3 Commits

Author SHA1 Message Date
Xuwznln
ed56c1eba2 reduce logs 2025-12-08 19:23:53 +08:00
Xuwznln
16ee3de086 Add workflow upload func. 2025-12-08 19:12:05 +08:00
Junhan Chang
ced961050d add unilabos/workflow and entrypoint 2025-12-07 17:50:27 +08:00
37 changed files with 1628 additions and 622 deletions

View File

@@ -2,7 +2,6 @@ import json
import logging
import traceback
import uuid
import xml.etree.ElementTree as ET
from typing import Any, Dict, List
import networkx as nx
@@ -25,7 +24,15 @@ class SimpleGraph:
def add_edge(self, source, target, **attrs):
"""添加边"""
edge = {"source": source, "target": target, **attrs}
# edge = {"source": source, "target": target, **attrs}
edge = {
"source": source, "target": target,
"source_node_uuid": source,
"target_node_uuid": target,
"source_handle_io": "source",
"target_handle_io": "target",
**attrs
}
self.edges.append(edge)
def to_dict(self):
@@ -42,6 +49,7 @@ class SimpleGraph:
"multigraph": False,
"graph": {},
"nodes": nodes_list,
"edges": self.edges,
"links": self.edges,
}
@@ -58,495 +66,8 @@ def extract_json_from_markdown(text: str) -> str:
return text
def convert_to_type(val: str) -> Any:
"""将字符串值转换为适当的数据类型"""
if val == "True":
return True
if val == "False":
return False
if val == "?":
return None
if val.endswith(" g"):
return float(val.split(" ")[0])
if val.endswith("mg"):
return float(val.split("mg")[0])
elif val.endswith("mmol"):
return float(val.split("mmol")[0]) / 1000
elif val.endswith("mol"):
return float(val.split("mol")[0])
elif val.endswith("ml"):
return float(val.split("ml")[0])
elif val.endswith("RPM"):
return float(val.split("RPM")[0])
elif val.endswith(" °C"):
return float(val.split(" ")[0])
elif val.endswith(" %"):
return float(val.split(" ")[0])
return val
def refactor_data(data: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
"""统一的数据重构函数,根据操作类型自动选择模板"""
refactored_data = []
# 定义操作映射,包含生物实验和有机化学的所有操作
OPERATION_MAPPING = {
# 生物实验操作
"transfer_liquid": "SynBioFactory-liquid_handler.prcxi-transfer_liquid",
"transfer": "SynBioFactory-liquid_handler.biomek-transfer",
"incubation": "SynBioFactory-liquid_handler.biomek-incubation",
"move_labware": "SynBioFactory-liquid_handler.biomek-move_labware",
"oscillation": "SynBioFactory-liquid_handler.biomek-oscillation",
# 有机化学操作
"HeatChillToTemp": "SynBioFactory-workstation-HeatChillProtocol",
"StopHeatChill": "SynBioFactory-workstation-HeatChillStopProtocol",
"StartHeatChill": "SynBioFactory-workstation-HeatChillStartProtocol",
"HeatChill": "SynBioFactory-workstation-HeatChillProtocol",
"Dissolve": "SynBioFactory-workstation-DissolveProtocol",
"Transfer": "SynBioFactory-workstation-TransferProtocol",
"Evaporate": "SynBioFactory-workstation-EvaporateProtocol",
"Recrystallize": "SynBioFactory-workstation-RecrystallizeProtocol",
"Filter": "SynBioFactory-workstation-FilterProtocol",
"Dry": "SynBioFactory-workstation-DryProtocol",
"Add": "SynBioFactory-workstation-AddProtocol",
}
UNSUPPORTED_OPERATIONS = ["Purge", "Wait", "Stir", "ResetHandling"]
for step in data:
operation = step.get("action")
if not operation or operation in UNSUPPORTED_OPERATIONS:
continue
# 处理重复操作
if operation == "Repeat":
times = step.get("times", step.get("parameters", {}).get("times", 1))
sub_steps = step.get("steps", step.get("parameters", {}).get("steps", []))
for i in range(int(times)):
sub_data = refactor_data(sub_steps)
refactored_data.extend(sub_data)
continue
# 获取模板名称
template = OPERATION_MAPPING.get(operation)
if not template:
# 自动推断模板类型
if operation.lower() in ["transfer", "incubation", "move_labware", "oscillation"]:
template = f"SynBioFactory-liquid_handler.biomek-{operation}"
else:
template = f"SynBioFactory-workstation-{operation}Protocol"
# 创建步骤数据
step_data = {
"template": template,
"description": step.get("description", step.get("purpose", f"{operation} operation")),
"lab_node_type": "Device",
"parameters": step.get("parameters", step.get("action_args", {})),
}
refactored_data.append(step_data)
return refactored_data
def build_protocol_graph(
labware_info: List[Dict[str, Any]], protocol_steps: List[Dict[str, Any]], workstation_name: str
) -> SimpleGraph:
"""统一的协议图构建函数,根据设备类型自动选择构建逻辑"""
G = SimpleGraph()
resource_last_writer = {}
LAB_NAME = "SynBioFactory"
protocol_steps = refactor_data(protocol_steps)
# 检查协议步骤中的模板来判断协议类型
has_biomek_template = any(
("biomek" in step.get("template", "")) or ("prcxi" in step.get("template", ""))
for step in protocol_steps
)
if has_biomek_template:
# 生物实验协议图构建
for labware_id, labware in labware_info.items():
node_id = str(uuid.uuid4())
labware_attrs = labware.copy()
labware_id = labware_attrs.pop("id", labware_attrs.get("name", f"labware_{uuid.uuid4()}"))
labware_attrs["description"] = labware_id
labware_attrs["lab_node_type"] = (
"Reagent" if "Plate" in str(labware_id) else "Labware" if "Rack" in str(labware_id) else "Sample"
)
labware_attrs["device_id"] = workstation_name
G.add_node(node_id, template=f"{LAB_NAME}-host_node-create_resource", **labware_attrs)
resource_last_writer[labware_id] = f"{node_id}:labware"
# 处理协议步骤
prev_node = None
for i, step in enumerate(protocol_steps):
node_id = str(uuid.uuid4())
G.add_node(node_id, **step)
# 添加控制流边
if prev_node is not None:
G.add_edge(prev_node, node_id, source_port="ready", target_port="ready")
prev_node = node_id
# 处理物料流
params = step.get("parameters", {})
if "sources" in params and params["sources"] in resource_last_writer:
source_node, source_port = resource_last_writer[params["sources"]].split(":")
G.add_edge(source_node, node_id, source_port=source_port, target_port="labware")
if "targets" in params:
resource_last_writer[params["targets"]] = f"{node_id}:labware"
# 添加协议结束节点
end_id = str(uuid.uuid4())
G.add_node(end_id, template=f"{LAB_NAME}-liquid_handler.biomek-run_protocol")
if prev_node is not None:
G.add_edge(prev_node, end_id, source_port="ready", target_port="ready")
else:
# 有机化学协议图构建
WORKSTATION_ID = workstation_name
# 为所有labware创建资源节点
for item_id, item in labware_info.items():
# item_id = item.get("id") or item.get("name", f"item_{uuid.uuid4()}")
node_id = str(uuid.uuid4())
# 判断节点类型
if item.get("type") == "hardware" or "reactor" in str(item_id).lower():
if "reactor" not in str(item_id).lower():
continue
lab_node_type = "Sample"
description = f"Prepare Reactor: {item_id}"
liquid_type = []
liquid_volume = []
else:
lab_node_type = "Reagent"
description = f"Add Reagent to Flask: {item_id}"
liquid_type = [item_id]
liquid_volume = [1e5]
G.add_node(
node_id,
template=f"{LAB_NAME}-host_node-create_resource",
description=description,
lab_node_type=lab_node_type,
res_id=item_id,
device_id=WORKSTATION_ID,
class_name="container",
parent=WORKSTATION_ID,
bind_locations={"x": 0.0, "y": 0.0, "z": 0.0},
liquid_input_slot=[-1],
liquid_type=liquid_type,
liquid_volume=liquid_volume,
slot_on_deck="",
role=item.get("role", ""),
)
resource_last_writer[item_id] = f"{node_id}:labware"
last_control_node_id = None
# 处理协议步骤
for step in protocol_steps:
node_id = str(uuid.uuid4())
G.add_node(node_id, **step)
# 控制流
if last_control_node_id is not None:
G.add_edge(last_control_node_id, node_id, source_port="ready", target_port="ready")
last_control_node_id = node_id
# 物料流
params = step.get("parameters", {})
input_resources = {
"Vessel": params.get("vessel"),
"ToVessel": params.get("to_vessel"),
"FromVessel": params.get("from_vessel"),
"reagent": params.get("reagent"),
"solvent": params.get("solvent"),
"compound": params.get("compound"),
"sources": params.get("sources"),
"targets": params.get("targets"),
}
for target_port, resource_name in input_resources.items():
if resource_name and resource_name in resource_last_writer:
source_node, source_port = resource_last_writer[resource_name].split(":")
G.add_edge(source_node, node_id, source_port=source_port, target_port=target_port)
output_resources = {
"VesselOut": params.get("vessel"),
"FromVesselOut": params.get("from_vessel"),
"ToVesselOut": params.get("to_vessel"),
"FiltrateOut": params.get("filtrate_vessel"),
"reagent": params.get("reagent"),
"solvent": params.get("solvent"),
"compound": params.get("compound"),
"sources_out": params.get("sources"),
"targets_out": params.get("targets"),
}
for source_port, resource_name in output_resources.items():
if resource_name:
resource_last_writer[resource_name] = f"{node_id}:{source_port}"
return G
def draw_protocol_graph(protocol_graph: SimpleGraph, output_path: str):
"""
(辅助功能) 使用 networkx 和 matplotlib 绘制协议工作流图,用于可视化。
"""
if not protocol_graph:
print("Cannot draw graph: Graph object is empty.")
return
G = nx.DiGraph()
for node_id, attrs in protocol_graph.nodes.items():
label = attrs.get("description", attrs.get("template", node_id[:8]))
G.add_node(node_id, label=label, **attrs)
for edge in protocol_graph.edges:
G.add_edge(edge["source"], edge["target"])
plt.figure(figsize=(20, 15))
try:
pos = nx.nx_agraph.graphviz_layout(G, prog="dot")
except Exception:
pos = nx.shell_layout(G) # Fallback layout
node_labels = {node: data["label"] for node, data in G.nodes(data=True)}
nx.draw(
G,
pos,
with_labels=False,
node_size=2500,
node_color="skyblue",
node_shape="o",
edge_color="gray",
width=1.5,
arrowsize=15,
)
nx.draw_networkx_labels(G, pos, labels=node_labels, font_size=8, font_weight="bold")
plt.title("Chemical Protocol Workflow Graph", size=15)
plt.savefig(output_path, dpi=300, bbox_inches="tight")
plt.close()
print(f" - Visualization saved to '{output_path}'")
from networkx.drawing.nx_agraph import to_agraph
import re
COMPASS = {"n","e","s","w","ne","nw","se","sw","c"}
def _is_compass(port: str) -> bool:
return isinstance(port, str) and port.lower() in COMPASS
def draw_protocol_graph_with_ports(protocol_graph, output_path: str, rankdir: str = "LR"):
"""
使用 Graphviz 端口语法绘制协议工作流图。
- 若边上的 source_port/target_port 是 compassn/e/s/w/...),直接用 compass。
- 否则自动为节点创建 record 形状并定义命名端口 <portname>。
最终由 PyGraphviz 渲染并输出到 output_path后缀决定格式如 .png/.svg/.pdf
"""
if not protocol_graph:
print("Cannot draw graph: Graph object is empty.")
return
# 1) 先用 networkx 搭建有向图,保留端口属性
G = nx.DiGraph()
for node_id, attrs in protocol_graph.nodes.items():
label = attrs.get("description", attrs.get("template", node_id[:8]))
# 保留一个干净的“中心标签”,用于放在 record 的中间槽
G.add_node(node_id, _core_label=str(label), **{k:v for k,v in attrs.items() if k not in ("label",)})
edges_data = []
in_ports_by_node = {} # 收集命名输入端口
out_ports_by_node = {} # 收集命名输出端口
for edge in protocol_graph.edges:
u = edge["source"]
v = edge["target"]
sp = edge.get("source_port")
tp = edge.get("target_port")
# 记录到图里(保留原始端口信息)
G.add_edge(u, v, source_port=sp, target_port=tp)
edges_data.append((u, v, sp, tp))
# 如果不是 compass就按“命名端口”先归类等会儿给节点造 record
if sp and not _is_compass(sp):
out_ports_by_node.setdefault(u, set()).add(str(sp))
if tp and not _is_compass(tp):
in_ports_by_node.setdefault(v, set()).add(str(tp))
# 2) 转为 AGraph使用 Graphviz 渲染
A = to_agraph(G)
A.graph_attr.update(rankdir=rankdir, splines="true", concentrate="false", fontsize="10")
A.node_attr.update(shape="box", style="rounded,filled", fillcolor="lightyellow", color="#999999", fontname="Helvetica")
A.edge_attr.update(arrowsize="0.8", color="#666666")
# 3) 为需要命名端口的节点设置 record 形状与 label
# 左列 = 输入端口;中间 = 核心标签;右列 = 输出端口
for n in A.nodes():
node = A.get_node(n)
core = G.nodes[n].get("_core_label", n)
in_ports = sorted(in_ports_by_node.get(n, []))
out_ports = sorted(out_ports_by_node.get(n, []))
# 如果该节点涉及命名端口,则用 record否则保留原 box
if in_ports or out_ports:
def port_fields(ports):
if not ports:
return " " # 必须留一个空槽占位
# 每个端口一个小格子,<p> name
return "|".join(f"<{re.sub(r'[^A-Za-z0-9_:.|-]', '_', p)}> {p}" for p in ports)
left = port_fields(in_ports)
right = port_fields(out_ports)
# 三栏:左(入) | 中(节点名) | 右(出)
record_label = f"{{ {left} | {core} | {right} }}"
node.attr.update(shape="record", label=record_label)
else:
# 没有命名端口:普通盒子,显示核心标签
node.attr.update(label=str(core))
# 4) 给边设置 headport / tailport
# - 若端口为 compass直接用 compasse.g., headport="e"
# - 若端口为命名端口:使用在 record 中定义的 <port> 名(同名即可)
for (u, v, sp, tp) in edges_data:
e = A.get_edge(u, v)
# Graphviz 属性tail 是源head 是目标
if sp:
if _is_compass(sp):
e.attr["tailport"] = sp.lower()
else:
# 与 record label 中 <port> 名一致;特殊字符已在 label 中做了清洗
e.attr["tailport"] = re.sub(r'[^A-Za-z0-9_:.|-]', '_', str(sp))
if tp:
if _is_compass(tp):
e.attr["headport"] = tp.lower()
else:
e.attr["headport"] = re.sub(r'[^A-Za-z0-9_:.|-]', '_', str(tp))
# 可选:若想让边更贴边缘,可设置 constraint/spline 等
# e.attr["arrowhead"] = "vee"
# 5) 输出
A.draw(output_path, prog="dot")
print(f" - Port-aware workflow rendered to '{output_path}'")
def flatten_xdl_procedure(procedure_elem: ET.Element) -> List[ET.Element]:
"""展平嵌套的XDL程序结构"""
flattened_operations = []
TEMP_UNSUPPORTED_PROTOCOL = ["Purge", "Wait", "Stir", "ResetHandling"]
def extract_operations(element: ET.Element):
if element.tag not in ["Prep", "Reaction", "Workup", "Purification", "Procedure"]:
if element.tag not in TEMP_UNSUPPORTED_PROTOCOL:
flattened_operations.append(element)
for child in element:
extract_operations(child)
for child in procedure_elem:
extract_operations(child)
return flattened_operations
def parse_xdl_content(xdl_content: str) -> tuple:
"""解析XDL内容"""
try:
xdl_content_cleaned = "".join(c for c in xdl_content if c.isprintable())
root = ET.fromstring(xdl_content_cleaned)
synthesis_elem = root.find("Synthesis")
if synthesis_elem is None:
return None, None, None
# 解析硬件组件
hardware_elem = synthesis_elem.find("Hardware")
hardware = []
if hardware_elem is not None:
hardware = [{"id": c.get("id"), "type": c.get("type")} for c in hardware_elem.findall("Component")]
# 解析试剂
reagents_elem = synthesis_elem.find("Reagents")
reagents = []
if reagents_elem is not None:
reagents = [{"name": r.get("name"), "role": r.get("role", "")} for r in reagents_elem.findall("Reagent")]
# 解析程序
procedure_elem = synthesis_elem.find("Procedure")
if procedure_elem is None:
return None, None, None
flattened_operations = flatten_xdl_procedure(procedure_elem)
return hardware, reagents, flattened_operations
except ET.ParseError as e:
raise ValueError(f"Invalid XDL format: {e}")
def convert_xdl_to_dict(xdl_content: str) -> Dict[str, Any]:
"""
将XDL XML格式转换为标准的字典格式
Args:
xdl_content: XDL XML内容
Returns:
转换结果,包含步骤和器材信息
"""
try:
hardware, reagents, flattened_operations = parse_xdl_content(xdl_content)
if hardware is None:
return {"error": "Failed to parse XDL content", "success": False}
# 将XDL元素转换为字典格式
steps_data = []
for elem in flattened_operations:
# 转换参数类型
parameters = {}
for key, val in elem.attrib.items():
converted_val = convert_to_type(val)
if converted_val is not None:
parameters[key] = converted_val
step_dict = {
"operation": elem.tag,
"parameters": parameters,
"description": elem.get("purpose", f"Operation: {elem.tag}"),
}
steps_data.append(step_dict)
# 合并硬件和试剂为统一的labware_info格式
labware_data = []
labware_data.extend({"id": hw["id"], "type": "hardware", **hw} for hw in hardware)
labware_data.extend({"name": reagent["name"], "type": "reagent", **reagent} for reagent in reagents)
return {
"success": True,
"steps": steps_data,
"labware": labware_data,
"message": f"Successfully converted XDL to dict format. Found {len(steps_data)} steps and {len(labware_data)} labware items.",
}
except Exception as e:
error_msg = f"XDL conversion failed: {str(e)}"
logger.error(error_msg)
return {"error": error_msg, "success": False}
def create_workflow(

