(devices_path.glob("*.yaml")) + list(device_comms_path.glob("*.yaml"))
logger.trace(
logger.trace( # type: ignore
f"[UniLab Registry] devices: {devices_path.exists()}, device_comms: {device_comms_path.exists()}, "
+ f"total: {len(files)}"
)
if not files:
return
current_device_number = len(self.device_type_registry) + 1
from unilabos.app.web.utils.action_utils import get_yaml_from_goal_type
# 使用线程池并行加载
max_workers = min(8, len(files))
results = []
with ThreadPoolExecutor(max_workers=max_workers) as executor:
future_to_file = {
executor.submit(self._load_single_device_file, file, complete_registry, get_yaml_from_goal_type): file
for file in files
for i, file in enumerate(files):
with open(file, encoding="utf-8", mode="r") as f:
data = yaml.safe_load(io.StringIO(f.read()))
complete_data = {}
action_str_type_mapping = {
"UniLabJsonCommand": "UniLabJsonCommand",
"UniLabJsonCommandAsync": "UniLabJsonCommandAsync",
}
for future in as_completed(future_to_file):
file = future_to_file[future]
try:
data, complete_data, is_valid, device_ids = future.result()
if is_valid:
results.append((file, data, device_ids))
except Exception as e:
logger.warning(f"[UniLab Registry] 处理设备文件异常: {file}, 错误: {e}")
status_str_type_mapping = {}
if data:
# 在添加到注册表前处理类型替换
for device_id, device_config in data.items():
# 添加文件路径信息 - 使用规范化的完整文件路径
if "version" not in device_config:
device_config["version"] = "1.0.0"
if "category" not in device_config:
device_config["category"] = [file.stem]
elif file.stem not in device_config["category"]:
device_config["category"].append(file.stem)
if "config_info" not in device_config:
device_config["config_info"] = []
if "description" not in device_config:
device_config["description"] = ""
if "icon" not in device_config:
device_config["icon"] = ""
if "handles" not in device_config:
device_config["handles"] = []
if "init_param_schema" not in device_config:
device_config["init_param_schema"] = {}
if "class" in device_config:
if (
"status_types" not in device_config["class"]
or device_config["class"]["status_types"] is None
):
device_config["class"]["status_types"] = {}
if (
"action_value_mappings" not in device_config["class"]
or device_config["class"]["action_value_mappings"] is None
):
device_config["class"]["action_value_mappings"] = {}
enhanced_info = {}
if complete_registry:
device_config["class"]["status_types"].clear()
enhanced_info = get_enhanced_class_info(device_config["class"]["module"], use_dynamic=True)
if not enhanced_info.get("dynamic_import_success", False):
continue
device_config["class"]["status_types"].update(
{k: v["return_type"] for k, v in enhanced_info["status_methods"].items()}
)
for status_name, status_type in device_config["class"]["status_types"].items():
if isinstance(status_type, tuple) or status_type in ["Any", "None", "Unknown"]:
status_type = "String" # 替换成ROS的String便于显示
device_config["class"]["status_types"][status_name] = status_type
try:
target_type = self._replace_type_with_class(
status_type, device_id, f"状态 {status_name}"
)
except ROSMsgNotFound:
continue
if target_type in [
dict,
list,
]: # 对于嵌套类型返回的对象,暂时处理成字符串,无法直接进行转换
target_type = String
status_str_type_mapping[status_type] = target_type
device_config["class"]["status_types"] = dict(
sorted(device_config["class"]["status_types"].items())
)
if complete_registry:
# 保存原有的description信息
old_descriptions = {}
for action_name, action_config in device_config["class"]["action_value_mappings"].items():
if "description" in action_config.get("schema", {}):
description = action_config["schema"]["description"]
if len(description):
old_descriptions[action_name] = action_config["schema"]["description"]
# 线程安全地更新注册表
current_device_number = len(self.device_type_registry) + 1
with self._registry_lock:
for file, data, device_ids in results:
self.device_type_registry.update(data)
for device_id in device_ids:
logger.trace(
f"[UniLab Registry] Device-{current_device_number} Add {device_id} "
device_config["class"]["action_value_mappings"] = {
k: v
for k, v in device_config["class"]["action_value_mappings"].items()
if not k.startswith("auto-")
}
# 处理动作值映射
device_config["class"]["action_value_mappings"].update(
{
f"auto-{k}": {
"type": "UniLabJsonCommandAsync" if v["is_async"] else "UniLabJsonCommand",
"goal": {},
"feedback": {},
"result": {},
"schema": self._generate_unilab_json_command_schema(
v["args"], k, v.get("return_annotation")
),
"goal_default": {i["name"]: i["default"] for i in v["args"]},
"handles": [],
"placeholder_keys": {
i["name"]: (
"unilabos_resources"
if i["type"] == "unilabos.registry.placeholder_type:ResourceSlot"
or i["type"]
== ("list", "unilabos.registry.placeholder_type:ResourceSlot")
else "unilabos_devices"
)
for i in v["args"]
if i.get("type", "")
in [
"unilabos.registry.placeholder_type:ResourceSlot",
"unilabos.registry.placeholder_type:DeviceSlot",
("list", "unilabos.registry.placeholder_type:ResourceSlot"),
("list", "unilabos.registry.placeholder_type:DeviceSlot"),
]
},
}
# 不生成已配置action的动作
for k, v in enhanced_info["action_methods"].items()
if k not in device_config["class"]["action_value_mappings"]
}
)
# 恢复原有的description信息auto开头的不修改
for action_name, description in old_descriptions.items():
if action_name in device_config["class"]["action_value_mappings"]: # 有一些会被删除
device_config["class"]["action_value_mappings"][action_name]["schema"][
"description"
] = description
device_config["init_param_schema"] = {}
device_config["init_param_schema"]["config"] = self._generate_unilab_json_command_schema(
enhanced_info["init_params"], "__init__"
)["properties"]["goal"]
device_config["init_param_schema"]["data"] = self._generate_status_types_schema(
enhanced_info["status_methods"]
)
device_config.pop("schema", None)
device_config["class"]["action_value_mappings"] = dict(
sorted(device_config["class"]["action_value_mappings"].items())
)
for action_name, action_config in device_config["class"]["action_value_mappings"].items():
if "handles" not in action_config:
action_config["handles"] = {}
elif isinstance(action_config["handles"], list):
if len(action_config["handles"]):
logger.error(f"设备{device_id} {action_name} 的handles配置错误应该是字典类型")
continue
else:
action_config["handles"] = {}
if "type" in action_config:
action_type_str: str = action_config["type"]
# 通过Json发放指令而不是通过特殊的ros action进行处理
if not action_type_str.startswith("UniLabJsonCommand"):
try:
target_type = self._replace_type_with_class(
action_type_str, device_id, f"动作 {action_name}"
)
except ROSMsgNotFound:
continue
action_str_type_mapping[action_type_str] = target_type
if target_type is not None:
action_config["goal_default"] = yaml.safe_load(
io.StringIO(get_yaml_from_goal_type(target_type.Goal))
)
action_config["schema"] = ros_action_to_json_schema(target_type)
else:
logger.warning(
f"[UniLab Registry] 设备 {device_id} 的动作 {action_name} 类型为空,跳过替换"
)
complete_data[device_id] = copy.deepcopy(dict(sorted(device_config.items()))) # 稍后dump到文件
for status_name, status_type in device_config["class"]["status_types"].items():
device_config["class"]["status_types"][status_name] = status_str_type_mapping[status_type]
for action_name, action_config in device_config["class"]["action_value_mappings"].items():
if action_config["type"] not in action_str_type_mapping:
continue
action_config["type"] = action_str_type_mapping[action_config["type"]]
# 添加内置的驱动命令动作
self._add_builtin_actions(device_config, device_id)
device_config["file_path"] = str(file.absolute()).replace("\\", "/")
device_config["registry_type"] = "device"
logger.trace( # type: ignore
f"[UniLab Registry] Device-{current_device_number} File-{i+1}/{len(files)} Add {device_id} "
+ f"[{data[device_id].get('name', '未命名设备')}]"
)
current_device_number += 1
# 记录无效文件
valid_files = {r[0] for r in results}
for file in files:
if file not in valid_files:
logger.debug(f"[UniLab Registry] Device File Not Valid YAML File: {file.absolute()}")
complete_data = dict(sorted(complete_data.items()))
complete_data = copy.deepcopy(complete_data)
with open(file, "w", encoding="utf-8") as f:
yaml.dump(complete_data, f, allow_unicode=True, default_flow_style=False, Dumper=NoAliasDumper)
self.device_type_registry.update(data)
else:
logger.debug(
f"[UniLab Registry] Device File-{i+1}/{len(files)} Not Valid YAML File: {file.absolute()}"
)
def obtain_registry_device_info(self):
devices = []

View File

@@ -151,40 +151,12 @@ def canonicalize_links_ports(links: List[Dict[str, Any]], resource_tree_set: Res
"""
# 构建 id 到 uuid 的映射
id_to_uuid: Dict[str, str] = {}
uuid_to_id: Dict[str, str] = {}
for node in resource_tree_set.all_nodes:
id_to_uuid[node.res_content.id] = node.res_content.uuid
uuid_to_id[node.res_content.uuid] = node.res_content.id
# 第三遍处理:为每个 link 添加 source_uuid 和 target_uuid
for link in links:
source_id = link.get("source")
target_id = link.get("target")
# 添加 source_uuid
if source_id and source_id in id_to_uuid:
link["source_uuid"] = id_to_uuid[source_id]
# 添加 target_uuid
if target_id and target_id in id_to_uuid:
link["target_uuid"] = id_to_uuid[target_id]
source_uuid = link.get("source_uuid")
target_uuid = link.get("target_uuid")
# 添加 source_uuid
if source_uuid and source_uuid in uuid_to_id:
link["source"] = uuid_to_id[source_uuid]
# 添加 target_uuid
if target_uuid and target_uuid in uuid_to_id:
link["target"] = uuid_to_id[target_uuid]
# 第一遍处理将字符串类型的port转换为字典格式
for link in links:
port = link.get("port")
if port is None:
continue
if link.get("type", "physical") == "physical":
link["type"] = "fluid"
if isinstance(port, int):
@@ -207,15 +179,13 @@ def canonicalize_links_ports(links: List[Dict[str, Any]], resource_tree_set: Res
link["port"] = {link["source"]: None, link["target"]: None}
# 构建边字典,键为(source节点, target节点)值为对应的port信息
edges = {(link["source"], link["target"]): link["port"] for link in links if link.get("port")}
edges = {(link["source"], link["target"]): link["port"] for link in links}
# 第二遍处理填充反向边的dest信息
delete_reverses = []
for i, link in enumerate(links):
s, t = link["source"], link["target"]
current_port = link.get("port")
if current_port is None:
continue
current_port = link["port"]
if current_port.get(t) is None:
reverse_key = (t, s)
reverse_port = edges.get(reverse_key)
@@ -230,6 +200,20 @@ def canonicalize_links_ports(links: List[Dict[str, Any]], resource_tree_set: Res
current_port[t] = current_port[s]
# 删除已被使用反向端口信息的反向边
standardized_links = [link for i, link in enumerate(links) if i not in delete_reverses]
# 第三遍处理:为每个 link 添加 source_uuid 和 target_uuid
for link in standardized_links:
source_id = link.get("source")
target_id = link.get("target")
# 添加 source_uuid
if source_id and source_id in id_to_uuid:
link["source_uuid"] = id_to_uuid[source_id]
# 添加 target_uuid
if target_id and target_id in id_to_uuid:
link["target_uuid"] = id_to_uuid[target_id]
return standardized_links
@@ -276,7 +260,7 @@ def read_node_link_json(
resource_tree_set = canonicalize_nodes_data(nodes)
# 标准化边数据
links = data.get("links", data.get("edges", []))
links = data.get("links", [])
standardized_links = canonicalize_links_ports(links, resource_tree_set)
# 构建 NetworkX 图(需要转换回 dict 格式)
@@ -300,8 +284,6 @@ def modify_to_backend_format(data: list[dict[str, Any]]) -> list[dict[str, Any]]
edge["sourceHandle"] = port[source]
elif "source_port" in edge:
edge["sourceHandle"] = edge.pop("source_port")
elif "source_handle" in edge:
edge["sourceHandle"] = edge.pop("source_handle")
else:
typ = edge.get("type")
if typ == "communication":
@@ -310,8 +292,6 @@ def modify_to_backend_format(data: list[dict[str, Any]]) -> list[dict[str, Any]]
edge["targetHandle"] = port[target]
elif "target_port" in edge:
edge["targetHandle"] = edge.pop("target_port")
elif "target_handle" in edge:
edge["targetHandle"] = edge.pop("target_handle")
else:
typ = edge.get("type")
if typ == "communication":
@@ -617,8 +597,6 @@ def resource_plr_to_ulab(resource_plr: "ResourcePLR", parent_name: str = None, w
"tube": "tube",
"bottle_carrier": "bottle_carrier",
"plate_adapter": "plate_adapter",
"electrode_sheet": "electrode_sheet",
"material_hole": "material_hole",
}
if source in replace_info:
return replace_info[source]

