Compare commits

..

8 Commits

Author SHA1 Message Date
Xuwznln
e8d1263488 workflow upload & prcxi transfer liquid 2026-02-03 18:10:32 +08:00
Xuwznln
380b39100d lh liquid 2026-02-03 15:15:57 +08:00
Xuwznln
56eb7e2ab4 speed up registry load 2026-02-02 20:01:04 +08:00
Xuwznln
23ce145f74 workflow upload & set liquid fix & add set liquid with plate 2026-02-02 18:23:33 +08:00
Xuwznln
b0da149252 fix upload workflow json 2026-02-02 17:19:07 +08:00
Xuwznln
07c9e6f0fe save class name when deserialize & protocol execute test 2026-02-02 16:05:17 +08:00
Xuwznln
ccec6b9d77 Support root node change pos 2026-02-02 12:03:19 +08:00
hanhua@dp.tech
dadfdf3d8d add unilabos_class 2026-01-30 18:07:53 +08:00
31 changed files with 1154 additions and 3716 deletions

View File

@@ -46,7 +46,7 @@ requirements:
- jinja2
- requests
- uvicorn
- opcua
- opcua # [not osx]
- pyserial
- pandas
- pymodbus

View File

@@ -1,328 +0,0 @@
---
description: 设备驱动开发规范
globs: ["unilabos/devices/**/*.py"]
---
# 设备驱动开发规范
## 目录结构
```
unilabos/devices/
├── virtual/ # 虚拟设备(用于测试)
│ ├── virtual_stirrer.py
│ └── virtual_centrifuge.py
├── liquid_handling/ # 液体处理设备
├── balance/ # 天平设备
├── hplc/ # HPLC设备
├── pump_and_valve/ # 泵和阀门
├── temperature/ # 温度控制设备
├── workstation/ # 工作站(组合设备)
└── ...
```
## 设备类完整模板
```python
import asyncio
import logging
import time as time_module
from typing import Dict, Any, Optional
from unilabos.ros.nodes.base_device_node import BaseROS2DeviceNode
class MyDevice:
"""
设备类描述
Attributes:
device_id: 设备唯一标识
config: 设备配置字典
data: 设备状态数据
"""
_ros_node: BaseROS2DeviceNode
def __init__(
self,
device_id: str = None,
config: Dict[str, Any] = None,
**kwargs
):
"""
初始化设备
Args:
device_id: 设备ID
config: 配置字典
**kwargs: 其他参数
"""
# 兼容不同调用方式
if device_id is None and 'id' in kwargs:
device_id = kwargs.pop('id')
if config is None and 'config' in kwargs:
config = kwargs.pop('config')
self.device_id = device_id or "unknown_device"
self.config = config or {}
self.data = {}
# 从config读取参数
self.port = self.config.get('port') or kwargs.get('port', 'COM1')
self._max_value = self.config.get('max_value', 1000.0)
# 初始化日志
self.logger = logging.getLogger(f"MyDevice.{self.device_id}")
self.logger.info(f"设备 {self.device_id} 已创建")
def post_init(self, ros_node: BaseROS2DeviceNode):
"""
ROS节点注入 - 在ROS节点创建后调用
Args:
ros_node: ROS2设备节点实例
"""
self._ros_node = ros_node
async def initialize(self) -> bool:
"""
初始化设备 - 连接硬件、设置初始状态
Returns:
bool: 初始化是否成功
"""
self.logger.info(f"初始化设备 {self.device_id}")
try:
# 执行硬件初始化
# await self._connect_hardware()
# 设置初始状态
self.data.update({
"status": "待机",
"is_running": False,
"current_value": 0.0,
})
self.logger.info(f"设备 {self.device_id} 初始化完成")
return True
except Exception as e:
self.logger.error(f"初始化失败: {e}")
self.data["status"] = f"错误: {e}"
return False
async def cleanup(self) -> bool:
"""
清理设备 - 断开连接、释放资源
Returns:
bool: 清理是否成功
"""
self.logger.info(f"清理设备 {self.device_id}")
self.data.update({
"status": "离线",
"is_running": False,
})
return True
# ==================== 设备动作 ====================
async def execute_action(
self,
param1: float,