View File

Before

Width:  |  Height:  |  Size: 148 KiB

After

Width:  |  Height:  |  Size: 148 KiB

View File

Before

Width:  |  Height:  |  Size: 140 KiB

After

Width:  |  Height:  |  Size: 140 KiB

View File

Before

Width:  |  Height:  |  Size: 117 KiB

After

Width:  |  Height:  |  Size: 117 KiB

View File

@@ -0,0 +1,35 @@
import sys
from datetime import datetime
from pathlib import Path
ROOT_DIR = Path(__file__).resolve().parents[2]
if str(ROOT_DIR) not in sys.path:
sys.path.insert(0, str(ROOT_DIR))
import pytest
from unilabos.workflow.convert_from_json import (
convert_from_json,
normalize_steps as _normalize_steps,
normalize_labware as _normalize_labware,
)
from unilabos.workflow.common import draw_protocol_graph_with_ports
@pytest.mark.parametrize(
"protocol_name",
[
"example_bio",
# "bioyond_materials_liquidhandling_1",
"example_prcxi",
],
)
def test_build_protocol_graph(protocol_name):
data_path = Path(__file__).with_name(f"{protocol_name}.json")
graph = convert_from_json(data_path, workstation_name="PRCXi")
timestamp = datetime.now().strftime("%Y%m%d_%H%M")
output_path = data_path.with_name(f"{protocol_name}_graph_{timestamp}.png")
draw_protocol_graph_with_ports(graph, str(output_path))
print(graph)