View File

@@ -79,7 +79,6 @@ class ItemizedCarrier(ResourcePLR):
category: Optional[str] = "carrier",
model: Optional[str] = None,
invisible_slots: Optional[str] = None,
content_type: Optional[List[str]] = ["bottle", "container", "tube", "bottle_carrier", "tip_rack"],
):
super().__init__(
name=name,
@@ -93,7 +92,6 @@ class ItemizedCarrier(ResourcePLR):
self.num_items_x, self.num_items_y, self.num_items_z = num_items_x, num_items_y, num_items_z
self.invisible_slots = [] if invisible_slots is None else invisible_slots
self.layout = "z-y" if self.num_items_z > 1 and self.num_items_x == 1 else "x-z" if self.num_items_z > 1 and self.num_items_y == 1 else "x-y"
self.content_type = content_type
if isinstance(sites, dict):
sites = sites or {}
@@ -421,7 +419,7 @@ class ItemizedCarrier(ResourcePLR):
self[identifier] if isinstance(self[identifier], str) else None,
"position": {"x": location.x, "y": location.y, "z": location.z},
"size": self.child_size[identifier],
"content_type": self.content_type
"content_type": ["bottle", "container", "tube", "bottle_carrier", "tip_rack"]
} for identifier, location in self.child_locations.items()]
}

View File

@@ -13,9 +13,6 @@ if TYPE_CHECKING:
from pylabrobot.resources import Resource as PLRResource
EXTRA_CLASS = "unilabos_resource_class"
class ResourceDictPositionSize(BaseModel):
depth: float = Field(description="Depth", default=0.0) # z
width: float = Field(description="Width", default=0.0) # x
@@ -396,7 +393,7 @@ class ResourceTreeSet(object):
"parent": parent_resource, # 直接传入 ResourceDict 对象
"parent_uuid": parent_uuid, # 使用 parent_uuid 而不是 parent 对象
"type": replace_plr_type(d.get("category", "")),
"class": extra.get(EXTRA_CLASS, ""),
"class": d.get("class", ""),
"position": pos,
"pose": pos,
"config": {
@@ -446,7 +443,7 @@ class ResourceTreeSet(object):
trees.append(tree_instance)
return cls(trees)
def to_plr_resources(self, skip_devices=True) -> List["PLRResource"]:
def to_plr_resources(self) -> List["PLRResource"]:
"""
将 ResourceTreeSet 转换为 PLR 资源列表
@@ -471,7 +468,6 @@ class ResourceTreeSet(object):
name_to_uuid[node.res_content.name] = node.res_content.uuid
all_states[node.res_content.name] = node.res_content.data
name_to_extra[node.res_content.name] = node.res_content.extra
name_to_extra[node.res_content.name][EXTRA_CLASS] = node.res_content.klass
for child in node.children:
collect_node_data(child, name_to_uuid, all_states, name_to_extra)
@@ -516,10 +512,7 @@ class ResourceTreeSet(object):
plr_dict = node_to_plr_dict(tree.root_node, has_model)
try:
sub_cls = find_subclass(plr_dict["type"], PLRResource)
if skip_devices and plr_dict["type"] == "device":
logger.info(f"跳过更新 {plr_dict['name']} 设备是class")
continue
elif sub_cls is None:
if sub_cls is None:
raise ValueError(
f"无法找到类型 {plr_dict['type']} 对应的 PLR 资源类。原始信息:{tree.root_node.res_content}"
)
@@ -527,10 +520,6 @@ class ResourceTreeSet(object):
if "category" not in spec.parameters:
plr_dict.pop("category", None)
plr_resource = sub_cls.deserialize(plr_dict, allow_marshal=True)
from pylabrobot.resources import Coordinate
from pylabrobot.serializer import deserialize
location = cast(Coordinate, deserialize(plr_dict["location"]))
plr_resource.location = location
plr_resource.load_all_state(all_states)
# 使用 DeviceNodeResourceTracker 设置 UUID 和 Extra
tracker.loop_set_uuid(plr_resource, name_to_uuid)
@@ -987,7 +976,7 @@ class DeviceNodeResourceTracker(object):
extra = name_to_extra_map[resource_name]
self.set_resource_extra(res, extra)
if len(extra):
logger.trace(f"设置资源Extra: {resource_name} -> {extra}")
logger.debug(f"设置资源Extra: {resource_name} -> {extra}")
return 1
return 0

View File

@@ -361,14 +361,7 @@ def convert_to_ros_msg(ros_msg_type: Union[Type, Any], obj: Any) -> Any:
if hasattr(ros_msg, key):
attr = getattr(ros_msg, key)
if isinstance(attr, (float, int, str, bool)):
# 处理list类型的值取第一个元素或抛出错误
if isinstance(value, list):
if len(value) > 0:
setattr(ros_msg, key, type(attr)(value[0]))
else:
setattr(ros_msg, key, type(attr)()) # 使用默认值
else:
setattr(ros_msg, key, type(attr)(value))
setattr(ros_msg, key, type(attr)(value))
elif isinstance(attr, (list, tuple)) and isinstance(value, Iterable):
td = ros_msg.SLOT_TYPES[ind].value_type
if isinstance(td, NamespacedType):
@@ -381,35 +374,9 @@ def convert_to_ros_msg(ros_msg_type: Union[Type, Any], obj: Any) -> Any:
setattr(ros_msg, key, []) # FIXME
elif "array.array" in str(type(attr)):
if attr.typecode == "f" or attr.typecode == "d":
# 如果是单个值,转换为列表
if value is None:
value = []
elif not isinstance(value, Iterable) or isinstance(value, (str, bytes)):
value = [value]
setattr(ros_msg, key, [float(i) for i in value])
else:
# 对于整数数组,需要确保是序列且每个值在有效范围内
if value is None:
value = []
elif not isinstance(value, Iterable) or isinstance(value, (str, bytes)):
# 如果是单个值,转换为列表
value = [value]
# 确保每个整数值在有效范围内(-2147483648 到 2147483647
converted_value = []
for i in value:
if i is None:
continue # 跳过 None 值
if isinstance(i, (int, float)):
int_val = int(i)
# 确保在 int32 范围内
if int_val < -2147483648:
int_val = -2147483648
elif int_val > 2147483647:
int_val = 2147483647
converted_value.append(int_val)
else:
converted_value.append(i)
setattr(ros_msg, key, converted_value)
setattr(ros_msg, key, value)
else:
nested_ros_msg = convert_to_ros_msg(type(attr)(), value)
setattr(ros_msg, key, nested_ros_msg)

View File

@@ -1,4 +1,3 @@
from ast import Try
import inspect
import io
import json
@@ -886,9 +885,6 @@ class BaseROS2DeviceNode(Node, Generic[T]):
parent_appended = True
# 加载状态
original_instance.location = plr_resource.location
original_instance.rotation = plr_resource.rotation
original_instance.barcode = plr_resource.barcode
original_instance.load_all_state(states)
child_count = len(original_instance.get_all_children())
self.lab_logger().info(
@@ -1324,49 +1320,20 @@ class BaseROS2DeviceNode(Node, Generic[T]):
resource_inputs = action_kwargs[k] if is_sequence else [action_kwargs[k]]
# 批量查询资源
queried_resources: list = [None] * len(resource_inputs)
uuid_indices: list[tuple[int, str, dict]] = [] # (index, uuid, resource_data)
# 第一遍处理没有uuid的资源收集有uuid的资源信息
for idx, resource_data in enumerate(resource_inputs):
queried_resources = []
for resource_data in resource_inputs:
unilabos_uuid = resource_data.get("data", {}).get("unilabos_uuid")
if unilabos_uuid is None:
plr_resource = await self.get_resource_with_dir(
resource_id=resource_data["id"], with_children=True
)
if "sample_id" in resource_data:
plr_resource.unilabos_extra["sample_uuid"] = resource_data["sample_id"]
queried_resources[idx] = plr_resource
else:
uuid_indices.append((idx, unilabos_uuid, resource_data))
resource_tree = await self.get_resource([unilabos_uuid])
plr_resource = resource_tree.to_plr_resources()[0]
if "sample_id" in resource_data:
plr_resource.unilabos_extra["sample_uuid"] = resource_data["sample_id"]
queried_resources.append(plr_resource)
# 第二遍批量查询有uuid的资源
if uuid_indices:
uuids = [item[1] for item in uuid_indices]
resource_tree = await self.get_resource(uuids)
plr_resources = resource_tree.to_plr_resources()
for i, (idx, _, resource_data) in enumerate(uuid_indices):
plr_resource = plr_resources[i]
if "sample_id" in resource_data:
plr_resource.unilabos_extra["sample_uuid"] = resource_data["sample_id"]
queried_resources[idx] = plr_resource
# 第二遍批量查询有uuid的资源
if uuid_indices:
uuids = [item[1] for item in uuid_indices]
resource_tree = await self.get_resource(uuids)
plr_resources = resource_tree.to_plr_resources()
# 通过uuid查找对应的plr_resource
tracker = self.resource_tracker
for idx, uuid, resource_data in uuid_indices:
try:
plr_resource = tracker.loop_find_with_uuid(plr_resources, uuid)
if "sample_id" in resource_data:
plr_resource.unilabos_extra["sample_uuid"] = resource_data["sample_id"]
queried_resources[idx] = plr_resource
except Exception as e:
self.lab_logger().error(f"资源查询失败: {e}\n{traceback.format_exc()}")
continue
self.lab_logger().debug(f"资源查询结果: 共 {len(queried_resources)} 个资源")
# 通过资源跟踪器获取本地实例
@@ -1501,8 +1468,6 @@ class BaseROS2DeviceNode(Node, Generic[T]):
if isinstance(rs, list):
for r in rs:
res = self.resource_tracker.parent_resource(r) # 获取 resource 对象
elif type(rs).__name__ == "ResourceHolder":
pass
else:
res = self.resource_tracker.parent_resource(rs)
if id(res) not in seen:
@@ -1601,7 +1566,7 @@ class BaseROS2DeviceNode(Node, Generic[T]):
f"转换ResourceSlot列表参数 {arg_name} 失败: {e}\n{traceback.format_exc()}"
)
raise JsonCommandInitError(f"ResourceSlot列表参数转换失败: {arg_name}")
# todo: 默认反报送
return function(**function_args)
except KeyError as ex:
raise JsonCommandInitError(
@@ -1634,8 +1599,8 @@ class BaseROS2DeviceNode(Node, Generic[T]):
timeout = 30.0
elapsed = 0.0
while not future.done() and elapsed < timeout:
time.sleep(0.02)
elapsed += 0.02
time.sleep(0.05)
elapsed += 0.05
if not future.done():
raise Exception(f"资源查询超时: {uuids_list}")

View File

@@ -794,8 +794,7 @@ class HostNode(BaseROS2DeviceNode):
assign_sample_id(action_kwargs)
goal_msg = convert_to_ros_msg(action_client._action_type.Goal(), action_kwargs)
# self.lab_logger().trace(f"[Host Node] Sending goal for {action_id}: {str(goal_msg)[:1000]}")
self.lab_logger().trace(f"[Host Node] Sending goal for {action_id}: {action_kwargs}")
self.lab_logger().info(f"[Host Node] Sending goal for {action_id}: {str(goal_msg)[:1000]}")
self.lab_logger().trace(f"[Host Node] Sending goal for {action_id}: {goal_msg}")
action_client.wait_for_server()
goal_uuid_obj = UUID(uuid=list(u.bytes))
@@ -1162,7 +1161,7 @@ class HostNode(BaseROS2DeviceNode):
"""
更新节点信息回调
"""
self.lab_logger().trace(f"[Host Node] Node info update request received: {request}")
# self.lab_logger().info(f"[Host Node] Node info update request received: {request}")
try:
from unilabos.app.communication import get_communication_client
from unilabos.app.web.client import HTTPClient, http_client

View File

@@ -6,6 +6,8 @@ from typing import List, Dict, Any, Optional, TYPE_CHECKING
import rclpy
from rosidl_runtime_py import message_to_ordereddict
from unilabos_msgs.msg import Resource
from unilabos_msgs.srv import ResourceUpdate
from unilabos.messages import * # type: ignore # protocol names
from rclpy.action import ActionServer, ActionClient
@@ -13,6 +15,7 @@ from rclpy.action.server import ServerGoalHandle
from unilabos_msgs.srv._serial_command import SerialCommand_Request, SerialCommand_Response
from unilabos.compile import action_protocol_generators
from unilabos.resources.graphio import nested_dict_to_list
from unilabos.ros.initialize_device import initialize_device_from_dict
from unilabos.ros.msgs.message_converter import (
get_action_type,
@@ -228,15 +231,15 @@ class ROS2WorkstationNode(BaseROS2DeviceNode):
try:
# 统一处理单个或多个资源
resource_id = (
protocol_kwargs[k]["id"]
if v == "unilabos_msgs/Resource"
else protocol_kwargs[k][0]["id"]
protocol_kwargs[k]["id"] if v == "unilabos_msgs/Resource" else protocol_kwargs[k][0]["id"]
)
resource_uuid = protocol_kwargs[k].get("uuid", None)
r = SerialCommand_Request()
r.command = json.dumps({"id": resource_id, "uuid": resource_uuid, "with_children": True})
# 发送请求并等待响应
response: SerialCommand_Response = await self._resource_clients["resource_get"].call_async(
response: SerialCommand_Response = await self._resource_clients[
"resource_get"
].call_async(
r
) # type: ignore
raw_data = json.loads(response.response)
@@ -304,52 +307,12 @@ class ROS2WorkstationNode(BaseROS2DeviceNode):
# 向Host更新物料当前状态
for k, v in goal.get_fields_and_field_types().items():
if v not in ["unilabos_msgs/Resource", "sequence<unilabos_msgs/Resource>"]:
continue
self.lab_logger().info(f"更新资源状态: {k}")
try:
# 去重:使用 seen 集合获取唯一的资源对象
seen = set()
unique_resources = []
# 获取资源数据,统一转换为列表
resource_data = protocol_kwargs[k]
is_sequence = v != "unilabos_msgs/Resource"
if not is_sequence:
resource_list = [resource_data] if isinstance(resource_data, dict) else resource_data
else:
# 处理序列类型,可能是嵌套列表
resource_list = []
if isinstance(resource_data, list):
for item in resource_data:
if isinstance(item, list):
resource_list.extend(item)
else:
resource_list.append(item)
else:
resource_list = [resource_data]
for res_data in resource_list:
if not isinstance(res_data, dict):
continue
res_name = res_data.get("id") or res_data.get("name")
if not res_name:
continue
# 使用 resource_tracker 获取本地 PLR 实例
plr = self.resource_tracker.figure_resource({"name": res_name}, try_mode=False)
# 获取父资源
res = self.resource_tracker.parent_resource(plr)
if id(res) not in seen:
seen.add(id(res))
unique_resources.append(res)
# 使用新的资源树接口更新
if unique_resources:
await self.update_resource(unique_resources)
except Exception as e:
self.lab_logger().error(f"资源更新失败: {e}")
self.lab_logger().error(traceback.format_exc())
if v in ["unilabos_msgs/Resource", "sequence<unilabos_msgs/Resource>"]:
r = ResourceUpdate.Request()
r.resources = [
convert_to_ros_msg(Resource, rs) for rs in nested_dict_to_list(protocol_kwargs[k])
]
response = await self._resource_clients["resource_update"].call_async(r)
# 设置成功状态和返回值
execution_success = True

View File

@@ -1,836 +0,0 @@
{
"nodes": [
{
"id": "PRCXI",
"name": "PRCXI",
"type": "device",
"class": "liquid_handler.prcxi",
"parent": "",
"pose": {
"size": {
"width": 550,
"height": 400,
"depth": 0
}
},
"config": {
"axis": "Left",
"deck": {
"_resource_type": "unilabos.devices.liquid_handling.prcxi.prcxi:PRCXI9300Deck",
"_resource_child_name": "PRCXI_Deck"
},
"host": "10.20.30.184",
"port": 9999,
"debug": false,
"setup": false,
"is_9320": true,
"timeout": 10,
"matrix_id": "5de524d0-3f95-406c-86dd-f83626ebc7cb",
"simulator": false,
"channel_num": 2
},
"data": {
"reset_ok": true
},
"schema": {},
"description": "",
"model": null,
"position": {
"x": 0,
"y": 700,
"z": 0
}
},
{
"id": "PRCXI_Deck",
"name": "PRCXI_Deck",
"children": [],
"parent": "PRCXI",
"type": "deck",
"class": "",
"position": {
"x": 0,
"y": 0,
"z": 0
},
"config": {
"type": "PRCXI9300Deck",
"size_x": 550,
"size_y": 400,
"size_z": 17,
"rotation": {
"x": 0,
"y": 0,
"z": 0,
"type": "Rotation"
},
"category": "deck",
"barcode": null
},
"data": {}
},
{
"id": "T1",
"name": "T1",
"children": [],
"parent": "PRCXI_Deck",
"type": "plate",
"class": "",
"position": {
"x": 5,
"y": 301,
"z": 0
},
"config": {
"type": "PRCXI9300PlateAdapterSite",
"size_x": 127.5,
"size_y": 86,
"size_z": 28,
"rotation": {
"x": 0,
"y": 0,
"z": 0,
"type": "Rotation"
},
"category": "plate",
"model": null,
"barcode": null,
"sites": [
{
"label": "T1",
"visible": true,
"position": { "x": 0, "y": 0, "z": 0 },
"size": { "width": 128.0, "height": 86, "depth": 0 },
"content_type": [
"plate",
"tip_rack",
"plates",
"tip_racks",
"tube_rack"
]
}
]
},
"data": {}
},
{
"id": "T2",
"name": "T2",
"children": [],
"parent": "PRCXI_Deck",
"type": "plate",
"class": "",
"position": {
"x": 142.5,
"y": 301,
"z": 0
},
"config": {
"type": "PRCXI9300PlateAdapterSite",
"size_x": 127.5,
"size_y": 86,
"size_z": 28,
"rotation": {
"x": 0,
"y": 0,
"z": 0,
"type": "Rotation"
},
"category": "plate",
"model": null,
"barcode": null,
"sites": [
{
"label": "T2",
"visible": true,
"position": { "x": 0, "y": 0, "z": 0 },
"size": { "width": 128.0, "height": 86, "depth": 0 },
"content_type": [
"plate",
"tip_rack",
"plates",
"tip_racks",
"tube_rack"
]
}
]
},
"data": {}
},
{
"id": "T3",
"name": "T3",
"children": [],
"parent": "PRCXI_Deck",
"type": "plate",
"class": "",
"position": {
"x": 280,
"y": 301,
"z": 0
},
"config": {
"type": "PRCXI9300PlateAdapterSite",
"size_x": 127.5,
"size_y": 86,
"size_z": 28,
"rotation": {
"x": 0,
"y": 0,
"z": 0,
"type": "Rotation"
},
"category": "plate",
"model": null,
"barcode": null,
"sites": [
{
"label": "T3",
"visible": true,
"position": { "x": 0, "y": 0, "z": 0 },
"size": { "width": 128.0, "height": 86, "depth": 0 },
"content_type": [
"plate",
"tip_rack",
"plates",
"tip_racks",
"tube_rack"
]
}
]
},
"data": {}
},
{
"id": "T4",
"name": "T4",
"children": [],
"parent": "PRCXI_Deck",
"type": "plate",
"class": "",
"position": {
"x": 417.5,
"y": 301,
"z": 0
},
"config": {
"type": "PRCXI9300PlateAdapterSite",
"size_x": 127.5,
"size_y": 86,
"size_z": 94,
"rotation": {
"x": 0,
"y": 0,
"z": 0,
"type": "Rotation"
},
"category": "plate",
"model": null,
"barcode": null,
"sites": [
{
"label": "T4",
"visible": true,
"position": { "x": 0, "y": 0, "z": 0 },
"size": { "width": 128.0, "height": 86, "depth": 0 },
"content_type": [
"plate",
"tip_rack",
"plates",
"tip_racks",
"tube_rack"
]
}
]
},
"data": {}
},
{
"id": "T5",
"name": "T5",
"children": [],
"parent": "PRCXI_Deck",
"type": "plate",
"class": "",
"position": {
"x": 5,
"y": 205,
"z": 0
},
"config": {
"type": "PRCXI9300PlateAdapterSite",
"size_x": 127.5,
"size_y": 86,
"size_z": 28,
"rotation": {
"x": 0,
"y": 0,
"z": 0,
"type": "Rotation"
},
"category": "plate",
"model": null,
"barcode": null,
"sites": [
{
"label": "T5",
"visible": true,
"position": { "x": 0, "y": 0, "z": 0 },
"size": { "width": 128.0, "height": 86, "depth": 0 },
"content_type": [
"plate",
"tip_rack",
"plates",
"tip_racks",
"tube_rack"
]
}
]
},
"data": {}
},
{
"id": "T6",
"name": "T6",
"children": [],
"parent": "PRCXI_Deck",
"type": "plate",
"class": "",
"position": {
"x": 142.5,
"y": 205,
"z": 0
},
"config": {
"type": "PRCXI9300PlateAdapterSite",
"size_x": 127.5,
"size_y": 86,
"size_z": 28,
"rotation": {
"x": 0,
"y": 0,
"z": 0,
"type": "Rotation"
},
"category": "plate",
"model": null,
"barcode": null,
"sites": [
{
"label": "T6",
"visible": true,
"position": { "x": 0, "y": 0, "z": 0 },
"size": { "width": 128.0, "height": 86, "depth": 0 },
"content_type": [
"plate",
"tip_rack",
"plates",
"tip_racks",
"tube_rack"
]
}
]
},
"data": {}
},
{
"id": "T7",
"name": "T7",
"children": [],
"parent": "PRCXI_Deck",
"type": "plate",
"class": "",
"position": {
"x": 280,
"y": 205,
"z": 0
},
"config": {
"type": "PRCXI9300PlateAdapterSite",
"size_x": 127.5,
"size_y": 86,
"size_z": 28,
"rotation": {
"x": 0,
"y": 0,
"z": 0,
"type": "Rotation"
},
"category": "plate",
"model": null,
"barcode": null,
"sites": [
{
"label": "T7",
"visible": true,
"position": { "x": 0, "y": 0, "z": 0 },
"size": { "width": 128.0, "height": 86, "depth": 0 },
"content_type": [
"plate",
"tip_rack",
"plates",
"tip_racks",
"tube_rack"
]
}
]
},
"data": {}
},
{
"id": "T8",
"name": "T8",
"children": [],
"parent": "PRCXI_Deck",
"type": "plate",
"class": "",
"position": {
"x": 417.5,
"y": 205,
"z": 0
},
"config": {
"type": "PRCXI9300PlateAdapterSite",
"size_x": 127.5,
"size_y": 86,
"size_z": 28,
"rotation": {
"x": 0,
"y": 0,
"z": 0,
"type": "Rotation"
},
"category": "plate",
"model": null,
"barcode": null,
"sites": [
{
"label": "T8",
"visible": true,
"position": { "x": 0, "y": 0, "z": 0 },
"size": { "width": 128.0, "height": 86, "depth": 0 },
"content_type": [
"plate",
"tip_rack",
"plates",
"tip_racks",
"tube_rack"
]
}
]
},
"data": {}
},
{
"id": "T9",
"name": "T9",
"children": [],
"parent": "PRCXI_Deck",
"type": "plate",
"class": "",
"position": {
"x": 5,
"y": 109,
"z": 0
},
"config": {
"type": "PRCXI9300PlateAdapterSite",
"size_x": 127.5,
"size_y": 86,
"size_z": 28,
"rotation": {
"x": 0,
"y": 0,
"z": 0,
"type": "Rotation"
},
"category": "plate",
"model": null,
"barcode": null,
"sites": [
{
"label": "T9",
"visible": true,
"position": { "x": 0, "y": 0, "z": 0 },
"size": { "width": 128.0, "height": 86, "depth": 0 },
"content_type": [
"plate",
"tip_rack",
"plates",
"tip_racks",
"tube_rack"
]
}
]
},
"data": {}
},
{
"id": "T10",
"name": "T10",
"children": [],
"parent": "PRCXI_Deck",
"type": "plate",
"class": "",
"position": {
"x": 142.5,
"y": 109,
"z": 0
},
"config": {
"type": "PRCXI9300PlateAdapterSite",
"size_x": 127.5,
"size_y": 86,
"size_z": 28,
"rotation": {
"x": 0,
"y": 0,
"z": 0,
"type": "Rotation"
},
"category": "plate",
"model": null,
"barcode": null,
"sites": [
{
"label": "T10",
"visible": true,
"position": { "x": 0, "y": 0, "z": 0 },
"size": { "width": 128.0, "height": 86, "depth": 0 },
"content_type": [
"plate",
"tip_rack",
"plates",
"tip_racks",
"tube_rack"
]
}
]
},
"data": {}
},
{
"id": "T11",
"name": "T11",
"children": [],
"parent": "PRCXI_Deck",
"type": "plate",
"class": "",
"position": {
"x": 280,
"y": 109,
"z": 0
},
"config": {
"type": "PRCXI9300PlateAdapterSite",
"size_x": 127.5,
"size_y": 86,
"size_z": 28,
"rotation": {
"x": 0,
"y": 0,
"z": 0,
"type": "Rotation"
},
"category": "plate",
"model": null,
"barcode": null,
"sites": [
{
"label": "T11",
"visible": true,
"position": { "x": 0, "y": 0, "z": 0 },
"size": { "width": 128.0, "height": 86, "depth": 0 },
"content_type": [
"plate",
"tip_rack",
"plates",
"tip_racks",
"tube_rack"
]
}
]
},
"data": {}
},
{
"id": "T12",
"name": "T12",
"children": [],
"parent": "PRCXI_Deck",
"type": "plate",
"class": "",
"position": {
"x": 417.5,
"y": 109,
"z": 0
},
"config": {
"type": "PRCXI9300PlateAdapterSite",
"size_x": 127.5,
"size_y": 86,
"size_z": 28,
"rotation": {
"x": 0,
"y": 0,
"z": 0,
"type": "Rotation"
},
"category": "plate",
"model": null,
"barcode": null,
"sites": [
{
"label": "T12",
"visible": true,
"position": { "x": 0, "y": 0, "z": 0 },
"size": { "width": 128.0, "height": 86, "depth": 0 },
"content_type": [
"plate",
"tip_rack",
"plates",
"tip_racks",
"tube_rack"
]
}
]
},
"data": {}
},
{
"id": "T13",
"name": "T13",
"children": [],
"parent": "PRCXI_Deck",
"type": "plate",
"class": "",
"position": {
"x": 5,
"y": 13,
"z": 0
},
"config": {
"type": "PRCXI9300PlateAdapterSite",
"size_x": 127.5,
"size_y": 86,
"size_z": 28,
"rotation": {
"x": 0,
"y": 0,
"z": 0,
"type": "Rotation"
},
"category": "plate",
"model": null,
"barcode": null,
"sites": [
{
"label": "T13",
"visible": true,
"position": { "x": 0, "y": 0, "z": 0 },
"size": { "width": 128.0, "height": 86, "depth": 0 },
"content_type": [
"plate",
"tip_rack",
"plates",
"tip_racks",
"tube_rack"
]
}
]
},
"data": {}
},
{
"id": "T14",
"name": "T14",
"children": [],
"parent": "PRCXI_Deck",
"type": "plate",
"class": "",
"position": {
"x": 142.5,
"y": 13,
"z": 0
},
"config": {
"type": "PRCXI9300PlateAdapterSite",
"size_x": 127.5,
"size_y": 86,
"size_z": 28,
"rotation": {
"x": 0,
"y": 0,
"z": 0,
"type": "Rotation"
},
"category": "plate",
"model": null,
"barcode": null,
"sites": [
{
"label": "T14",
"visible": true,
"position": { "x": 0, "y": 0, "z": 0 },
"size": { "width": 128.0, "height": 86, "depth": 0 },
"content_type": [
"plate",
"tip_rack",
"plates",
"tip_racks",
"tube_rack"
]
}
]
},
"data": {}
},
{
"id": "T15",
"name": "T15",
"children": [],
"parent": "PRCXI_Deck",
"type": "plate",
"class": "",
"position": {
"x": 280,
"y": 13,
"z": 0
},
"config": {
"type": "PRCXI9300PlateAdapterSite",
"size_x": 127.5,
"size_y": 86,
"size_z": 28,
"rotation": {
"x": 0,
"y": 0,
"z": 0,
"type": "Rotation"
},
"category": "plate",
"model": null,
"barcode": null,
"sites": [
{
"label": "T15",
"visible": true,
"position": { "x": 0, "y": 0, "z": 0 },
"size": { "width": 128.0, "height": 86, "depth": 0 },
"content_type": [
"plate",
"tip_rack",
"plates",
"tip_racks",
"tube_rack"
]
}
]
},
"data": {}
},
{
"id": "T16",
"name": "T16",
"children": [],
"parent": "PRCXI_Deck",
"type": "plate",
"class": "",
"position": {
"x": 417.5,
"y": 13,
"z": 0
},
"config": {
"type": "PRCXI9300PlateAdapterSite",
"size_x": 127.5,
"size_y": 86,
"size_z": 28,
"rotation": {
"x": 0,
"y": 0,
"z": 0,
"type": "Rotation"
},
"category": "plate",
"model": null,
"barcode": null,
"sites": [
{
"label": "T16",
"visible": true,
"position": { "x": 0, "y": 0, "z": 0 },
"size": { "width": 128.0, "height": 86, "depth": 0 },
"content_type": [
"plate",
"tip_rack",
"plates",
"tip_racks",
"tube_rack"
]
}
]
},
"data": {}
},
{
"id": "trash",
"name": "trash",
"children": [],
"parent": "T16",
"type": "trash",
"class": "",
"position": {
"x": 0,
"y": 0,
"z": 0
},
"config": {
"type": "PRCXI9300Trash",
"size_x": 127.5,
"size_y": 86,
"size_z": 10,
"rotation": {
"x": 0,
"y": 0,
"z": 0,
"type": "Rotation"
},
"category": "trash",
"model": null,
"barcode": null,
"max_volume": "Infinity",
"material_z_thickness": 0,
"compute_volume_from_height": null,
"compute_height_from_volume": null
},
"data": {
"liquids": [],
"pending_liquids": [],
"liquid_history": [],
"Material": {
"uuid": "730067cf07ae43849ddf4034299030e9"
}
}
}
],
"edges": []
}