View File

@@ -20,6 +20,7 @@ if unilabos_dir not in sys.path:
from unilabos.utils.banner_print import print_status, print_unilab_banner
from unilabos.config.config import load_config, BasicConfig, HTTPConfig
def load_config_from_file(config_path):
if config_path is None:
config_path = os.environ.get("UNILABOS_BASICCONFIG_CONFIG_PATH", None)
@@ -41,7 +42,7 @@ def convert_argv_dashes_to_underscores(args: argparse.ArgumentParser):
for i, arg in enumerate(sys.argv):
for option_string in option_strings:
if arg.startswith(option_string):
new_arg = arg[:2] + arg[2:len(option_string)].replace("-", "_") + arg[len(option_string):]
new_arg = arg[:2] + arg[2 : len(option_string)].replace("-", "_") + arg[len(option_string) :]
sys.argv[i] = new_arg
break
@@ -49,6 +50,8 @@ def convert_argv_dashes_to_underscores(args: argparse.ArgumentParser):
def parse_args():
"""解析命令行参数"""
parser = argparse.ArgumentParser(description="Start Uni-Lab Edge server.")
subparsers = parser.add_subparsers(title="Valid subcommands", dest="command")
parser.add_argument("-g", "--graph", help="Physical setup graph file path.")
parser.add_argument("-c", "--controllers", default=None, help="Controllers config file path.")
parser.add_argument(
@@ -153,6 +156,39 @@ def parse_args():
default=False,
help="Complete registry information",
)
# workflow upload subcommand
workflow_parser = subparsers.add_parser(
"workflow_upload",
aliases=["wf"],
help="Upload workflow from xdl/json/python files",
)
workflow_parser.add_argument(
"-f",
"--workflow_file",
type=str,
required=True,
help="Path to the workflow file (JSON format)",
)
workflow_parser.add_argument(
"-n",
"--workflow_name",
type=str,
default=None,
help="Workflow name, if not provided will use the name from file or filename",
)
workflow_parser.add_argument(
"--tags",
type=str,
nargs="*",
default=[],
help="Tags for the workflow (space-separated)",
)
workflow_parser.add_argument(
"--published",
action="store_true",
default=False,
help="Whether to publish the workflow (default: False)",
)
return parser
@@ -167,7 +203,6 @@ def main():
if not args_dict.get("skip_env_check", False):
from unilabos.utils.environment_check import check_environment
print_status("正在进行环境依赖检查...", "info")
if not check_environment(auto_install=True):
print_status("环境检查失败,程序退出", "error")
os._exit(1)
@@ -239,9 +274,12 @@ def main():
if args_dict.get("sk", ""):
BasicConfig.sk = args_dict.get("sk", "")
print_status("传入了sk参数优先采用传入参数", "info")
BasicConfig.working_dir = working_dir
workflow_upload = args_dict.get("command") in ("workflow_upload", "wf")
# 使用远程资源启动
if args_dict["use_remote_resource"]:
if not workflow_upload and args_dict["use_remote_resource"]:
print_status("使用远程资源启动", "info")
from unilabos.app.web import http_client
@@ -254,7 +292,6 @@ def main():
BasicConfig.port = args_dict["port"] if args_dict["port"] else BasicConfig.port
BasicConfig.disable_browser = args_dict["disable_browser"] or BasicConfig.disable_browser
BasicConfig.working_dir = working_dir
BasicConfig.is_host_mode = not args_dict.get("is_slave", False)
BasicConfig.slave_no_host = args_dict.get("slave_no_host", False)
BasicConfig.upload_registry = args_dict.get("upload_registry", False)
@@ -283,9 +320,31 @@ def main():
# 注册表
lab_registry = build_registry(
args_dict["registry_path"], args_dict.get("complete_registry", False), args_dict["upload_registry"]
args_dict["registry_path"], args_dict.get("complete_registry", False), BasicConfig.upload_registry
)
if BasicConfig.upload_registry:
# 设备注册到服务端 - 需要 ak 和 sk
if BasicConfig.ak and BasicConfig.sk:
print_status("开始注册设备到服务端...", "info")
try:
register_devices_and_resources(lab_registry)
print_status("设备注册完成", "info")
except Exception as e:
print_status(f"设备注册失败: {e}", "error")
else:
print_status("未提供 ak 和 sk跳过设备注册", "info")
else:
print_status("本次启动注册表不报送云端,如果您需要联网调试,请在启动命令增加--upload_registry", "warning")
# 处理 workflow_upload 子命令
if workflow_upload:
from unilabos.workflow.wf_utils import handle_workflow_upload_command
handle_workflow_upload_command(args_dict)
print_status("工作流上传完成,程序退出", "info")
os._exit(0)
if not BasicConfig.ak or not BasicConfig.sk:
print_status("后续运行必须拥有一个实验室,请前往 https://uni-lab.bohrium.com 注册实验室!", "warning")
os._exit(1)
@@ -362,20 +421,6 @@ def main():
args_dict["devices_config"] = resource_tree_set
args_dict["graph"] = graph_res.physical_setup_graph
if BasicConfig.upload_registry:
# 设备注册到服务端 - 需要 ak 和 sk
if BasicConfig.ak and BasicConfig.sk:
print_status("开始注册设备到服务端...", "info")
try:
register_devices_and_resources(lab_registry)
print_status("设备注册完成", "info")
except Exception as e:
print_status(f"设备注册失败: {e}", "error")
else:
print_status("未提供 ak 和 sk跳过设备注册", "info")
else:
print_status("本次启动注册表不报送云端,如果您需要联网调试,请在启动命令增加--upload_registry", "warning")
if args_dict["controllers"] is not None:
args_dict["controllers_config"] = yaml.safe_load(open(args_dict["controllers"], encoding="utf-8"))
else:
@@ -390,6 +435,7 @@ def main():
comm_client = get_communication_client()
if "websocket" in args_dict["app_bridges"]:
args_dict["bridges"].append(comm_client)
def _exit(signum, frame):
comm_client.stop()
sys.exit(0)
@@ -431,16 +477,13 @@ def main():
resource_visualization.start()
except OSError as e:
if "AMENT_PREFIX_PATH" in str(e):
print_status(
f"ROS 2环境未正确设置跳过3D可视化启动。错误详情: {e}",
"warning"
)
print_status(f"ROS 2环境未正确设置跳过3D可视化启动。错误详情: {e}", "warning")
print_status(
"建议解决方案:\n"
"1. 激活Conda环境: conda activate unilab\n"
"2. 或使用 --backend simple 参数\n"
"3. 或使用 --visual disable 参数禁用可视化",
"info"
"info",
)
else:
raise

View File

@@ -76,7 +76,8 @@ class HTTPClient:
Dict[str, str]: 旧UUID到新UUID的映射关系 {old_uuid: new_uuid}
"""
with open(os.path.join(BasicConfig.working_dir, "req_resource_tree_add.json"), "w", encoding="utf-8") as f:
f.write(json.dumps({"nodes": [x for xs in resources.dump() for x in xs], "mount_uuid": mount_uuid}, indent=4))
payload = {"nodes": [x for xs in resources.dump() for x in xs], "mount_uuid": mount_uuid}
f.write(json.dumps(payload, indent=4))
# 从序列化数据中提取所有节点的UUID保存旧UUID
old_uuids = {n.res_content.uuid: n for n in resources.all_nodes}
if not self.initialized or first_add:
@@ -331,6 +332,67 @@ class HTTPClient:
logger.error(f"响应内容: {response.text}")
return None
def workflow_import(
self,
name: str,
workflow_uuid: str,
workflow_name: str,
nodes: List[Dict[str, Any]],
edges: List[Dict[str, Any]],
tags: Optional[List[str]] = None,
published: bool = False,
) -> Dict[str, Any]:
"""
导入工作流到服务器
Args:
name: 工作流名称(顶层)
workflow_uuid: 工作流UUID
workflow_name: 工作流名称data内部
nodes: 工作流节点列表
edges: 工作流边列表
tags: 工作流标签列表,默认为空列表
published: 是否发布工作流默认为False
Returns:
Dict: API响应数据包含 code 和 data (uuid, name)
"""
# target_lab_uuid 暂时使用默认值,后续由后端根据 ak/sk 获取
payload = {
"target_lab_uuid": "28c38bb0-63f6-4352-b0d8-b5b8eb1766d5",
"name": name,
"data": {
"workflow_uuid": workflow_uuid,
"workflow_name": workflow_name,
"nodes": nodes,
"edges": edges,
"tags": tags if tags is not None else [],
"published": published,
},
}
# 保存请求到文件
with open(os.path.join(BasicConfig.working_dir, "req_workflow_upload.json"), "w", encoding="utf-8") as f:
f.write(json.dumps(payload, indent=4, ensure_ascii=False))
response = requests.post(
f"{self.remote_addr}/lab/workflow/owner/import",
json=payload,
headers={"Authorization": f"Lab {self.auth}"},
timeout=60,
)
# 保存响应到文件
with open(os.path.join(BasicConfig.working_dir, "res_workflow_upload.json"), "w", encoding="utf-8") as f:
f.write(f"{response.status_code}" + "\n" + response.text)
if response.status_code == 200:
res = response.json()
if "code" in res and res["code"] != 0:
logger.error(f"导入工作流失败: {response.text}")
return res
else:
logger.error(f"导入工作流失败: {response.status_code}, {response.text}")
return {"code": response.status_code, "message": response.text}
# 创建默认客户端实例
http_client = HTTPClient()

View File

@@ -438,7 +438,7 @@ class MessageProcessor:
self.connected = True
self.reconnect_count = 0
logger.info(f"[MessageProcessor] Connected to {self.websocket_url}")
logger.trace(f"[MessageProcessor] Connected to {self.websocket_url}")
# 启动发送协程
send_task = asyncio.create_task(self._send_handler())
@@ -503,7 +503,7 @@ class MessageProcessor:
async def _send_handler(self):
"""处理发送队列中的消息"""
logger.debug("[MessageProcessor] Send handler started")
logger.trace("[MessageProcessor] Send handler started")
try:
while self.connected and self.websocket:
@@ -965,7 +965,7 @@ class QueueProcessor:
def _run(self):
"""运行队列处理主循环"""
logger.debug("[QueueProcessor] Queue processor started")
logger.trace("[QueueProcessor] Queue processor started")
while self.is_running:
try:
@@ -1175,7 +1175,6 @@ class WebSocketClient(BaseCommunicationClient):
else:
url = f"{scheme}://{parsed.netloc}/api/v1/ws/schedule"
logger.debug(f"[WebSocketClient] URL: {url}")
return url
def start(self) -> None:
@@ -1188,13 +1187,11 @@ class WebSocketClient(BaseCommunicationClient):
logger.error("[WebSocketClient] WebSocket URL not configured")
return
logger.info(f"[WebSocketClient] Starting connection to {self.websocket_url}")
# 启动两个核心线程
self.message_processor.start()
self.queue_processor.start()
logger.info("[WebSocketClient] All threads started")
logger.trace("[WebSocketClient] All threads started")
def stop(self) -> None:
"""停止WebSocket客户端"""

View File

@@ -21,7 +21,8 @@ class BasicConfig:
startup_json_path = None # 填写绝对路径
disable_browser = False # 禁止浏览器自动打开
port = 8002 # 本地HTTP服务
log_level: Literal['TRACE', 'DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'] = "DEBUG" # 'TRACE', 'DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'
# 'TRACE', 'DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'
log_level: Literal["TRACE", "DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"] = "DEBUG"
@classmethod
def auth_secret(cls):
@@ -65,13 +66,14 @@ def _update_config_from_module(module):
if not attr.startswith("_"):
setattr(obj, attr, getattr(getattr(module, name), attr))
def _update_config_from_env():
prefix = "UNILABOS_"
for env_key, env_value in os.environ.items():
if not env_key.startswith(prefix):
continue
try:
key_path = env_key[len(prefix):] # Remove UNILAB_ prefix
key_path = env_key[len(prefix) :] # Remove UNILAB_ prefix
class_field = key_path.upper().split("_", 1)
if len(class_field) != 2:
logger.warning(f"[ENV] 环境变量格式不正确:{env_key}")

View File

@@ -9333,7 +9333,34 @@ liquid_handler.prcxi:
touch_tip: false
use_channels:
- 0
handles: {}
handles:
input:
- data_key: liquid
data_source: handle
data_type: resource
handler_key: sources
label: sources
- data_key: liquid
data_source: executor
data_type: resource
handler_key: targets
label: targets
- data_key: liquid
data_source: executor
data_type: resource
handler_key: tip_rack
label: tip_rack
output:
- data_key: liquid
data_source: handle
data_type: resource
handler_key: sources_out
label: sources
- data_key: liquid
data_source: executor
data_type: resource
handler_key: targets_out
label: targets
placeholder_keys:
sources: unilabos_resources
targets: unilabos_resources

View File

@@ -222,7 +222,7 @@ class Registry:
abs_path = Path(path).absolute()
resource_path = abs_path / "resources"
files = list(resource_path.glob("*/*.yaml"))
logger.debug(f"[UniLab Registry] resources: {resource_path.exists()}, total: {len(files)}")
logger.trace(f"[UniLab Registry] load resources? {resource_path.exists()}, total: {len(files)}")
current_resource_number = len(self.resource_type_registry) + 1
for i, file in enumerate(files):
with open(file, encoding="utf-8", mode="r") as f:

View File

@@ -42,7 +42,7 @@ def canonicalize_nodes_data(
Returns:
ResourceTreeSet: 标准化后的资源树集合
"""
print_status(f"{len(nodes)} Resources loaded:", "info")
print_status(f"{len(nodes)} Resources loaded", "info")
# 第一步基本预处理处理graphml的label字段
outer_host_node_id = None

View File

@@ -66,8 +66,8 @@ class ResourceDict(BaseModel):
klass: str = Field(alias="class", description="Resource class name")
pose: ResourceDictPosition = Field(description="Resource position", default_factory=ResourceDictPosition)
config: Dict[str, Any] = Field(description="Resource configuration")
data: Dict[str, Any] = Field(description="Resource data")
extra: Dict[str, Any] = Field(description="Extra data")
data: Dict[str, Any] = Field(description="Resource data, eg: container liquid data")
extra: Dict[str, Any] = Field(description="Extra data, eg: slot index")
@field_serializer("parent_uuid")
def _serialize_parent(self, parent_uuid: Optional["ResourceDict"]):

View File

@@ -1,94 +0,0 @@
import json
import sys
from datetime import datetime
from pathlib import Path
ROOT_DIR = Path(__file__).resolve().parents[2]
if str(ROOT_DIR) not in sys.path:
sys.path.insert(0, str(ROOT_DIR))
import pytest
from scripts.workflow import build_protocol_graph, draw_protocol_graph, draw_protocol_graph_with_ports
ROOT_DIR = Path(__file__).resolve().parents[2]
if str(ROOT_DIR) not in sys.path:
sys.path.insert(0, str(ROOT_DIR))
def _normalize_steps(data):
normalized = []
for step in data:
action = step.get("action") or step.get("operation")
if not action:
continue
raw_params = step.get("parameters") or step.get("action_args") or {}
params = dict(raw_params)
if "source" in raw_params and "sources" not in raw_params:
params["sources"] = raw_params["source"]
if "target" in raw_params and "targets" not in raw_params:
params["targets"] = raw_params["target"]
description = step.get("description") or step.get("purpose")
step_dict = {"action": action, "parameters": params}
if description:
step_dict["description"] = description
normalized.append(step_dict)
return normalized
def _normalize_labware(data):
labware = {}
for item in data:
reagent_name = item.get("reagent_name")
key = reagent_name or item.get("material_name") or item.get("name")
if not key:
continue
key = str(key)
idx = 1
original_key = key
while key in labware:
idx += 1
key = f"{original_key}_{idx}"
labware[key] = {
"slot": item.get("positions") or item.get("slot"),
"labware": item.get("material_name") or item.get("labware"),
"well": item.get("well", []),
"type": item.get("type", "reagent"),
"role": item.get("role", ""),
"name": key,
}
return labware
@pytest.mark.parametrize("protocol_name", [
"example_bio",
# "bioyond_materials_liquidhandling_1",
"example_prcxi",
])
def test_build_protocol_graph(protocol_name):
data_path = Path(__file__).with_name(f"{protocol_name}.json")
with data_path.open("r", encoding="utf-8") as fp:
d = json.load(fp)
if "workflow" in d and "reagent" in d:
protocol_steps = d["workflow"]
labware_info = d["reagent"]
elif "steps_info" in d and "labware_info" in d:
protocol_steps = _normalize_steps(d["steps_info"])
labware_info = _normalize_labware(d["labware_info"])
else:
raise ValueError("Unsupported protocol format")
graph = build_protocol_graph(
labware_info=labware_info,
protocol_steps=protocol_steps,
workstation_name="PRCXi",
)
timestamp = datetime.now().strftime("%Y%m%d_%H%M")
output_path = data_path.with_name(f"{protocol_name}_graph_{timestamp}.png")
draw_protocol_graph_with_ports(graph, str(output_path))
print(graph)