View File

@@ -1,795 +0,0 @@
{
"nodes": [
{
"id": "PRCXI",
"name": "PRCXI",
"type": "device",
"class": "liquid_handler.prcxi",
"parent": "",
"pose": {
"size": {
"width": 562,
"height": 394,
"depth": 0
}
},
"config": {
"axis": "Left",
"deck": {
"_resource_type": "unilabos.devices.liquid_handling.prcxi.prcxi:PRCXI9300Deck",
"_resource_child_name": "PRCXI_Deck"
},
"host": "10.20.30.184",
"port": 9999,
"debug": true,
"setup": true,
"is_9320": true,
"timeout": 10,
"matrix_id": "5de524d0-3f95-406c-86dd-f83626ebc7cb",
"simulator": true,
"channel_num": 2
},
"data": {
"reset_ok": true
},
"schema": {},
"description": "",
"model": null,
"position": {
"x": 0,
"y": 240,
"z": 0
}
},
{
"id": "PRCXI_Deck",
"name": "PRCXI_Deck",
"children": [],
"parent": "PRCXI",
"type": "deck",
"class": "",
"position": {
"x": 10,
"y": 10,
"z": 0
},
"config": {
"type": "PRCXI9300Deck",
"size_x": 542,
"size_y": 374,
"size_z": 0,
"rotation": {
"x": 0,
"y": 0,
"z": 0,
"type": "Rotation"
},
"category": "deck",
"barcode": null
},
"data": {}
},
{
"id": "T1",
"name": "T1",
"children": [],
"parent": "PRCXI_Deck",
"type": "plate",
"class": "",
"position": {
"x": 0,
"y": 288,
"z": 0
},
"config": {
"type": "PRCXI9300Container",
"size_x": 127,
"size_y": 85.5,
"size_z": 10,
"rotation": {
"x": 0,
"y": 0,
"z": 0,
"type": "Rotation"
},
"category": "plate",
"model": null,
"barcode": null,
"ordering": {},
"sites": [
{
"label": "T1",
"visible": true,
"position": { "x": 0, "y": 0, "z": 0 },
"size": { "width": 128.0, "height": 86, "depth": 0 },
"content_type": [
"plate",
"tip_rack",
"plates",
"tip_racks",
"tube_rack"
]
}
]
},
"data": {}
},
{
"id": "T2",
"name": "T2",
"children": [],
"parent": "PRCXI_Deck",
"type": "plate",
"class": "",
"position": {
"x": 138,
"y": 288,
"z": 0
},
"config": {
"type": "PRCXI9300Container",
"size_x": 127,
"size_y": 85.5,
"size_z": 10,
"rotation": {
"x": 0,
"y": 0,
"z": 0,
"type": "Rotation"
},
"category": "plate",
"model": null,
"barcode": null,
"ordering": {},
"sites": [
{
"label": "T2",
"visible": true,
"position": { "x": 0, "y": 0, "z": 0 },
"size": { "width": 128.0, "height": 86, "depth": 0 },
"content_type": [
"plate",
"tip_rack",
"plates",
"tip_racks",
"tube_rack"
]
}
]
},
"data": {}
},
{
"id": "T3",
"name": "T3",
"children": [],
"parent": "PRCXI_Deck",
"type": "plate",
"class": "",
"position": {
"x": 276,
"y": 288,
"z": 0
},
"config": {
"type": "PRCXI9300Container",
"size_x": 127,
"size_y": 85.5,
"size_z": 10,
"rotation": {
"x": 0,
"y": 0,
"z": 0,
"type": "Rotation"
},
"category": "plate",
"model": null,
"barcode": null,
"ordering": {},
"sites": [
{
"label": "T3",
"visible": true,
"position": { "x": 0, "y": 0, "z": 0 },
"size": { "width": 128.0, "height": 86, "depth": 0 },
"content_type": [
"plate",
"tip_rack",
"plates",
"tip_racks",
"tube_rack"
]
}
]
},
"data": {}
},
{
"id": "T4",
"name": "T4",
"children": [],
"parent": "PRCXI_Deck",
"type": "plate",
"class": "",
"position": {
"x": 414,
"y": 288,
"z": 0
},
"config": {
"type": "PRCXI9300Container",
"size_x": 127,
"size_y": 85.5,
"size_z": 10,
"rotation": {
"x": 0,
"y": 0,
"z": 0,
"type": "Rotation"
},
"category": "plate",
"model": null,
"barcode": null,
"ordering": {},
"sites": [
{
"label": "T4",
"visible": true,
"position": { "x": 0, "y": 0, "z": 0 },
"size": { "width": 128.0, "height": 86, "depth": 0 },
"content_type": [
"plate",
"tip_rack",
"plates",
"tip_racks",
"tube_rack"
]
}
]
},
"data": {}
},
{
"id": "T5",
"name": "T5",
"children": [],
"parent": "PRCXI_Deck",
"type": "plate",
"class": "",
"position": {
"x": 0,
"y": 192,
"z": 0
},
"config": {
"type": "PRCXI9300Container",
"size_x": 127,
"size_y": 85.5,
"size_z": 10,
"rotation": {
"x": 0,
"y": 0,
"z": 0,
"type": "Rotation"
},
"category": "plate",
"model": null,
"barcode": null,
"ordering": {},
"sites": [
{
"label": "T5",
"visible": true,
"position": { "x": 0, "y": 0, "z": 0 },
"size": { "width": 128.0, "height": 86, "depth": 0 },
"content_type": [
"plate",
"tip_rack",
"plates",
"tip_racks",
"tube_rack"
]
}
]
},
"data": {}
},
{
"id": "T6",
"name": "T6",
"children": [],
"parent": "PRCXI_Deck",
"type": "plate",
"class": "",
"position": {
"x": 138,
"y": 192,
"z": 0
},
"config": {
"type": "PRCXI9300Container",
"size_x": 127,
"size_y": 85.5,
"size_z": 10,
"rotation": {
"x": 0,
"y": 0,
"z": 0,
"type": "Rotation"
},
"category": "plate",
"model": null,
"barcode": null,
"ordering": {},
"sites": [
{
"label": "T6",
"visible": true,
"position": { "x": 0, "y": 0, "z": 0 },
"size": { "width": 128.0, "height": 86, "depth": 0 },
"content_type": [
"plate",
"tip_rack",
"plates",
"tip_racks",
"tube_rack"
]
}
]
},
"data": {}
},
{
"id": "T7",
"name": "T7",
"children": [],
"parent": "PRCXI_Deck",
"type": "plate",
"class": "",
"position": {
"x": 276,
"y": 192,
"z": 0
},
"config": {
"type": "PRCXI9300Container",
"size_x": 127,
"size_y": 85.5,
"size_z": 10,
"rotation": {
"x": 0,
"y": 0,
"z": 0,
"type": "Rotation"
},
"category": "plate",
"model": null,
"barcode": null,
"ordering": {},
"sites": [
{
"label": "T7",
"visible": true,
"position": { "x": 0, "y": 0, "z": 0 },
"size": { "width": 128.0, "height": 86, "depth": 0 },
"content_type": [
"plate",
"tip_rack",
"plates",
"tip_racks",
"tube_rack"
]
}
]
},
"data": {}
},
{
"id": "T8",
"name": "T8",
"children": [],
"parent": "PRCXI_Deck",
"type": "plate",
"class": "",
"position": {
"x": 414,
"y": 192,
"z": 0
},
"config": {
"type": "PRCXI9300Container",
"size_x": 127,
"size_y": 85.5,
"size_z": 10,
"rotation": {
"x": 0,
"y": 0,
"z": 0,
"type": "Rotation"
},
"category": "plate",
"model": null,
"barcode": null,
"ordering": {},
"sites": [
{
"label": "T8",
"visible": true,
"position": { "x": 0, "y": 0, "z": 0 },
"size": { "width": 128.0, "height": 86, "depth": 0 },
"content_type": [
"plate",
"tip_rack",
"plates",
"tip_racks",
"tube_rack"
]
}
]
},
"data": {}
},
{
"id": "T9",
"name": "T9",
"children": [],
"parent": "PRCXI_Deck",
"type": "plate",
"class": "",
"position": {
"x": 0,
"y": 96,
"z": 0
},
"config": {
"type": "PRCXI9300Container",
"size_x": 127,
"size_y": 85.5,
"size_z": 10,
"rotation": {
"x": 0,
"y": 0,
"z": 0,
"type": "Rotation"
},
"category": "plate",
"model": null,
"barcode": null,
"ordering": {},
"sites": [
{
"label": "T9",
"visible": true,
"position": { "x": 0, "y": 0, "z": 0 },
"size": { "width": 128.0, "height": 86, "depth": 0 },
"content_type": [
"plate",
"tip_rack",
"plates",
"tip_racks",
"tube_rack"
]
}
]
},
"data": {}
},
{
"id": "T10",
"name": "T10",
"children": [],
"parent": "PRCXI_Deck",
"type": "plate",
"class": "",
"position": {
"x": 138,
"y": 96,
"z": 0
},
"config": {
"type": "PRCXI9300Container",
"size_x": 127,
"size_y": 85.5,
"size_z": 10,
"rotation": {
"x": 0,
"y": 0,
"z": 0,
"type": "Rotation"
},
"category": "plate",
"model": null,
"barcode": null,
"ordering": {},
"sites": [
{
"label": "T10",
"visible": true,
"position": { "x": 0, "y": 0, "z": 0 },
"size": { "width": 128.0, "height": 86, "depth": 0 },
"content_type": [
"plate",
"tip_rack",
"plates",
"tip_racks",
"tube_rack"
]
}
]
},
"data": {}
},
{
"id": "T11",
"name": "T11",
"children": [],
"parent": "PRCXI_Deck",
"type": "plate",
"class": "",
"position": {
"x": 276,
"y": 96,
"z": 0
},
"config": {
"type": "PRCXI9300Container",
"size_x": 127,
"size_y": 85.5,
"size_z": 10,
"rotation": {
"x": 0,
"y": 0,
"z": 0,
"type": "Rotation"
},
"category": "plate",
"model": null,
"barcode": null,
"ordering": {},
"sites": [
{
"label": "T11",
"visible": true,
"position": { "x": 0, "y": 0, "z": 0 },
"size": { "width": 128.0, "height": 86, "depth": 0 },
"content_type": [
"plate",
"tip_rack",
"plates",
"tip_racks",
"tube_rack"
]
}
]
},
"data": {}
},
{
"id": "T12",
"name": "T12",
"children": [],
"parent": "PRCXI_Deck",
"type": "plate",
"class": "",
"position": {
"x": 414,
"y": 96,
"z": 0
},
"config": {
"type": "PRCXI9300Container",
"size_x": 127,
"size_y": 85.5,
"size_z": 10,
"rotation": {
"x": 0,
"y": 0,
"z": 0,
"type": "Rotation"
},
"category": "plate",
"model": null,
"barcode": null,
"ordering": {},
"sites": [
{
"label": "T12",
"visible": true,
"position": { "x": 0, "y": 0, "z": 0 },
"size": { "width": 128.0, "height": 86, "depth": 0 },
"content_type": [
"plate",
"tip_rack",
"plates",
"tip_racks",
"tube_rack"
]
}
]
},
"data": {}
},
{
"id": "T13",
"name": "T13",
"children": [],
"parent": "PRCXI_Deck",
"type": "plate",
"class": "",
"position": {
"x": 0,
"y": 0,
"z": 0
},
"config": {
"type": "PRCXI9300Container",
"size_x": 127,
"size_y": 85.5,
"size_z": 10,
"rotation": {
"x": 0,
"y": 0,
"z": 0,
"type": "Rotation"
},
"category": "plate",
"model": null,
"barcode": null,
"ordering": {},
"sites": [
{
"label": "T13",
"visible": true,
"position": { "x": 0, "y": 0, "z": 0 },
"size": { "width": 128.0, "height": 86, "depth": 0 },
"content_type": [
"plate",
"tip_rack",
"plates",
"tip_racks",
"tube_rack"
]
}
]
},
"data": {}
},
{
"id": "T14",
"name": "T14",
"children": [],
"parent": "PRCXI_Deck",
"type": "plate",
"class": "",
"position": {
"x": 138,
"y": 0,
"z": 0
},
"config": {
"type": "PRCXI9300Container",
"size_x": 127,
"size_y": 85.5,
"size_z": 10,
"rotation": {
"x": 0,
"y": 0,
"z": 0,
"type": "Rotation"
},
"category": "plate",
"model": null,
"barcode": null,
"ordering": {},
"sites": [
{
"label": "T14",
"visible": true,
"position": { "x": 0, "y": 0, "z": 0 },
"size": { "width": 128.0, "height": 86, "depth": 0 },
"content_type": [
"plate",
"tip_rack",
"plates",
"tip_racks",
"tube_rack"
]
}
]
},
"data": {}
},
{
"id": "T15",
"name": "T15",
"children": [],
"parent": "PRCXI_Deck",
"type": "plate",
"class": "",
"position": {
"x": 276,
"y": 0,
"z": 0
},
"config": {
"type": "PRCXI9300Container",
"size_x": 127,
"size_y": 85.5,
"size_z": 10,
"rotation": {
"x": 0,
"y": 0,
"z": 0,
"type": "Rotation"
},
"category": "plate",
"model": null,
"barcode": null,
"ordering": {},
"sites": [
{
"label": "T15",
"visible": true,
"position": { "x": 0, "y": 0, "z": 0 },
"size": { "width": 128.0, "height": 86, "depth": 0 },
"content_type": [
"plate",
"tip_rack",
"plates",
"tip_racks",
"tube_rack"
]
}
]
},
"data": {}
},
{
"id": "T16",
"name": "T16",
"children": [],
"parent": "PRCXI_Deck",
"type": "plate",
"class": "",
"position": {
"x": 414,
"y": 0,
"z": 0
},
"config": {
"type": "PRCXI9300Container",
"size_x": 127,
"size_y": 85.5,
"size_z": 10,
"rotation": {
"x": 0,
"y": 0,
"z": 0,
"type": "Rotation"
},
"category": "plate",
"model": null,
"barcode": null,
"ordering": {},
"sites": [
{
"label": "T16",
"visible": true,
"position": { "x": 0, "y": 0, "z": 0 },
"size": { "width": 128.0, "height": 86, "depth": 0 },
"content_type": [
"plate",
"tip_rack",
"plates",
"tip_racks",
"tube_rack"
]
}
]
},
"data": {}
}
],
"edges": []
}