View File

547
unilabos/workflow/common.py Normal file
View File

@@ -0,0 +1,547 @@
import re
import uuid
import networkx as nx
from networkx.drawing.nx_agraph import to_agraph
import matplotlib.pyplot as plt
from typing import Dict, List, Any, Tuple, Optional
Json = Dict[str, Any]
# ---------------- Graph ----------------
class WorkflowGraph:
"""简单的有向图实现:使用 params 单层参数inputs 内含连线;支持 node-link 导出"""
def __init__(self):
self.nodes: Dict[str, Dict[str, Any]] = {}
self.edges: List[Dict[str, Any]] = []
def add_node(self, node_id: str, **attrs):
self.nodes[node_id] = attrs
def add_edge(self, source: str, target: str, **attrs):
# 将 source_port/target_port 映射为服务端期望的 source_handle_key/target_handle_key
source_handle_key = attrs.pop("source_port", "") or attrs.pop("source_handle_key", "")
target_handle_key = attrs.pop("target_port", "") or attrs.pop("target_handle_key", "")
edge = {
"source": source,
"target": target,
"source_node_uuid": source,
"target_node_uuid": target,
"source_handle_key": source_handle_key,
"source_handle_io": attrs.pop("source_handle_io", "source"),
"target_handle_key": target_handle_key,
"target_handle_io": attrs.pop("target_handle_io", "target"),
**attrs,
}
self.edges.append(edge)
def _materialize_wiring_into_inputs(
self,
obj: Any,
inputs: Dict[str, Any],
variable_sources: Dict[str, Dict[str, Any]],
target_node_id: str,
base_path: List[str],
):
has_var = False
def walk(node: Any, path: List[str]):
nonlocal has_var
if isinstance(node, dict):
if "__var__" in node:
has_var = True
varname = node["__var__"]
placeholder = f"${{{varname}}}"
src = variable_sources.get(varname)
if src:
key = ".".join(path) # e.g. "params.foo.bar.0"
inputs[key] = {"node": src["node_id"], "output": src.get("output_name", "result")}
self.add_edge(
str(src["node_id"]),
target_node_id,
source_handle_io=src.get("output_name", "result"),
target_handle_io=key,
)
return placeholder
return {k: walk(v, path + [k]) for k, v in node.items()}
if isinstance(node, list):
return [walk(v, path + [str(i)]) for i, v in enumerate(node)]
return node
replaced = walk(obj, base_path[:])
return replaced, has_var
def add_workflow_node(
self,
node_id: int,
*,
device_key: Optional[str] = None, # 实例名,如 "ser"
resource_name: Optional[str] = None, # registry key原 device_class
module: Optional[str] = None,
template_name: Optional[str] = None, # 动作/模板名(原 action_key
params: Dict[str, Any],
variable_sources: Dict[str, Dict[str, Any]],
add_ready_if_no_vars: bool = True,
prev_node_id: Optional[int] = None,
**extra_attrs,
) -> None:
"""添加工作流节点params 单层;自动变量连线与 ready 串联;支持附加属性"""
node_id_str = str(node_id)
inputs: Dict[str, Any] = {}
params, has_var = self._materialize_wiring_into_inputs(
params, inputs, variable_sources, node_id_str, base_path=["params"]
)
if add_ready_if_no_vars and not has_var:
last_id = str(prev_node_id) if prev_node_id is not None else "-1"
inputs["ready"] = {"node": int(last_id), "output": "ready"}
self.add_edge(last_id, node_id_str, source_handle_io="ready", target_handle_io="ready")
node_obj = {
"device_key": device_key,
"resource_name": resource_name, # ✅ 新名字
"module": module,
"template_name": template_name, # ✅ 新名字
"params": params,
"inputs": inputs,
}
node_obj.update(extra_attrs or {})
self.add_node(node_id_str, parameters=node_obj)
# 顺序工作流导出(连线在 inputs不返回 edges
def to_dict(self) -> List[Dict[str, Any]]:
result = []
for node_id, attrs in self.nodes.items():
node = {"uuid": node_id}
params = dict(attrs.get("parameters", {}) or {})
flat = {k: v for k, v in attrs.items() if k != "parameters"}
flat.update(params)
node.update(flat)
result.append(node)
return sorted(result, key=lambda n: int(n["uuid"]) if str(n["uuid"]).isdigit() else n["uuid"])
# node-link 导出(含 edges
def to_node_link_dict(self) -> Dict[str, Any]:
nodes_list = []
for node_id, attrs in self.nodes.items():
node_attrs = attrs.copy()
params = node_attrs.pop("parameters", {}) or {}
node_attrs.update(params)
nodes_list.append({"uuid": node_id, **node_attrs})
return {
"directed": True,
"multigraph": False,
"graph": {},
"nodes": nodes_list,
"edges": self.edges,
"links": self.edges,
}
def refactor_data(
data: List[Dict[str, Any]],
action_resource_mapping: Optional[Dict[str, str]] = None,
) -> List[Dict[str, Any]]:
"""统一的数据重构函数,根据操作类型自动选择模板
Args:
data: 原始步骤数据列表
action_resource_mapping: action 到 resource_name 的映射字典,可选
"""
refactored_data = []
# 定义操作映射,包含生物实验和有机化学的所有操作
OPERATION_MAPPING = {
# 生物实验操作
"transfer_liquid": "transfer_liquid",
"transfer": "transfer",
"incubation": "incubation",
"move_labware": "move_labware",
"oscillation": "oscillation",
# 有机化学操作
"HeatChillToTemp": "HeatChillProtocol",
"StopHeatChill": "HeatChillStopProtocol",
"StartHeatChill": "HeatChillStartProtocol",
"HeatChill": "HeatChillProtocol",
"Dissolve": "DissolveProtocol",
"Transfer": "TransferProtocol",
"Evaporate": "EvaporateProtocol",
"Recrystallize": "RecrystallizeProtocol",
"Filter": "FilterProtocol",
"Dry": "DryProtocol",
"Add": "AddProtocol",
}
UNSUPPORTED_OPERATIONS = ["Purge", "Wait", "Stir", "ResetHandling"]
for step in data:
operation = step.get("action")
if not operation or operation in UNSUPPORTED_OPERATIONS:
continue
# 处理重复操作
if operation == "Repeat":
times = step.get("times", step.get("parameters", {}).get("times", 1))
sub_steps = step.get("steps", step.get("parameters", {}).get("steps", []))
for i in range(int(times)):
sub_data = refactor_data(sub_steps, action_resource_mapping)
refactored_data.extend(sub_data)
continue
# 获取模板名称
template_name = OPERATION_MAPPING.get(operation)
if not template_name:
# 自动推断模板类型
if operation.lower() in ["transfer", "incubation", "move_labware", "oscillation"]:
template_name = f"biomek-{operation}"
else:
template_name = f"{operation}Protocol"
# 获取 resource_name
resource_name = f"device.{operation.lower()}"
if action_resource_mapping:
resource_name = action_resource_mapping.get(operation, resource_name)
# 获取步骤编号,生成 name 字段
step_number = step.get("step_number")
name = f"Step {step_number}" if step_number is not None else None
# 创建步骤数据
step_data = {
"template_name": template_name,
"resource_name": resource_name,
"description": step.get("description", step.get("purpose", f"{operation} operation")),
"lab_node_type": "Device",
"param": step.get("parameters", step.get("action_args", {})),
"footer": f"{template_name}-{resource_name}",
}
if name:
step_data["name"] = name
refactored_data.append(step_data)
return refactored_data
def build_protocol_graph(
labware_info: List[Dict[str, Any]],
protocol_steps: List[Dict[str, Any]],
workstation_name: str,
action_resource_mapping: Optional[Dict[str, str]] = None,
) -> WorkflowGraph:
"""统一的协议图构建函数,根据设备类型自动选择构建逻辑
Args:
labware_info: labware 信息字典
protocol_steps: 协议步骤列表
workstation_name: 工作站名称
action_resource_mapping: action 到 resource_name 的映射字典,可选
"""
G = WorkflowGraph()
resource_last_writer = {}
protocol_steps = refactor_data(protocol_steps, action_resource_mapping)
# 有机化学&移液站协议图构建
WORKSTATION_ID = workstation_name
# 为所有labware创建资源节点
res_index = 0
for labware_id, item in labware_info.items():
# item_id = item.get("id") or item.get("name", f"item_{uuid.uuid4()}")
node_id = str(uuid.uuid4())
# 判断节点类型
if "Rack" in str(labware_id) or "Tip" in str(labware_id):
lab_node_type = "Labware"
description = f"Prepare Labware: {labware_id}"
liquid_type = []
liquid_volume = []
elif item.get("type") == "hardware" or "reactor" in str(labware_id).lower():
if "reactor" not in str(labware_id).lower():
continue
lab_node_type = "Sample"
description = f"Prepare Reactor: {labware_id}"
liquid_type = []
liquid_volume = []
else:
lab_node_type = "Reagent"
description = f"Add Reagent to Flask: {labware_id}"
liquid_type = [labware_id]
liquid_volume = [1e5]
res_index += 1
G.add_node(
node_id,
template_name="create_resource",
resource_name="host_node",
name=f"Res {res_index}",
description=description,
lab_node_type=lab_node_type,
footer="create_resource-host_node",
param={
"res_id": labware_id,
"device_id": WORKSTATION_ID,
"class_name": "container",
"parent": WORKSTATION_ID,
"bind_locations": {"x": 0.0, "y": 0.0, "z": 0.0},
"liquid_input_slot": [-1],
"liquid_type": liquid_type,
"liquid_volume": liquid_volume,
"slot_on_deck": "",
},
)
resource_last_writer[labware_id] = f"{node_id}:labware"
last_control_node_id = None
# 处理协议步骤
for step in protocol_steps:
node_id = str(uuid.uuid4())
G.add_node(node_id, **step)
# 控制流
if last_control_node_id is not None:
G.add_edge(last_control_node_id, node_id, source_port="ready", target_port="ready")
last_control_node_id = node_id
# 物料流
params = step.get("param", {})
input_resources_possible_names = [
"vessel",
"to_vessel",
"from_vessel",
"reagent",
"solvent",
"compound",
"sources",
"targets",
]
for target_port in input_resources_possible_names:
resource_name = params.get(target_port)
if resource_name and resource_name in resource_last_writer:
source_node, source_port = resource_last_writer[resource_name].split(":")
G.add_edge(source_node, node_id, source_port=source_port, target_port=target_port)
output_resources = {
"vessel_out": params.get("vessel"),
"from_vessel_out": params.get("from_vessel"),
"to_vessel_out": params.get("to_vessel"),
"filtrate_out": params.get("filtrate_vessel"),
"reagent": params.get("reagent"),
"solvent": params.get("solvent"),
"compound": params.get("compound"),
"sources_out": params.get("sources"),
"targets_out": params.get("targets"),
}
for source_port, resource_name in output_resources.items():
if resource_name:
resource_last_writer[resource_name] = f"{node_id}:{source_port}"
return G
def draw_protocol_graph(protocol_graph: WorkflowGraph, output_path: str):
"""
(辅助功能) 使用 networkx 和 matplotlib 绘制协议工作流图,用于可视化。
"""
if not protocol_graph:
print("Cannot draw graph: Graph object is empty.")
return
G = nx.DiGraph()
for node_id, attrs in protocol_graph.nodes.items():
label = attrs.get("description", attrs.get("template_name", node_id[:8]))
G.add_node(node_id, label=label, **attrs)
for edge in protocol_graph.edges:
G.add_edge(edge["source"], edge["target"])
plt.figure(figsize=(20, 15))
try:
pos = nx.nx_agraph.graphviz_layout(G, prog="dot")
except Exception:
pos = nx.shell_layout(G) # Fallback layout
node_labels = {node: data["label"] for node, data in G.nodes(data=True)}
nx.draw(
G,
pos,
with_labels=False,
node_size=2500,
node_color="skyblue",
node_shape="o",
edge_color="gray",
width=1.5,
arrowsize=15,
)
nx.draw_networkx_labels(G, pos, labels=node_labels, font_size=8, font_weight="bold")
plt.title("Chemical Protocol Workflow Graph", size=15)
plt.savefig(output_path, dpi=300, bbox_inches="tight")
plt.close()
print(f" - Visualization saved to '{output_path}'")
COMPASS = {"n", "e", "s", "w", "ne", "nw", "se", "sw", "c"}
def _is_compass(port: str) -> bool:
return isinstance(port, str) and port.lower() in COMPASS
def draw_protocol_graph_with_ports(protocol_graph, output_path: str, rankdir: str = "LR"):
"""
使用 Graphviz 端口语法绘制协议工作流图。
- 若边上的 source_port/target_port 是 compassn/e/s/w/...),直接用 compass。
- 否则自动为节点创建 record 形状并定义命名端口 <portname>。
最终由 PyGraphviz 渲染并输出到 output_path后缀决定格式如 .png/.svg/.pdf
"""
if not protocol_graph:
print("Cannot draw graph: Graph object is empty.")
return
# 1) 先用 networkx 搭建有向图,保留端口属性
G = nx.DiGraph()
for node_id, attrs in protocol_graph.nodes.items():
label = attrs.get("description", attrs.get("template_name", node_id[:8]))
# 保留一个干净的“中心标签”,用于放在 record 的中间槽
G.add_node(node_id, _core_label=str(label), **{k: v for k, v in attrs.items() if k not in ("label",)})
edges_data = []
in_ports_by_node = {} # 收集命名输入端口
out_ports_by_node = {} # 收集命名输出端口
for edge in protocol_graph.edges:
u = edge["source"]
v = edge["target"]
sp = edge.get("source_handle_key") or edge.get("source_port")
tp = edge.get("target_handle_key") or edge.get("target_port")
# 记录到图里(保留原始端口信息)
G.add_edge(u, v, source_handle_key=sp, target_handle_key=tp)
edges_data.append((u, v, sp, tp))
# 如果不是 compass就按“命名端口”先归类等会儿给节点造 record
if sp and not _is_compass(sp):
out_ports_by_node.setdefault(u, set()).add(str(sp))
if tp and not _is_compass(tp):
in_ports_by_node.setdefault(v, set()).add(str(tp))
# 2) 转为 AGraph使用 Graphviz 渲染
A = to_agraph(G)
A.graph_attr.update(rankdir=rankdir, splines="true", concentrate="false", fontsize="10")
A.node_attr.update(
shape="box", style="rounded,filled", fillcolor="lightyellow", color="#999999", fontname="Helvetica"
)
A.edge_attr.update(arrowsize="0.8", color="#666666")
# 3) 为需要命名端口的节点设置 record 形状与 label
# 左列 = 输入端口;中间 = 核心标签;右列 = 输出端口
for n in A.nodes():
node = A.get_node(n)
core = G.nodes[n].get("_core_label", n)
in_ports = sorted(in_ports_by_node.get(n, []))
out_ports = sorted(out_ports_by_node.get(n, []))
# 如果该节点涉及命名端口,则用 record否则保留原 box
if in_ports or out_ports:
def port_fields(ports):
if not ports:
return " " # 必须留一个空槽占位
# 每个端口一个小格子,<p> name
return "|".join(f"<{re.sub(r'[^A-Za-z0-9_:.|-]', '_', p)}> {p}" for p in ports)
left = port_fields(in_ports)
right = port_fields(out_ports)
# 三栏:左(入) | 中(节点名) | 右(出)
record_label = f"{{ {left} | {core} | {right} }}"
node.attr.update(shape="record", label=record_label)
else:
# 没有命名端口:普通盒子,显示核心标签
node.attr.update(label=str(core))
# 4) 给边设置 headport / tailport
# - 若端口为 compass直接用 compasse.g., headport="e"
# - 若端口为命名端口:使用在 record 中定义的 <port> 名(同名即可)
for u, v, sp, tp in edges_data:
e = A.get_edge(u, v)
# Graphviz 属性tail 是源head 是目标
if sp:
if _is_compass(sp):
e.attr["tailport"] = sp.lower()
else:
# 与 record label 中 <port> 名一致;特殊字符已在 label 中做了清洗
e.attr["tailport"] = re.sub(r"[^A-Za-z0-9_:.|-]", "_", str(sp))
if tp:
if _is_compass(tp):
e.attr["headport"] = tp.lower()
else:
e.attr["headport"] = re.sub(r"[^A-Za-z0-9_:.|-]", "_", str(tp))
# 可选:若想让边更贴边缘,可设置 constraint/spline 等
# e.attr["arrowhead"] = "vee"
# 5) 输出
A.draw(output_path, prog="dot")
print(f" - Port-aware workflow rendered to '{output_path}'")
# ---------------- Registry Adapter ----------------
class RegistryAdapter:
"""根据 module 的类名(冒号右侧)反查 registry 的 resource_name原 device_class并抽取参数顺序"""
def __init__(self, device_registry: Dict[str, Any]):
self.device_registry = device_registry or {}
self.module_class_to_resource = self._build_module_class_index()
def _build_module_class_index(self) -> Dict[str, str]:
idx = {}
for resource_name, info in self.device_registry.items():
module = info.get("module")
if isinstance(module, str) and ":" in module:
cls = module.split(":")[-1]
idx[cls] = resource_name
idx[cls.lower()] = resource_name
return idx
def resolve_resource_by_classname(self, class_name: str) -> Optional[str]:
if not class_name:
return None
return self.module_class_to_resource.get(class_name) or self.module_class_to_resource.get(class_name.lower())
def get_device_module(self, resource_name: Optional[str]) -> Optional[str]:
if not resource_name:
return None
return self.device_registry.get(resource_name, {}).get("module")
def get_actions(self, resource_name: Optional[str]) -> Dict[str, Any]:
if not resource_name:
return {}
return (self.device_registry.get(resource_name, {}).get("class", {}).get("action_value_mappings", {})) or {}
def get_action_schema(self, resource_name: Optional[str], template_name: str) -> Optional[Json]:
return (self.get_actions(resource_name).get(template_name) or {}).get("schema")
def get_action_goal_default(self, resource_name: Optional[str], template_name: str) -> Json:
return (self.get_actions(resource_name).get(template_name) or {}).get("goal_default", {}) or {}
def get_action_input_keys(self, resource_name: Optional[str], template_name: str) -> List[str]:
schema = self.get_action_schema(resource_name, template_name) or {}
goal = (schema.get("properties") or {}).get("goal") or {}
props = goal.get("properties") or {}
required = goal.get("required") or []
return list(dict.fromkeys(required + list(props.keys())))

View File

@@ -0,0 +1,356 @@
"""
JSON 工作流转换模块
提供从多种 JSON 格式转换为统一工作流格式的功能。
支持的格式:
1. workflow/reagent 格式
2. steps_info/labware_info 格式
"""
import json
from os import PathLike
from pathlib import Path
from typing import Any, Dict, List, Optional, Set, Tuple, Union
from unilabos.workflow.common import WorkflowGraph, build_protocol_graph
from unilabos.registry.registry import lab_registry
def get_action_handles(resource_name: str, template_name: str) -> Dict[str, List[str]]:
"""
从 registry 获取指定设备和动作的 handles 配置
Args:
resource_name: 设备资源名称,如 "liquid_handler.prcxi"
template_name: 动作模板名称,如 "transfer_liquid"
Returns:
包含 source 和 target handler_keys 的字典:
{"source": ["sources_out", "targets_out", ...], "target": ["sources", "targets", ...]}
"""
result = {"source": [], "target": []}
device_info = lab_registry.device_type_registry.get(resource_name, {})
if not device_info:
return result
action_mappings = device_info.get("class", {}).get("action_value_mappings", {})
action_config = action_mappings.get(template_name, {})
handles = action_config.get("handles", {})
if isinstance(handles, dict):
# 处理 input handles (作为 target)
for handle in handles.get("input", []):
handler_key = handle.get("handler_key", "")
if handler_key:
result["source"].append(handler_key)
# 处理 output handles (作为 source)
for handle in handles.get("output", []):
handler_key = handle.get("handler_key", "")
if handler_key:
result["target"].append(handler_key)
return result
def validate_workflow_handles(graph: WorkflowGraph) -> Tuple[bool, List[str]]:
"""
校验工作流图中所有边的句柄配置是否正确
Args:
graph: 工作流图对象
Returns:
(is_valid, errors): 是否有效,错误信息列表
"""
errors = []
nodes = graph.nodes
for edge in graph.edges:
left_uuid = edge.get("source")
right_uuid = edge.get("target")
# target_handle_key是target, right的输入节点入节点
# source_handle_key是source, left的输出节点出节点
right_source_conn_key = edge.get("target_handle_key", "")
left_target_conn_key = edge.get("source_handle_key", "")
# 获取源节点和目标节点信息
left_node = nodes.get(left_uuid, {})
right_node = nodes.get(right_uuid, {})
left_res_name = left_node.get("resource_name", "")
left_template_name = left_node.get("template_name", "")
right_res_name = right_node.get("resource_name", "")
right_template_name = right_node.get("template_name", "")
# 获取源节点的 output handles
left_node_handles = get_action_handles(left_res_name, left_template_name)
target_valid_keys = left_node_handles.get("target", [])
target_valid_keys.append("ready")
# 获取目标节点的 input handles
right_node_handles = get_action_handles(right_res_name, right_template_name)
source_valid_keys = right_node_handles.get("source", [])
source_valid_keys.append("ready")
# 如果节点配置了 output handles则 source_port 必须有效
if not right_source_conn_key:
node_name = left_node.get("name", left_uuid[:8])
errors.append(f"源节点 '{node_name}' 的 source_handle_key 为空," f"应设置为: {source_valid_keys}")
elif right_source_conn_key not in source_valid_keys:
node_name = left_node.get("name", left_uuid[:8])
errors.append(
f"源节点 '{node_name}' 的 source 端点 '{right_source_conn_key}' 不存在," f"支持的端点: {source_valid_keys}"
)
# 如果节点配置了 input handles则 target_port 必须有效
if not left_target_conn_key:
node_name = right_node.get("name", right_uuid[:8])
errors.append(f"目标节点 '{node_name}' 的 target_handle_key 为空," f"应设置为: {target_valid_keys}")
elif left_target_conn_key not in target_valid_keys:
node_name = right_node.get("name", right_uuid[:8])
errors.append(
f"目标节点 '{node_name}' 的 target 端点 '{left_target_conn_key}' 不存在,"
f"支持的端点: {target_valid_keys}"
)
return len(errors) == 0, errors
# action 到 resource_name 的映射
ACTION_RESOURCE_MAPPING: Dict[str, str] = {
# 生物实验操作
"transfer_liquid": "liquid_handler.prcxi",
"transfer": "liquid_handler.prcxi",
"incubation": "incubator.prcxi",
"move_labware": "labware_mover.prcxi",
"oscillation": "shaker.prcxi",
# 有机化学操作
"HeatChillToTemp": "heatchill.chemputer",
"StopHeatChill": "heatchill.chemputer",
"StartHeatChill": "heatchill.chemputer",
"HeatChill": "heatchill.chemputer",
"Dissolve": "stirrer.chemputer",
"Transfer": "liquid_handler.chemputer",
"Evaporate": "rotavap.chemputer",
"Recrystallize": "reactor.chemputer",
"Filter": "filter.chemputer",
"Dry": "dryer.chemputer",
"Add": "liquid_handler.chemputer",
}
def normalize_steps(data: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
"""
将不同格式的步骤数据规范化为统一格式
支持的输入格式:
- action + parameters
- action + action_args
- operation + parameters
Args:
data: 原始步骤数据列表
Returns:
规范化后的步骤列表,格式为 [{"action": str, "parameters": dict, "description": str?, "step_number": int?}, ...]
"""
normalized = []
for idx, step in enumerate(data):
# 获取动作名称(支持 action 或 operation 字段)
action = step.get("action") or step.get("operation")
if not action:
continue
# 获取参数(支持 parameters 或 action_args 字段)
raw_params = step.get("parameters") or step.get("action_args") or {}
params = dict(raw_params)
# 规范化 source/target -> sources/targets
if "source" in raw_params and "sources" not in raw_params:
params["sources"] = raw_params["source"]
if "target" in raw_params and "targets" not in raw_params:
params["targets"] = raw_params["target"]
# 获取描述(支持 description 或 purpose 字段)
description = step.get("description") or step.get("purpose")
# 获取步骤编号(优先使用原始数据中的 step_number否则使用索引+1
step_number = step.get("step_number", idx + 1)
step_dict = {"action": action, "parameters": params, "step_number": step_number}
if description:
step_dict["description"] = description
normalized.append(step_dict)
return normalized
def normalize_labware(data: List[Dict[str, Any]]) -> Dict[str, Dict[str, Any]]:
"""
将不同格式的 labware 数据规范化为统一的字典格式
支持的输入格式:
- reagent_name + material_name + positions
- name + labware + slot
Args:
data: 原始 labware 数据列表
Returns:
规范化后的 labware 字典,格式为 {name: {"slot": int, "labware": str, "well": list, "type": str, "role": str, "name": str}, ...}
"""
labware = {}
for item in data:
# 获取 key 名称(优先使用 reagent_name其次是 material_name 或 name
reagent_name = item.get("reagent_name")
key = reagent_name or item.get("material_name") or item.get("name")
if not key:
continue
key = str(key)
# 处理重复 key自动添加后缀
idx = 1
original_key = key
while key in labware:
idx += 1
key = f"{original_key}_{idx}"
labware[key] = {
"slot": item.get("positions") or item.get("slot"),
"labware": item.get("material_name") or item.get("labware"),
"well": item.get("well", []),
"type": item.get("type", "reagent"),
"role": item.get("role", ""),
"name": key,
}
return labware
def convert_from_json(
data: Union[str, PathLike, Dict[str, Any]],
workstation_name: str = "PRCXi",
validate: bool = True,
) -> WorkflowGraph:
"""
从 JSON 数据或文件转换为 WorkflowGraph
支持的 JSON 格式:
1. {"workflow": [...], "reagent": {...}} - 直接格式
2. {"steps_info": [...], "labware_info": [...]} - 需要规范化的格式
Args:
data: JSON 文件路径、字典数据、或 JSON 字符串
workstation_name: 工作站名称,默认 "PRCXi"
validate: 是否校验句柄配置,默认 True
Returns:
WorkflowGraph: 构建好的工作流图
Raises:
ValueError: 不支持的 JSON 格式 或 句柄校验失败
FileNotFoundError: 文件不存在
json.JSONDecodeError: JSON 解析失败
"""
# 处理输入数据
if isinstance(data, (str, PathLike)):
path = Path(data)
if path.exists():
with path.open("r", encoding="utf-8") as fp:
json_data = json.load(fp)
elif isinstance(data, str):
# 尝试作为 JSON 字符串解析
json_data = json.loads(data)
else:
raise FileNotFoundError(f"文件不存在: {data}")
elif isinstance(data, dict):
json_data = data
else:
raise TypeError(f"不支持的数据类型: {type(data)}")
# 根据格式解析数据
if "workflow" in json_data and "reagent" in json_data:
# 格式1: workflow/reagent已经是规范格式
protocol_steps = json_data["workflow"]
labware_info = json_data["reagent"]
elif "steps_info" in json_data and "labware_info" in json_data:
# 格式2: steps_info/labware_info需要规范化
protocol_steps = normalize_steps(json_data["steps_info"])
labware_info = normalize_labware(json_data["labware_info"])
elif "steps" in json_data and "labware" in json_data:
# 格式3: steps/labware另一种常见格式
protocol_steps = normalize_steps(json_data["steps"])
if isinstance(json_data["labware"], list):
labware_info = normalize_labware(json_data["labware"])
else:
labware_info = json_data["labware"]
else:
raise ValueError(
"不支持的 JSON 格式。支持的格式:\n"
"1. {'workflow': [...], 'reagent': {...}}\n"
"2. {'steps_info': [...], 'labware_info': [...]}\n"
"3. {'steps': [...], 'labware': [...]}"
)
# 构建工作流图
graph = build_protocol_graph(
labware_info=labware_info,
protocol_steps=protocol_steps,
workstation_name=workstation_name,
action_resource_mapping=ACTION_RESOURCE_MAPPING,
)
# 校验句柄配置
if validate:
is_valid, errors = validate_workflow_handles(graph)
if not is_valid:
import warnings
for error in errors:
warnings.warn(f"句柄校验警告: {error}")
return graph
def convert_json_to_node_link(
data: Union[str, PathLike, Dict[str, Any]],
workstation_name: str = "PRCXi",
) -> Dict[str, Any]:
"""
将 JSON 数据转换为 node-link 格式的字典
Args:
data: JSON 文件路径、字典数据、或 JSON 字符串
workstation_name: 工作站名称,默认 "PRCXi"
Returns:
Dict: node-link 格式的工作流数据
"""
graph = convert_from_json(data, workstation_name)
return graph.to_node_link_dict()
def convert_json_to_workflow_list(
data: Union[str, PathLike, Dict[str, Any]],
workstation_name: str = "PRCXi",
) -> List[Dict[str, Any]]:
"""
将 JSON 数据转换为工作流列表格式
Args:
data: JSON 文件路径、字典数据、或 JSON 字符串
workstation_name: 工作站名称,默认 "PRCXi"
Returns:
List: 工作流节点列表
"""
graph = convert_from_json(data, workstation_name)
return graph.to_dict()
# 为了向后兼容,保留下划线前缀的别名
_normalize_steps = normalize_steps
_normalize_labware = normalize_labware