File diff suppressed because it is too large Load Diff

View File

@@ -24,7 +24,6 @@ class EnvironmentChecker:
"msgcenterpy": "msgcenterpy",
"opentrons_shared_data": "opentrons_shared_data",
"typing_extensions": "typing_extensions",
"crcmod": "crcmod-plus",
}
# 特殊安装包(需要特殊处理的包)

View File

@@ -1,18 +0,0 @@
networkx
typing_extensions
websockets
msgcenterpy>=0.1.5
opentrons_shared_data
pint
fastapi
jinja2
requests
uvicorn
pyautogui
opcua
pyserial
pandas
crcmod-plus
pymodbus
matplotlib
pylibftdi

View File

@@ -1,100 +1,3 @@
"""
工作流转换模块 - JSON 到 WorkflowGraph 的转换流程
==================== 输入格式 (JSON) ====================
{
"workflow": [
{"action": "transfer_liquid", "action_args": {"sources": "cell_lines", "targets": "Liquid_1", "asp_vol": 100.0, "dis_vol": 74.75, ...}},
...
],
"reagent": {
"cell_lines": {"slot": 4, "well": ["A1", "A3", "A5"], "labware": "DRUG + YOYO-MEDIA"},
"Liquid_1": {"slot": 1, "well": ["A4", "A7", "A10"], "labware": "rep 1"},
...
}
}
==================== 转换步骤 ====================
第一步: 按 slot 去重创建 create_resource 节点(创建板子)
--------------------------------------------------------------------------------
- 首先创建一个 Group 节点type="Group", minimized=true用于包含所有 create_resource 节点
- 遍历所有 reagent按 slot 去重,为每个唯一的 slot 创建一个板子
- 所有 create_resource 节点的 parent_uuid 指向 Group 节点minimized=true
- 生成参数:
res_id: plate_slot_{slot}
device_id: /PRCXI
class_name: PRCXI_BioER_96_wellplate
parent: /PRCXI/PRCXI_Deck/T{slot}
slot_on_deck: "{slot}"
- 输出端口: labware用于连接 set_liquid_from_plate
- 控制流: create_resource 之间通过 ready 端口串联
示例: slot=1, slot=4 -> 创建 1 个 Group + 2 个 create_resource 节点
第二步: 为每个 reagent 创建 set_liquid_from_plate 节点(设置液体)
--------------------------------------------------------------------------------
- 首先创建一个 Group 节点type="Group", minimized=true用于包含所有 set_liquid_from_plate 节点
- 遍历所有 reagent为每个试剂创建 set_liquid_from_plate 节点
- 所有 set_liquid_from_plate 节点的 parent_uuid 指向 Group 节点minimized=true
- 生成参数:
plate: [](通过连接传递,来自 create_resource 的 labware
well_names: ["A1", "A3", "A5"](来自 reagent 的 well 数组)
liquid_names: ["cell_lines", "cell_lines", "cell_lines"](与 well 数量一致)
volumes: [1e5, 1e5, 1e5](与 well 数量一致,默认体积)
- 输入连接: create_resource (labware) -> set_liquid_from_plate (input_plate)
- 输出端口: output_wells用于连接 transfer_liquid
- 控制流: set_liquid_from_plate 连接在所有 create_resource 之后,通过 ready 端口串联
第三步: 解析 workflow创建 transfer_liquid 等动作节点
--------------------------------------------------------------------------------
- 遍历 workflow 数组,为每个动作创建步骤节点
- 参数重命名: asp_vol -> asp_vols, dis_vol -> dis_vols, asp_flow_rate -> asp_flow_rates, dis_flow_rate -> dis_flow_rates
- 参数扩展: 根据 targets 的 wells 数量,将单值扩展为数组
例: asp_vol=100.0, targets 有 3 个 wells -> asp_vols=[100.0, 100.0, 100.0]
- 连接处理: 如果 sources/targets 已通过 set_liquid_from_plate 连接,参数值改为 []
- 输入连接: set_liquid_from_plate (output_wells) -> transfer_liquid (sources_identifier / targets_identifier)
- 输出端口: sources_out, targets_out用于连接下一个 transfer_liquid
==================== 连接关系图 ====================
控制流 (ready 端口串联):
create_resource_1 -> create_resource_2 -> ... -> set_liquid_1 -> set_liquid_2 -> ... -> transfer_liquid_1 -> transfer_liquid_2 -> ...
物料流:
[create_resource] --labware--> [set_liquid_from_plate] --output_wells--> [transfer_liquid] --sources_out/targets_out--> [下一个 transfer_liquid]
(slot=1) (cell_lines) (input_plate) (sources_identifier) (sources_identifier)
(slot=4) (Liquid_1) (targets_identifier) (targets_identifier)
==================== 端口映射 ====================
create_resource:
输出: labware
set_liquid_from_plate:
输入: input_plate
输出: output_plate, output_wells
transfer_liquid:
输入: sources -> sources_identifier, targets -> targets_identifier
输出: sources -> sources_out, targets -> targets_out
==================== 设备名配置 (device_name) ====================
每个节点都有 device_name 字段,指定在哪个设备上执行:
- create_resource: device_name = "host_node"(固定)
- set_liquid_from_plate: device_name = "PRCXI"(可配置,见 DEVICE_NAME_DEFAULT
- transfer_liquid 等动作: device_name = "PRCXI"(可配置,见 DEVICE_NAME_DEFAULT
==================== 校验规则 ====================
- 检查 sources/targets 是否在 reagent 中定义
- 检查 sources 和 targets 的 wells 数量是否匹配
- 检查参数数组长度是否与 wells 数量一致
- 如有问题,在 footer 中添加 [WARN: ...] 标记
"""
import re
import uuid
@@ -105,35 +8,6 @@ from typing import Dict, List, Any, Tuple, Optional
Json = Dict[str, Any]
# ==================== 默认配置 ====================
# 设备名配置
DEVICE_NAME_HOST = "host_node" # create_resource 固定在 host_node 上执行
DEVICE_NAME_DEFAULT = "PRCXI" # transfer_liquid, set_liquid_from_plate 等动作的默认设备名
# 节点类型
NODE_TYPE_DEFAULT = "ILab" # 所有节点的默认类型
# create_resource 节点默认参数
CREATE_RESOURCE_DEFAULTS = {
"device_id": "/PRCXI",
"parent_template": "/PRCXI/PRCXI_Deck/T{slot}", # {slot} 会被替换为实际的 slot 值
"class_name": "PRCXI_BioER_96_wellplate",
}
# 默认液体体积 (uL)
DEFAULT_LIQUID_VOLUME = 1e5
# 参数重命名映射:单数 -> 复数(用于 transfer_liquid 等动作)
PARAM_RENAME_MAPPING = {
"asp_vol": "asp_vols",
"dis_vol": "dis_vols",
"asp_flow_rate": "asp_flow_rates",
"dis_flow_rate": "dis_flow_rates",
}
# ---------------- Graph ----------------
@@ -354,7 +228,7 @@ def refactor_data(
def build_protocol_graph(
labware_info: Dict[str, Dict[str, Any]],
labware_info: List[Dict[str, Any]],
protocol_steps: List[Dict[str, Any]],
workstation_name: str,
action_resource_mapping: Optional[Dict[str, str]] = None,
@@ -362,267 +236,112 @@ def build_protocol_graph(
"""统一的协议图构建函数,根据设备类型自动选择构建逻辑
Args:
labware_info: labware 信息字典,格式为 {name: {slot, well, labware, ...}, ...}
labware_info: labware 信息字典
protocol_steps: 协议步骤列表
workstation_name: 工作站名称
action_resource_mapping: action 到 resource_name 的映射字典,可选
"""
G = WorkflowGraph()
resource_last_writer = {} # reagent_name -> "node_id:port"
slot_to_create_resource = {} # slot -> create_resource node_id
resource_last_writer = {}
protocol_steps = refactor_data(protocol_steps, action_resource_mapping)
# 有机化学&移液站协议图构建
WORKSTATION_ID = workstation_name
# ==================== 第一步:按 slot 去重创建 create_resource 节点 ====================
# 收集所有唯一的 slot
slots_info = {} # slot -> {labware, res_id}
for labware_id, item in labware_info.items():
slot = str(item.get("slot", ""))
if slot and slot not in slots_info:
res_id = f"plate_slot_{slot}"
slots_info[slot] = {
"labware": item.get("labware", ""),
"res_id": res_id,
}
# 创建 Group 节点,包含所有 create_resource 节点
group_node_id = str(uuid.uuid4())
G.add_node(
group_node_id,
name="Resources Group",
type="Group",
parent_uuid="",
lab_node_type="Device",
template_name="",
resource_name="",
footer="",
minimized=True,
param=None,
)
# 为每个唯一的 slot 创建 create_resource 节点
# 为所有labware创建资源节点
res_index = 0
last_create_resource_id = None
for slot, info in slots_info.items():
for labware_id, item in labware_info.items():
# item_id = item.get("id") or item.get("name", f"item_{uuid.uuid4()}")
node_id = str(uuid.uuid4())
res_id = info["res_id"]
# 判断节点类型
if "Rack" in str(labware_id) or "Tip" in str(labware_id):
lab_node_type = "Labware"
description = f"Prepare Labware: {labware_id}"
liquid_type = []
liquid_volume = []
elif item.get("type") == "hardware" or "reactor" in str(labware_id).lower():
if "reactor" not in str(labware_id).lower():
continue
lab_node_type = "Sample"
description = f"Prepare Reactor: {labware_id}"
liquid_type = []
liquid_volume = []
else:
lab_node_type = "Reagent"
description = f"Add Reagent to Flask: {labware_id}"
liquid_type = [labware_id]
liquid_volume = [1e5]
res_index += 1
G.add_node(
node_id,
template_name="create_resource",
resource_name="host_node",
name=f"Plate {res_index}",
description=f"Create plate on slot {slot}",
lab_node_type="Labware",
name=f"Res {res_index}",
description=description,
lab_node_type=lab_node_type,
footer="create_resource-host_node",
device_name=DEVICE_NAME_HOST,
type=NODE_TYPE_DEFAULT,
parent_uuid=group_node_id, # 指向 Group 节点
minimized=True, # 折叠显示
param={
"res_id": res_id,
"device_id": CREATE_RESOURCE_DEFAULTS["device_id"],
"class_name": CREATE_RESOURCE_DEFAULTS["class_name"],
"parent": CREATE_RESOURCE_DEFAULTS["parent_template"].format(slot=slot),
"res_id": labware_id,
"device_id": WORKSTATION_ID,
"class_name": "container",
"parent": WORKSTATION_ID,
"bind_locations": {"x": 0.0, "y": 0.0, "z": 0.0},
"slot_on_deck": slot,
"liquid_input_slot": [-1],
"liquid_type": liquid_type,
"liquid_volume": liquid_volume,
"slot_on_deck": "",
},
)
slot_to_create_resource[slot] = node_id
resource_last_writer[labware_id] = f"{node_id}:labware"
# create_resource 之间通过 ready 串联
if last_create_resource_id is not None:
G.add_edge(last_create_resource_id, node_id, source_port="ready", target_port="ready")
last_create_resource_id = node_id
# ==================== 第二步:为每个 reagent 创建 set_liquid_from_plate 节点 ====================
# 创建 Group 节点,包含所有 set_liquid_from_plate 节点
set_liquid_group_id = str(uuid.uuid4())
G.add_node(
set_liquid_group_id,
name="SetLiquid Group",
type="Group",
parent_uuid="",
lab_node_type="Device",
template_name="",
resource_name="",
footer="",
minimized=True,
param=None,
)
set_liquid_index = 0
last_set_liquid_id = last_create_resource_id # set_liquid_from_plate 连接在 create_resource 之后
for labware_id, item in labware_info.items():
# 跳过 Tip/Rack 类型
if "Rack" in str(labware_id) or "Tip" in str(labware_id):
continue
if item.get("type") == "hardware":
continue
slot = str(item.get("slot", ""))
wells = item.get("well", [])
if not wells or not slot:
continue
# res_id 不能有空格
res_id = str(labware_id).replace(" ", "_")
well_count = len(wells)
node_id = str(uuid.uuid4())
set_liquid_index += 1
G.add_node(
node_id,
template_name="set_liquid_from_plate",
resource_name="liquid_handler.prcxi",
name=f"SetLiquid {set_liquid_index}",
description=f"Set liquid: {labware_id}",
lab_node_type="Reagent",
footer="set_liquid_from_plate-liquid_handler.prcxi",
device_name=DEVICE_NAME_DEFAULT,
type=NODE_TYPE_DEFAULT,
parent_uuid=set_liquid_group_id, # 指向 Group 节点
minimized=True, # 折叠显示
param={
"plate": [], # 通过连接传递
"well_names": wells, # 孔位名数组,如 ["A1", "A3", "A5"]
"liquid_names": [res_id] * well_count,
"volumes": [DEFAULT_LIQUID_VOLUME] * well_count,
},
)
# ready 连接:上一个节点 -> set_liquid_from_plate
if last_set_liquid_id is not None:
G.add_edge(last_set_liquid_id, node_id, source_port="ready", target_port="ready")
last_set_liquid_id = node_id
# 物料流create_resource 的 labware -> set_liquid_from_plate 的 input_plate
create_res_node_id = slot_to_create_resource.get(slot)
if create_res_node_id:
G.add_edge(create_res_node_id, node_id, source_port="labware", target_port="input_plate")
# set_liquid_from_plate 的输出 output_wells 用于连接 transfer_liquid
resource_last_writer[labware_id] = f"{node_id}:output_wells"
last_control_node_id = last_set_liquid_id
# 端口名称映射JSON 字段名 -> 实际 handle key
INPUT_PORT_MAPPING = {
"sources": "sources_identifier",
"targets": "targets_identifier",
"vessel": "vessel",
"to_vessel": "to_vessel",
"from_vessel": "from_vessel",
"reagent": "reagent",
"solvent": "solvent",
"compound": "compound",
}
OUTPUT_PORT_MAPPING = {
"sources": "sources_out", # 输出端口是 xxx_out
"targets": "targets_out", # 输出端口是 xxx_out
"vessel": "vessel_out",
"to_vessel": "to_vessel_out",
"from_vessel": "from_vessel_out",
"filtrate_vessel": "filtrate_out",
"reagent": "reagent",
"solvent": "solvent",
"compound": "compound",
}
# 需要根据 wells 数量扩展的参数列表(复数形式)
EXPAND_BY_WELLS_PARAMS = ["asp_vols", "dis_vols", "asp_flow_rates", "dis_flow_rates"]
last_control_node_id = None
# 处理协议步骤
for step in protocol_steps:
node_id = str(uuid.uuid4())
params = step.get("param", {}).copy() # 复制一份,避免修改原数据
connected_params = set() # 记录被连接的参数
warnings = [] # 收集警告信息
# 参数重命名:单数 -> 复数
for old_name, new_name in PARAM_RENAME_MAPPING.items():
if old_name in params:
params[new_name] = params.pop(old_name)
# 处理输入连接
for param_key, target_port in INPUT_PORT_MAPPING.items():
resource_name = params.get(param_key)
if resource_name and resource_name in resource_last_writer:
source_node, source_port = resource_last_writer[resource_name].split(":")
G.add_edge(source_node, node_id, source_port=source_port, target_port=target_port)
connected_params.add(param_key)
elif resource_name and resource_name not in resource_last_writer:
# 资源名在 labware_info 中不存在
warnings.append(f"{param_key}={resource_name} 未找到")
# 获取 targets 对应的 wells 数量,用于扩展参数
targets_name = params.get("targets")
sources_name = params.get("sources")
targets_wells_count = 1
sources_wells_count = 1
if targets_name and targets_name in labware_info:
target_wells = labware_info[targets_name].get("well", [])
targets_wells_count = len(target_wells) if target_wells else 1
elif targets_name:
warnings.append(f"targets={targets_name} 未在 reagent 中定义")
if sources_name and sources_name in labware_info:
source_wells = labware_info[sources_name].get("well", [])
sources_wells_count = len(source_wells) if source_wells else 1
elif sources_name:
warnings.append(f"sources={sources_name} 未在 reagent 中定义")
# 检查 sources 和 targets 的 wells 数量是否匹配
if targets_wells_count != sources_wells_count and targets_name and sources_name:
warnings.append(f"wells 数量不匹配: sources={sources_wells_count}, targets={targets_wells_count}")
# 使用 targets 的 wells 数量来扩展参数
wells_count = targets_wells_count
# 扩展单值参数为数组(根据 targets 的 wells 数量)
for expand_param in EXPAND_BY_WELLS_PARAMS:
if expand_param in params:
value = params[expand_param]
# 如果是单个值,扩展为数组
if not isinstance(value, list):
params[expand_param] = [value] * wells_count
# 如果已经是数组但长度不对,记录警告
elif len(value) != wells_count:
warnings.append(f"{expand_param} 数量({len(value)})与 wells({wells_count})不匹配")
# 如果 sources/targets 已通过连接传递,将参数值改为空数组
for param_key in connected_params:
if param_key in params:
params[param_key] = []
# 更新 step 的 param、footer、device_name 和 type
step_copy = step.copy()
step_copy["param"] = params
step_copy["device_name"] = DEVICE_NAME_DEFAULT # 动作节点使用默认设备名
step_copy["type"] = NODE_TYPE_DEFAULT # 节点类型
# 如果有警告,修改 footer 添加警告标记(警告放前面)
if warnings:
original_footer = step.get("footer", "")
step_copy["footer"] = f"[WARN: {'; '.join(warnings)}] {original_footer}"
G.add_node(node_id, **step_copy)
G.add_node(node_id, **step)
# 控制流
if last_control_node_id is not None:
G.add_edge(last_control_node_id, node_id, source_port="ready", target_port="ready")
last_control_node_id = node_id
# 处理输出:更新 resource_last_writer
for param_key, output_port in OUTPUT_PORT_MAPPING.items():
resource_name = step.get("param", {}).get(param_key) # 使用原始参数值
# 物料流
params = step.get("param", {})
input_resources_possible_names = [
"vessel",
"to_vessel",
"from_vessel",
"reagent",
"solvent",
"compound",
"sources",
"targets",
]
for target_port in input_resources_possible_names:
resource_name = params.get(target_port)
if resource_name and resource_name in resource_last_writer:
source_node, source_port = resource_last_writer[resource_name].split(":")
G.add_edge(source_node, node_id, source_port=source_port, target_port=target_port)
output_resources = {
"vessel_out": params.get("vessel"),
"from_vessel_out": params.get("from_vessel"),
"to_vessel_out": params.get("to_vessel"),
"filtrate_out": params.get("filtrate_vessel"),
"reagent": params.get("reagent"),
"solvent": params.get("solvent"),
"compound": params.get("compound"),
"sources_out": params.get("sources"),
"targets_out": params.get("targets"),
}
for source_port, resource_name in output_resources.items():
if resource_name:
resource_last_writer[resource_name] = f"{node_id}:{output_port}"
resource_last_writer[resource_name] = f"{node_id}:{source_port}"
return G