View File

@@ -0,0 +1,241 @@
import ast
import json
from typing import Dict, List, Any, Tuple, Optional
from .common import WorkflowGraph, RegistryAdapter
Json = Dict[str, Any]
# ---------------- Converter ----------------
class DeviceMethodConverter:
"""
- 字段统一resource_name原 device_class、template_name原 action_key
- params 单层inputs 使用 'params.' 前缀
- SimpleGraph.add_workflow_node 负责变量连线与边
"""
def __init__(self, device_registry: Optional[Dict[str, Any]] = None):
self.graph = WorkflowGraph()
self.variable_sources: Dict[str, Dict[str, Any]] = {} # var -> {node_id, output_name}
self.instance_to_resource: Dict[str, Optional[str]] = {} # 实例名 -> resource_name
self.node_id_counter: int = 0
self.registry = RegistryAdapter(device_registry or {})
# ---- helpers ----
def _new_node_id(self) -> int:
nid = self.node_id_counter
self.node_id_counter += 1
return nid
def _assign_targets(self, targets) -> List[str]:
names: List[str] = []
import ast
if isinstance(targets, ast.Tuple):
for elt in targets.elts:
if isinstance(elt, ast.Name):
names.append(elt.id)
elif isinstance(targets, ast.Name):
names.append(targets.id)
return names
def _extract_device_instantiation(self, node) -> Optional[Tuple[str, str]]:
import ast
if not isinstance(node.value, ast.Call):
return None
callee = node.value.func
if isinstance(callee, ast.Name):
class_name = callee.id
elif isinstance(callee, ast.Attribute) and isinstance(callee.value, ast.Name):
class_name = callee.attr
else:
return None
if isinstance(node.targets[0], ast.Name):
instance = node.targets[0].id
return instance, class_name
return None
def _extract_call(self, call) -> Tuple[str, str, Dict[str, Any], str]:
import ast
owner_name, method_name, call_kind = "", "", "func"
if isinstance(call.func, ast.Attribute):
method_name = call.func.attr
if isinstance(call.func.value, ast.Name):
owner_name = call.func.value.id
call_kind = "instance" if owner_name in self.instance_to_resource else "class_or_module"
elif isinstance(call.func.value, ast.Attribute) and isinstance(call.func.value.value, ast.Name):
owner_name = call.func.value.attr
call_kind = "class_or_module"
elif isinstance(call.func, ast.Name):
method_name = call.func.id
call_kind = "func"
def pack(node):
if isinstance(node, ast.Name):
return {"type": "variable", "value": node.id}
if isinstance(node, ast.Constant):
return {"type": "constant", "value": node.value}
if isinstance(node, ast.Dict):
return {"type": "dict", "value": self._parse_dict(node)}
if isinstance(node, ast.List):
return {"type": "list", "value": self._parse_list(node)}
return {"type": "raw", "value": ast.unparse(node) if hasattr(ast, "unparse") else str(node)}
args: Dict[str, Any] = {}
pos: List[Any] = []
for a in call.args:
pos.append(pack(a))
for kw in call.keywords:
args[kw.arg] = pack(kw.value)
if pos:
args["_positional"] = pos
return owner_name, method_name, args, call_kind
def _parse_dict(self, node) -> Dict[str, Any]:
import ast
out: Dict[str, Any] = {}
for k, v in zip(node.keys, node.values):
if isinstance(k, ast.Constant):
key = str(k.value)
if isinstance(v, ast.Name):
out[key] = f"var:{v.id}"
elif isinstance(v, ast.Constant):
out[key] = v.value
elif isinstance(v, ast.Dict):
out[key] = self._parse_dict(v)
elif isinstance(v, ast.List):
out[key] = self._parse_list(v)
return out
def _parse_list(self, node) -> List[Any]:
import ast
out: List[Any] = []
for elt in node.elts:
if isinstance(elt, ast.Name):
out.append(f"var:{elt.id}")
elif isinstance(elt, ast.Constant):
out.append(elt.value)
elif isinstance(elt, ast.Dict):
out.append(self._parse_dict(elt))
elif isinstance(elt, ast.List):
out.append(self._parse_list(elt))
return out
def _normalize_var_tokens(self, x: Any) -> Any:
if isinstance(x, str) and x.startswith("var:"):
return {"__var__": x[4:]}
if isinstance(x, list):
return [self._normalize_var_tokens(i) for i in x]
if isinstance(x, dict):
return {k: self._normalize_var_tokens(v) for k, v in x.items()}
return x
def _make_params_payload(self, resource_name: Optional[str], template_name: str, call_args: Dict[str, Any]) -> Dict[str, Any]:
input_keys = self.registry.get_action_input_keys(resource_name, template_name) if resource_name else []
defaults = self.registry.get_action_goal_default(resource_name, template_name) if resource_name else {}
params: Dict[str, Any] = dict(defaults)
def unpack(p):
t, v = p.get("type"), p.get("value")
if t == "variable":
return {"__var__": v}
if t == "dict":
return self._normalize_var_tokens(v)
if t == "list":
return self._normalize_var_tokens(v)
return v
for k, p in call_args.items():
if k == "_positional":
continue
params[k] = unpack(p)
pos = call_args.get("_positional", [])
if pos:
if input_keys:
for i, p in enumerate(pos):
if i >= len(input_keys):
break
name = input_keys[i]
if name in params:
continue
params[name] = unpack(p)
else:
for i, p in enumerate(pos):
params[f"arg_{i}"] = unpack(p)
return params
# ---- handlers ----
def _on_assign(self, stmt):
import ast
inst = self._extract_device_instantiation(stmt)
if inst:
instance, code_class = inst
resource_name = self.registry.resolve_resource_by_classname(code_class)
self.instance_to_resource[instance] = resource_name
return
if isinstance(stmt.value, ast.Call):
owner, method, call_args, kind = self._extract_call(stmt.value)
if kind == "instance":
device_key = owner
resource_name = self.instance_to_resource.get(owner)
else:
device_key = owner
resource_name = self.registry.resolve_resource_by_classname(owner)
module = self.registry.get_device_module(resource_name)
params = self._make_params_payload(resource_name, method, call_args)
nid = self._new_node_id()
self.graph.add_workflow_node(
nid,
device_key=device_key,
resource_name=resource_name, # ✅
module=module,
template_name=method, # ✅
params=params,
variable_sources=self.variable_sources,
add_ready_if_no_vars=True,
prev_node_id=(nid - 1) if nid > 0 else None,
)
out_vars = self._assign_targets(stmt.targets[0])
for var in out_vars:
self.variable_sources[var] = {"node_id": nid, "output_name": "result"}
def _on_expr(self, stmt):
import ast
if not isinstance(stmt.value, ast.Call):
return
owner, method, call_args, kind = self._extract_call(stmt.value)
if kind == "instance":
device_key = owner
resource_name = self.instance_to_resource.get(owner)
else:
device_key = owner
resource_name = self.registry.resolve_resource_by_classname(owner)
module = self.registry.get_device_module(resource_name)
params = self._make_params_payload(resource_name, method, call_args)
nid = self._new_node_id()
self.graph.add_workflow_node(
nid,
device_key=device_key,
resource_name=resource_name, # ✅
module=module,
template_name=method, # ✅
params=params,
variable_sources=self.variable_sources,
add_ready_if_no_vars=True,
prev_node_id=(nid - 1) if nid > 0 else None,
)
def convert(self, python_code: str):
tree = ast.parse(python_code)
for stmt in tree.body:
if isinstance(stmt, ast.Assign):
self._on_assign(stmt)
elif isinstance(stmt, ast.Expr):
self._on_expr(stmt)
return self