View File

@@ -1,68 +1,21 @@
"""
JSON 工作流转换模块
将 workflow/reagent 格式的 JSON 转换为统一工作流格式。
输入格式:
{
"workflow": [
{"action": "...", "action_args": {...}},
...
],
"reagent": {
"reagent_name": {"slot": int, "well": [...], "labware": "..."},
...
}
}
提供从多种 JSON 格式转换为统一工作流格式的功能
支持的格式:
1. workflow/reagent 格式
2. steps_info/labware_info 格式
"""
import json
from os import PathLike
from pathlib import Path
from typing import Any, Dict, List, Optional, Tuple, Union
from typing import Any, Dict, List, Optional, Set, Tuple, Union
from unilabos.workflow.common import WorkflowGraph, build_protocol_graph
from unilabos.registry.registry import lab_registry
# ==================== 字段映射配置 ====================
# action 到 resource_name 的映射
ACTION_RESOURCE_MAPPING: Dict[str, str] = {
# 生物实验操作
"transfer_liquid": "liquid_handler.prcxi",
"transfer": "liquid_handler.prcxi",
"incubation": "incubator.prcxi",
"move_labware": "labware_mover.prcxi",
"oscillation": "shaker.prcxi",
# 有机化学操作
"HeatChillToTemp": "heatchill.chemputer",
"StopHeatChill": "heatchill.chemputer",
"StartHeatChill": "heatchill.chemputer",
"HeatChill": "heatchill.chemputer",
"Dissolve": "stirrer.chemputer",
"Transfer": "liquid_handler.chemputer",
"Evaporate": "rotavap.chemputer",
"Recrystallize": "reactor.chemputer",
"Filter": "filter.chemputer",
"Dry": "dryer.chemputer",
"Add": "liquid_handler.chemputer",
}
# action_args 字段到 parameters 字段的映射
# 格式: {"old_key": "new_key"}, 仅映射需要重命名的字段
ARGS_FIELD_MAPPING: Dict[str, str] = {
# 如果需要字段重命名,在这里配置
# "old_field_name": "new_field_name",
}
# 默认工作站名称
DEFAULT_WORKSTATION = "PRCXI"
# ==================== 核心转换函数 ====================
def get_action_handles(resource_name: str, template_name: str) -> Dict[str, List[str]]:
"""
从 registry 获取指定设备和动作的 handles 配置
@@ -86,10 +39,12 @@ def get_action_handles(resource_name: str, template_name: str) -> Dict[str, List
handles = action_config.get("handles", {})
if isinstance(handles, dict):
# 处理 input handles (作为 target)
for handle in handles.get("input", []):
handler_key = handle.get("handler_key", "")
if handler_key:
result["source"].append(handler_key)
# 处理 output handles (作为 source)
for handle in handles.get("output", []):
handler_key = handle.get("handler_key", "")
if handler_key:
@@ -114,9 +69,12 @@ def validate_workflow_handles(graph: WorkflowGraph) -> Tuple[bool, List[str]]:
for edge in graph.edges:
left_uuid = edge.get("source")
right_uuid = edge.get("target")
# target_handle_key是target, right的输入节点入节点
# source_handle_key是source, left的输出节点出节点
right_source_conn_key = edge.get("target_handle_key", "")
left_target_conn_key = edge.get("source_handle_key", "")
# 获取源节点和目标节点信息
left_node = nodes.get(left_uuid, {})
right_node = nodes.get(right_uuid, {})
@@ -125,93 +83,164 @@ def validate_workflow_handles(graph: WorkflowGraph) -> Tuple[bool, List[str]]:
right_res_name = right_node.get("resource_name", "")
right_template_name = right_node.get("template_name", "")
# 获取源节点的 output handles
left_node_handles = get_action_handles(left_res_name, left_template_name)
target_valid_keys = left_node_handles.get("target", [])
target_valid_keys.append("ready")
# 获取目标节点的 input handles
right_node_handles = get_action_handles(right_res_name, right_template_name)
source_valid_keys = right_node_handles.get("source", [])
source_valid_keys.append("ready")
# 验证目标节点right的输入端口
# 如果节点配置了 output handles则 source_port 必须有效
if not right_source_conn_key:
node_name = right_node.get("name", right_uuid[:8])
errors.append(f"目标节点 '{node_name}'输入端口 (target_handle_key) 为空,应设置为: {source_valid_keys}")
node_name = left_node.get("name", left_uuid[:8])
errors.append(f"节点 '{node_name}' source_handle_key 为空," f"应设置为: {source_valid_keys}")
elif right_source_conn_key not in source_valid_keys:
node_name = right_node.get("name", right_uuid[:8])
node_name = left_node.get("name", left_uuid[:8])
errors.append(
f"目标节点 '{node_name}'输入端口 '{right_source_conn_key}' 不存在,支持的输入端口: {source_valid_keys}"
f"节点 '{node_name}' source 端点 '{right_source_conn_key}' 不存在," f"支持的端点: {source_valid_keys}"
)
# 验证源节点left的输出端口
# 如果节点配置了 input handles则 target_port 必须有效
if not left_target_conn_key:
node_name = left_node.get("name", left_uuid[:8])
errors.append(f"节点 '{node_name}'输出端口 (source_handle_key) 为空,应设置为: {target_valid_keys}")
node_name = right_node.get("name", right_uuid[:8])
errors.append(f"目标节点 '{node_name}' target_handle_key 为空," f"应设置为: {target_valid_keys}")
elif left_target_conn_key not in target_valid_keys:
node_name = left_node.get("name", left_uuid[:8])
node_name = right_node.get("name", right_uuid[:8])
errors.append(
f"节点 '{node_name}'输出端口 '{left_target_conn_key}' 不存在,支持的输出端口: {target_valid_keys}"
f"目标节点 '{node_name}' target 端点 '{left_target_conn_key}' 不存在,"
f"支持的端点: {target_valid_keys}"
)
return len(errors) == 0, errors
def normalize_workflow_steps(workflow: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
# action 到 resource_name 的映射
ACTION_RESOURCE_MAPPING: Dict[str, str] = {
# 生物实验操作
"transfer_liquid": "liquid_handler.prcxi",
"transfer": "liquid_handler.prcxi",
"incubation": "incubator.prcxi",
"move_labware": "labware_mover.prcxi",
"oscillation": "shaker.prcxi",
# 有机化学操作
"HeatChillToTemp": "heatchill.chemputer",
"StopHeatChill": "heatchill.chemputer",
"StartHeatChill": "heatchill.chemputer",
"HeatChill": "heatchill.chemputer",
"Dissolve": "stirrer.chemputer",
"Transfer": "liquid_handler.chemputer",
"Evaporate": "rotavap.chemputer",
"Recrystallize": "reactor.chemputer",
"Filter": "filter.chemputer",
"Dry": "dryer.chemputer",
"Add": "liquid_handler.chemputer",
}
def normalize_steps(data: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
"""
workflow 格式的步骤数据规范化
不同格式的步骤数据规范化为统一格式
输入格式:
[{"action": "...", "action_args": {...}}, ...]
输出格式:
[{"action": "...", "parameters": {...}, "step_number": int}, ...]
支持的输入格式
- action + parameters
- action + action_args
- operation + parameters
Args:
workflow: workflow 数组
data: 原始步骤数据列表
Returns:
规范化后的步骤列表
规范化后的步骤列表,格式为 [{"action": str, "parameters": dict, "description": str?, "step_number": int?}, ...]
"""
normalized = []
for idx, step in enumerate(workflow):
action = step.get("action")
for idx, step in enumerate(data):
# 获取动作名称(支持 action 或 operation 字段)
action = step.get("action") or step.get("operation")
if not action:
continue
# 获取参数: action_args
raw_params = step.get("action_args", {})
params = {}
# 获取参数(支持 parameters 或 action_args 字段)
raw_params = step.get("parameters") or step.get("action_args") or {}
params = dict(raw_params)
# 应用字段映射
for key, value in raw_params.items():
mapped_key = ARGS_FIELD_MAPPING.get(key, key)
params[mapped_key] = value
# 规范化 source/target -> sources/targets
if "source" in raw_params and "sources" not in raw_params:
params["sources"] = raw_params["source"]
if "target" in raw_params and "targets" not in raw_params:
params["targets"] = raw_params["target"]
step_dict = {
"action": action,
"parameters": params,
"step_number": idx + 1,
}
# 获取描述(支持 description 或 purpose 字段)
description = step.get("description") or step.get("purpose")
# 保留描述字段
if "description" in step:
step_dict["description"] = step["description"]
# 获取步骤编号(优先使用原始数据中的 step_number否则使用索引+1
step_number = step.get("step_number", idx + 1)
step_dict = {"action": action, "parameters": params, "step_number": step_number}
if description:
step_dict["description"] = description
normalized.append(step_dict)
return normalized
def normalize_labware(data: List[Dict[str, Any]]) -> Dict[str, Dict[str, Any]]:
"""
将不同格式的 labware 数据规范化为统一的字典格式
支持的输入格式:
- reagent_name + material_name + positions
- name + labware + slot
Args:
data: 原始 labware 数据列表
Returns:
规范化后的 labware 字典,格式为 {name: {"slot": int, "labware": str, "well": list, "type": str, "role": str, "name": str}, ...}
"""
labware = {}
for item in data:
# 获取 key 名称(优先使用 reagent_name其次是 material_name 或 name
reagent_name = item.get("reagent_name")
key = reagent_name or item.get("material_name") or item.get("name")
if not key:
continue
key = str(key)
# 处理重复 key自动添加后缀
idx = 1
original_key = key
while key in labware:
idx += 1
key = f"{original_key}_{idx}"
labware[key] = {
"slot": item.get("positions") or item.get("slot"),
"labware": item.get("material_name") or item.get("labware"),
"well": item.get("well", []),
"type": item.get("type", "reagent"),
"role": item.get("role", ""),
"name": key,
}
return labware
def convert_from_json(
data: Union[str, PathLike, Dict[str, Any]],
workstation_name: str = DEFAULT_WORKSTATION,
workstation_name: str = "PRCXi",
validate: bool = True,
) -> WorkflowGraph:
"""
从 JSON 数据或文件转换为 WorkflowGraph
JSON 格式:
{"workflow": [...], "reagent": {...}}
支持的 JSON 格式
1. {"workflow": [...], "reagent": {...}} - 直接格式
2. {"steps_info": [...], "labware_info": [...]} - 需要规范化的格式
Args:
data: JSON 文件路径、字典数据、或 JSON 字符串
@@ -222,7 +251,7 @@ def convert_from_json(
WorkflowGraph: 构建好的工作流图
Raises:
ValueError: 不支持的 JSON 格式
ValueError: 不支持的 JSON 格式 或 句柄校验失败
FileNotFoundError: 文件不存在
json.JSONDecodeError: JSON 解析失败
"""
@@ -233,6 +262,7 @@ def convert_from_json(
with path.open("r", encoding="utf-8") as fp:
json_data = json.load(fp)
elif isinstance(data, str):
# 尝试作为 JSON 字符串解析
json_data = json.loads(data)
else:
raise FileNotFoundError(f"文件不存在: {data}")
@@ -241,24 +271,30 @@ def convert_from_json(
else:
raise TypeError(f"不支持的数据类型: {type(data)}")
# 校验格式
if "workflow" not in json_data or "reagent" not in json_data:
# 根据格式解析数据
if "workflow" in json_data and "reagent" in json_data:
# 格式1: workflow/reagent已经是规范格式
protocol_steps = json_data["workflow"]
labware_info = json_data["reagent"]
elif "steps_info" in json_data and "labware_info" in json_data:
# 格式2: steps_info/labware_info需要规范化
protocol_steps = normalize_steps(json_data["steps_info"])
labware_info = normalize_labware(json_data["labware_info"])
elif "steps" in json_data and "labware" in json_data:
# 格式3: steps/labware另一种常见格式
protocol_steps = normalize_steps(json_data["steps"])
if isinstance(json_data["labware"], list):
labware_info = normalize_labware(json_data["labware"])
else:
labware_info = json_data["labware"]
else:
raise ValueError(
"不支持的 JSON 格式。请使用标准格式:\n"
'{"workflow": [{"action": "...", "action_args": {...}}, ...], '
'"reagent": {"name": {"slot": int, "well": [...], "labware": "..."}, ...}}'
"不支持的 JSON 格式。支持的格式\n"
"1. {'workflow': [...], 'reagent': {...}}\n"
"2. {'steps_info': [...], 'labware_info': [...]}\n"
"3. {'steps': [...], 'labware': [...]}"
)
# 提取数据
workflow = json_data["workflow"]
reagent = json_data["reagent"]
# 规范化步骤数据
protocol_steps = normalize_workflow_steps(workflow)
# reagent 已经是字典格式,直接使用
labware_info = reagent
# 构建工作流图
graph = build_protocol_graph(
labware_info=labware_info,
@@ -281,7 +317,7 @@ def convert_from_json(
def convert_json_to_node_link(
data: Union[str, PathLike, Dict[str, Any]],
workstation_name: str = DEFAULT_WORKSTATION,
workstation_name: str = "PRCXi",
) -> Dict[str, Any]:
"""
将 JSON 数据转换为 node-link 格式的字典
@@ -299,7 +335,7 @@ def convert_json_to_node_link(
def convert_json_to_workflow_list(
data: Union[str, PathLike, Dict[str, Any]],
workstation_name: str = DEFAULT_WORKSTATION,
workstation_name: str = "PRCXi",
) -> List[Dict[str, Any]]:
"""
将 JSON 数据转换为工作流列表格式
@@ -313,3 +349,8 @@ def convert_json_to_workflow_list(
"""
graph = convert_from_json(data, workstation_name)
return graph.to_dict()
# 为了向后兼容,保留下划线前缀的别名
_normalize_steps = normalize_steps
_normalize_labware = normalize_labware

View File

@@ -1,356 +0,0 @@
"""
JSON 工作流转换模块
提供从多种 JSON 格式转换为统一工作流格式的功能。
支持的格式:
1. workflow/reagent 格式
2. steps_info/labware_info 格式
"""
import json
from os import PathLike
from pathlib import Path
from typing import Any, Dict, List, Optional, Set, Tuple, Union
from unilabos.workflow.common import WorkflowGraph, build_protocol_graph
from unilabos.registry.registry import lab_registry
def get_action_handles(resource_name: str, template_name: str) -> Dict[str, List[str]]:
"""
从 registry 获取指定设备和动作的 handles 配置
Args:
resource_name: 设备资源名称,如 "liquid_handler.prcxi"
template_name: 动作模板名称,如 "transfer_liquid"
Returns:
包含 source 和 target handler_keys 的字典:
{"source": ["sources_out", "targets_out", ...], "target": ["sources", "targets", ...]}
"""
result = {"source": [], "target": []}
device_info = lab_registry.device_type_registry.get(resource_name, {})
if not device_info:
return result
action_mappings = device_info.get("class", {}).get("action_value_mappings", {})
action_config = action_mappings.get(template_name, {})
handles = action_config.get("handles", {})
if isinstance(handles, dict):
# 处理 input handles (作为 target)
for handle in handles.get("input", []):
handler_key = handle.get("handler_key", "")
if handler_key:
result["source"].append(handler_key)
# 处理 output handles (作为 source)
for handle in handles.get("output", []):
handler_key = handle.get("handler_key", "")
if handler_key:
result["target"].append(handler_key)
return result
def validate_workflow_handles(graph: WorkflowGraph) -> Tuple[bool, List[str]]:
"""
校验工作流图中所有边的句柄配置是否正确
Args:
graph: 工作流图对象
Returns:
(is_valid, errors): 是否有效,错误信息列表
"""
errors = []
nodes = graph.nodes
for edge in graph.edges:
left_uuid = edge.get("source")
right_uuid = edge.get("target")
# target_handle_key是target, right的输入节点入节点
# source_handle_key是source, left的输出节点出节点
right_source_conn_key = edge.get("target_handle_key", "")
left_target_conn_key = edge.get("source_handle_key", "")
# 获取源节点和目标节点信息
left_node = nodes.get(left_uuid, {})
right_node = nodes.get(right_uuid, {})
left_res_name = left_node.get("resource_name", "")
left_template_name = left_node.get("template_name", "")
right_res_name = right_node.get("resource_name", "")
right_template_name = right_node.get("template_name", "")
# 获取源节点的 output handles
left_node_handles = get_action_handles(left_res_name, left_template_name)
target_valid_keys = left_node_handles.get("target", [])
target_valid_keys.append("ready")
# 获取目标节点的 input handles
right_node_handles = get_action_handles(right_res_name, right_template_name)
source_valid_keys = right_node_handles.get("source", [])
source_valid_keys.append("ready")
# 如果节点配置了 output handles则 source_port 必须有效
if not right_source_conn_key:
node_name = left_node.get("name", left_uuid[:8])
errors.append(f"源节点 '{node_name}' 的 source_handle_key 为空," f"应设置为: {source_valid_keys}")
elif right_source_conn_key not in source_valid_keys:
node_name = left_node.get("name", left_uuid[:8])
errors.append(
f"源节点 '{node_name}' 的 source 端点 '{right_source_conn_key}' 不存在," f"支持的端点: {source_valid_keys}"
)
# 如果节点配置了 input handles则 target_port 必须有效
if not left_target_conn_key:
node_name = right_node.get("name", right_uuid[:8])
errors.append(f"目标节点 '{node_name}' 的 target_handle_key 为空," f"应设置为: {target_valid_keys}")
elif left_target_conn_key not in target_valid_keys:
node_name = right_node.get("name", right_uuid[:8])
errors.append(
f"目标节点 '{node_name}' 的 target 端点 '{left_target_conn_key}' 不存在,"
f"支持的端点: {target_valid_keys}"
)
return len(errors) == 0, errors
# action 到 resource_name 的映射
ACTION_RESOURCE_MAPPING: Dict[str, str] = {
# 生物实验操作
"transfer_liquid": "liquid_handler.prcxi",
"transfer": "liquid_handler.prcxi",
"incubation": "incubator.prcxi",
"move_labware": "labware_mover.prcxi",
"oscillation": "shaker.prcxi",
# 有机化学操作
"HeatChillToTemp": "heatchill.chemputer",
"StopHeatChill": "heatchill.chemputer",
"StartHeatChill": "heatchill.chemputer",
"HeatChill": "heatchill.chemputer",
"Dissolve": "stirrer.chemputer",
"Transfer": "liquid_handler.chemputer",
"Evaporate": "rotavap.chemputer",
"Recrystallize": "reactor.chemputer",
"Filter": "filter.chemputer",
"Dry": "dryer.chemputer",
"Add": "liquid_handler.chemputer",
}
def normalize_steps(data: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
"""
将不同格式的步骤数据规范化为统一格式
支持的输入格式:
- action + parameters
- action + action_args
- operation + parameters
Args:
data: 原始步骤数据列表
Returns:
规范化后的步骤列表,格式为 [{"action": str, "parameters": dict, "description": str?, "step_number": int?}, ...]
"""
normalized = []
for idx, step in enumerate(data):
# 获取动作名称(支持 action 或 operation 字段)
action = step.get("action") or step.get("operation")
if not action:
continue
# 获取参数(支持 parameters 或 action_args 字段)
raw_params = step.get("parameters") or step.get("action_args") or {}
params = dict(raw_params)
# 规范化 source/target -> sources/targets
if "source" in raw_params and "sources" not in raw_params:
params["sources"] = raw_params["source"]
if "target" in raw_params and "targets" not in raw_params:
params["targets"] = raw_params["target"]
# 获取描述(支持 description 或 purpose 字段)
description = step.get("description") or step.get("purpose")
# 获取步骤编号(优先使用原始数据中的 step_number否则使用索引+1
step_number = step.get("step_number", idx + 1)
step_dict = {"action": action, "parameters": params, "step_number": step_number}
if description:
step_dict["description"] = description
normalized.append(step_dict)
return normalized
def normalize_labware(data: List[Dict[str, Any]]) -> Dict[str, Dict[str, Any]]:
"""
将不同格式的 labware 数据规范化为统一的字典格式
支持的输入格式:
- reagent_name + material_name + positions
- name + labware + slot
Args:
data: 原始 labware 数据列表
Returns:
规范化后的 labware 字典,格式为 {name: {"slot": int, "labware": str, "well": list, "type": str, "role": str, "name": str}, ...}
"""
labware = {}
for item in data:
# 获取 key 名称(优先使用 reagent_name其次是 material_name 或 name
reagent_name = item.get("reagent_name")
key = reagent_name or item.get("material_name") or item.get("name")
if not key:
continue
key = str(key)
# 处理重复 key自动添加后缀
idx = 1
original_key = key
while key in labware:
idx += 1
key = f"{original_key}_{idx}"
labware[key] = {
"slot": item.get("positions") or item.get("slot"),
"labware": item.get("material_name") or item.get("labware"),
"well": item.get("well", []),
"type": item.get("type", "reagent"),
"role": item.get("role", ""),
"name": key,
}
return labware
def convert_from_json(
data: Union[str, PathLike, Dict[str, Any]],
workstation_name: str = "PRCXi",
validate: bool = True,
) -> WorkflowGraph:
"""
从 JSON 数据或文件转换为 WorkflowGraph
支持的 JSON 格式:
1. {"workflow": [...], "reagent": {...}} - 直接格式
2. {"steps_info": [...], "labware_info": [...]} - 需要规范化的格式
Args:
data: JSON 文件路径、字典数据、或 JSON 字符串
workstation_name: 工作站名称,默认 "PRCXi"
validate: 是否校验句柄配置,默认 True
Returns:
WorkflowGraph: 构建好的工作流图
Raises:
ValueError: 不支持的 JSON 格式 或 句柄校验失败
FileNotFoundError: 文件不存在
json.JSONDecodeError: JSON 解析失败
"""
# 处理输入数据
if isinstance(data, (str, PathLike)):
path = Path(data)
if path.exists():
with path.open("r", encoding="utf-8") as fp:
json_data = json.load(fp)
elif isinstance(data, str):
# 尝试作为 JSON 字符串解析
json_data = json.loads(data)
else:
raise FileNotFoundError(f"文件不存在: {data}")
elif isinstance(data, dict):
json_data = data
else:
raise TypeError(f"不支持的数据类型: {type(data)}")
# 根据格式解析数据
if "workflow" in json_data and "reagent" in json_data:
# 格式1: workflow/reagent已经是规范格式
protocol_steps = json_data["workflow"]
labware_info = json_data["reagent"]
elif "steps_info" in json_data and "labware_info" in json_data:
# 格式2: steps_info/labware_info需要规范化
protocol_steps = normalize_steps(json_data["steps_info"])
labware_info = normalize_labware(json_data["labware_info"])
elif "steps" in json_data and "labware" in json_data:
# 格式3: steps/labware另一种常见格式
protocol_steps = normalize_steps(json_data["steps"])
if isinstance(json_data["labware"], list):
labware_info = normalize_labware(json_data["labware"])
else:
labware_info = json_data["labware"]
else:
raise ValueError(
"不支持的 JSON 格式。支持的格式:\n"
"1. {'workflow': [...], 'reagent': {...}}\n"
"2. {'steps_info': [...], 'labware_info': [...]}\n"
"3. {'steps': [...], 'labware': [...]}"
)
# 构建工作流图
graph = build_protocol_graph(
labware_info=labware_info,
protocol_steps=protocol_steps,
workstation_name=workstation_name,
action_resource_mapping=ACTION_RESOURCE_MAPPING,
)
# 校验句柄配置
if validate:
is_valid, errors = validate_workflow_handles(graph)
if not is_valid:
import warnings
for error in errors:
warnings.warn(f"句柄校验警告: {error}")
return graph
def convert_json_to_node_link(
data: Union[str, PathLike, Dict[str, Any]],
workstation_name: str = "PRCXi",
) -> Dict[str, Any]:
"""
将 JSON 数据转换为 node-link 格式的字典
Args:
data: JSON 文件路径、字典数据、或 JSON 字符串
workstation_name: 工作站名称,默认 "PRCXi"
Returns:
Dict: node-link 格式的工作流数据
"""
graph = convert_from_json(data, workstation_name)
return graph.to_node_link_dict()
def convert_json_to_workflow_list(
data: Union[str, PathLike, Dict[str, Any]],
workstation_name: str = "PRCXi",
) -> List[Dict[str, Any]]:
"""
将 JSON 数据转换为工作流列表格式
Args:
data: JSON 文件路径、字典数据、或 JSON 字符串
workstation_name: 工作站名称,默认 "PRCXi"
Returns:
List: 工作流节点列表
"""
graph = convert_from_json(data, workstation_name)
return graph.to_dict()
# 为了向后兼容,保留下划线前缀的别名
_normalize_steps = normalize_steps
_normalize_labware = normalize_labware

View File

@@ -2,7 +2,7 @@
<?xml-model href="http://download.ros.org/schema/package_format3.xsd" schematypens="http://www.w3.org/2001/XMLSchema"?>
<package format="3">
<name>unilabos_msgs</name>
<version>0.10.17</version>
<version>0.10.15</version>
<description>ROS2 Messages package for unilabos devices</description>
<maintainer email="changjh@pku.edu.cn">Junhan Chang</maintainer>
<maintainer email="18435084+Xuwznln@users.noreply.github.com">Xuwznln</maintainer>