View File

@@ -0,0 +1,131 @@
from typing import List, Any, Dict
import xml.etree.ElementTree as ET
def convert_to_type(val: str) -> Any:
"""将字符串值转换为适当的数据类型"""
if val == "True":
return True
if val == "False":
return False
if val == "?":
return None
if val.endswith(" g"):
return float(val.split(" ")[0])
if val.endswith("mg"):
return float(val.split("mg")[0])
elif val.endswith("mmol"):
return float(val.split("mmol")[0]) / 1000
elif val.endswith("mol"):
return float(val.split("mol")[0])
elif val.endswith("ml"):
return float(val.split("ml")[0])
elif val.endswith("RPM"):
return float(val.split("RPM")[0])
elif val.endswith(" °C"):
return float(val.split(" ")[0])
elif val.endswith(" %"):
return float(val.split(" ")[0])
return val
def flatten_xdl_procedure(procedure_elem: ET.Element) -> List[ET.Element]:
"""展平嵌套的XDL程序结构"""
flattened_operations = []
TEMP_UNSUPPORTED_PROTOCOL = ["Purge", "Wait", "Stir", "ResetHandling"]
def extract_operations(element: ET.Element):
if element.tag not in ["Prep", "Reaction", "Workup", "Purification", "Procedure"]:
if element.tag not in TEMP_UNSUPPORTED_PROTOCOL:
flattened_operations.append(element)
for child in element:
extract_operations(child)
for child in procedure_elem:
extract_operations(child)
return flattened_operations
def parse_xdl_content(xdl_content: str) -> tuple:
"""解析XDL内容"""
try:
xdl_content_cleaned = "".join(c for c in xdl_content if c.isprintable())
root = ET.fromstring(xdl_content_cleaned)
synthesis_elem = root.find("Synthesis")
if synthesis_elem is None:
return None, None, None
# 解析硬件组件
hardware_elem = synthesis_elem.find("Hardware")
hardware = []
if hardware_elem is not None:
hardware = [{"id": c.get("id"), "type": c.get("type")} for c in hardware_elem.findall("Component")]
# 解析试剂
reagents_elem = synthesis_elem.find("Reagents")
reagents = []
if reagents_elem is not None:
reagents = [{"name": r.get("name"), "role": r.get("role", "")} for r in reagents_elem.findall("Reagent")]
# 解析程序
procedure_elem = synthesis_elem.find("Procedure")
if procedure_elem is None:
return None, None, None
flattened_operations = flatten_xdl_procedure(procedure_elem)
return hardware, reagents, flattened_operations
except ET.ParseError as e:
raise ValueError(f"Invalid XDL format: {e}")
def convert_xdl_to_dict(xdl_content: str) -> Dict[str, Any]:
"""
将XDL XML格式转换为标准的字典格式
Args:
xdl_content: XDL XML内容
Returns:
转换结果,包含步骤和器材信息
"""
try:
hardware, reagents, flattened_operations = parse_xdl_content(xdl_content)
if hardware is None:
return {"error": "Failed to parse XDL content", "success": False}
# 将XDL元素转换为字典格式
steps_data = []
for elem in flattened_operations:
# 转换参数类型
parameters = {}
for key, val in elem.attrib.items():
converted_val = convert_to_type(val)
if converted_val is not None:
parameters[key] = converted_val
step_dict = {
"operation": elem.tag,
"parameters": parameters,
"description": elem.get("purpose", f"Operation: {elem.tag}"),
}
steps_data.append(step_dict)
# 合并硬件和试剂为统一的labware_info格式
labware_data = []
labware_data.extend({"id": hw["id"], "type": "hardware", **hw} for hw in hardware)
labware_data.extend({"name": reagent["name"], "type": "reagent", **reagent} for reagent in reagents)
return {
"success": True,
"steps": steps_data,
"labware": labware_data,
"message": f"Successfully converted XDL to dict format. Found {len(steps_data)} steps and {len(labware_data)} labware items.",
}
except Exception as e:
error_msg = f"XDL conversion failed: {str(e)}"
return {"error": error_msg, "success": False}

View File

@@ -0,0 +1,138 @@
"""
工作流工具模块
提供工作流上传等功能
"""
import json
import os
import uuid
from typing import Any, Dict, List, Optional
from unilabos.utils.banner_print import print_status
def _is_node_link_format(data: Dict[str, Any]) -> bool:
"""检查数据是否为 node-link 格式"""
return "nodes" in data and "edges" in data
def _convert_to_node_link(workflow_file: str, workflow_data: Dict[str, Any]) -> Dict[str, Any]:
"""
将非 node-link 格式的工作流数据转换为 node-link 格式
Args:
workflow_file: 工作流文件路径(用于日志)
workflow_data: 原始工作流数据
Returns:
node-link 格式的工作流数据
"""
from unilabos.workflow.convert_from_json import convert_json_to_node_link
print_status(f"检测到非 node-link 格式,正在转换...", "info")
node_link_data = convert_json_to_node_link(workflow_data)
print_status(f"转换完成", "success")
return node_link_data
def upload_workflow(
workflow_file: str,
workflow_name: Optional[str] = None,
tags: Optional[List[str]] = None,
published: bool = False,
) -> Dict[str, Any]:
"""
上传工作流到服务器
支持的输入格式:
1. node-link 格式: {"nodes": [...], "edges": [...]}
2. workflow/reagent 格式: {"workflow": [...], "reagent": {...}}
3. steps_info/labware_info 格式: {"steps_info": [...], "labware_info": [...]}
4. steps/labware 格式: {"steps": [...], "labware": [...]}
Args:
workflow_file: 工作流文件路径JSON格式
workflow_name: 工作流名称,如果不提供则从文件中读取或使用文件名
tags: 工作流标签列表,默认为空列表
published: 是否发布工作流默认为False
Returns:
Dict: API响应数据
"""
# 延迟导入,避免在配置文件加载之前初始化 http_client
from unilabos.app.web import http_client
if not os.path.exists(workflow_file):
print_status(f"工作流文件不存在: {workflow_file}", "error")
return {"code": -1, "message": f"文件不存在: {workflow_file}"}
# 读取工作流文件
try:
with open(workflow_file, "r", encoding="utf-8") as f:
workflow_data = json.load(f)
except json.JSONDecodeError as e:
print_status(f"工作流文件JSON解析失败: {e}", "error")
return {"code": -1, "message": f"JSON解析失败: {e}"}
# 自动检测并转换格式
if not _is_node_link_format(workflow_data):
try:
workflow_data = _convert_to_node_link(workflow_file, workflow_data)
except Exception as e:
print_status(f"工作流格式转换失败: {e}", "error")
return {"code": -1, "message": f"格式转换失败: {e}"}
# 提取工作流数据
nodes = workflow_data.get("nodes", [])
edges = workflow_data.get("edges", [])
workflow_uuid_val = workflow_data.get("workflow_uuid", str(uuid.uuid4()))
wf_name_from_file = workflow_data.get("workflow_name", os.path.basename(workflow_file).replace(".json", ""))
# 确定工作流名称
final_name = workflow_name or wf_name_from_file
print_status(f"正在上传工作流: {final_name}", "info")
print_status(f" - 节点数量: {len(nodes)}", "info")
print_status(f" - 边数量: {len(edges)}", "info")
print_status(f" - 标签: {tags or []}", "info")
print_status(f" - 发布状态: {published}", "info")
# 调用 http_client 上传
result = http_client.workflow_import(
name=final_name,
workflow_uuid=workflow_uuid_val,
workflow_name=final_name,
nodes=nodes,
edges=edges,
tags=tags,
published=published,
)
if result.get("code") == 0:
data = result.get("data", {})
print_status("工作流上传成功!", "success")
print_status(f" - UUID: {data.get('uuid', 'N/A')}", "info")
print_status(f" - 名称: {data.get('name', 'N/A')}", "info")
else:
print_status(f"工作流上传失败: {result.get('message', '未知错误')}", "error")
return result
def handle_workflow_upload_command(args_dict: Dict[str, Any]) -> None:
"""
处理 workflow_upload 子命令
Args:
args_dict: 命令行参数字典
"""
workflow_file = args_dict.get("workflow_file")
workflow_name = args_dict.get("workflow_name")
tags = args_dict.get("tags", [])
published = args_dict.get("published", False)
if workflow_file:
upload_workflow(workflow_file, workflow_name, tags, published)
else:
print_status("未指定工作流文件路径,请使用 -f/--workflow_file 参数", "error")