param2: str = "",
**kwargs
) -> bool:
"""
执行设备动作
Args:
param1: 参数1
param2: 参数2可选
Returns:
bool: 动作是否成功
"""
# 类型转换和验证
try:
param1 = float(param1)
except (ValueError, TypeError) as e:
self.logger.error(f"参数类型错误: {e}")
return False
# 参数验证
if param1 > self._max_value:
self.logger.error(f"参数超出范围: {param1} > {self._max_value}")
return False
self.logger.info(f"执行动作: param1={param1}, param2={param2}")
# 更新状态
self.data.update({
"status": "运行中",
"is_running": True,
})
# 执行动作(带进度反馈)
duration = 10.0 # 秒
start_time = time_module.time()
while True:
elapsed = time_module.time() - start_time
remaining = max(0, duration - elapsed)
progress = min(100, (elapsed / duration) * 100)
self.data.update({
"status": f"运行中: {progress:.0f}%",
"remaining_time": remaining,
})
if remaining <= 0:
break
await self._ros_node.sleep(1.0)
# 完成
self.data.update({
"status": "完成",
"is_running": False,
})
self.logger.info("动作执行完成")
return True
# ==================== 状态属性 ====================
@property
def status(self) -> str:
"""设备状态 - 自动发布为ROS Topic"""
return self.data.get("status", "未知")
@property
def is_running(self) -> bool:
"""是否正在运行"""
return self.data.get("is_running", False)
@property
def current_value(self) -> float:
"""当前值"""
return self.data.get("current_value", 0.0)
# ==================== 辅助方法 ====================
def get_device_info(self) -> Dict[str, Any]:
"""获取设备信息"""
return {
"device_id": self.device_id,
"status": self.status,
"is_running": self.is_running,
"current_value": self.current_value,
}
def __str__(self) -> str:
return f"MyDevice({self.device_id}: {self.status})"
```
## 关键规则
### 1. 参数处理
所有动作方法的参数都可能以字符串形式传入,必须进行类型转换:
```python
async def my_action(self, value: float, **kwargs) -> bool:
# 始终进行类型转换
try:
value = float(value)
except (ValueError, TypeError) as e:
self.logger.error(f"参数类型错误: {e}")
return False
```
### 2. vessel 参数处理
vessel 参数可能是字符串ID或字典
```python
def extract_vessel_id(vessel: Union[str, dict]) -> str:
if isinstance(vessel, dict):
return vessel.get("id", "")
return str(vessel) if vessel else ""
```
### 3. 状态更新
使用 `self.data` 字典存储状态,属性读取状态:
```python
# 更新状态
self.data["status"] = "运行中"
self.data["current_speed"] = 300.0
# 读取状态(通过属性)
@property
def status(self) -> str:
return self.data.get("status", "待机")
```
### 4. 异步等待
使用 ROS 节点的 sleep 方法:
```python
# 正确
await self._ros_node.sleep(1.0)
# 避免(除非在纯 Python 测试环境)
await asyncio.sleep(1.0)
```
### 5. 进度反馈
长时间运行的操作需要提供进度反馈:
```python
while remaining > 0:
progress = (elapsed / total_time) * 100
self.data["status"] = f"运行中: {progress:.0f}%"
self.data["remaining_time"] = remaining
await self._ros_node.sleep(1.0)
```
## 虚拟设备
虚拟设备用于测试和演示,放在 `unilabos/devices/virtual/` 目录:
- 类名以 `Virtual` 开头
- 文件名以 `virtual_` 开头
- 模拟真实设备的行为和时序
- 使用表情符号增强日志可读性(可选)
## 工作站设备
工作站是组合多个设备的复杂设备:
```python
from unilabos.devices.workstation.workstation_base import WorkstationBase
class MyWorkstation(WorkstationBase):
"""组合工作站"""
async def execute_workflow(self, workflow: Dict[str, Any]) -> bool:
"""执行工作流"""
pass
```
## 设备注册
设备类开发完成后,需要在注册表中注册:
1. 创建/编辑 `unilabos/registry/devices/my_category.yaml`
2. 添加设备配置(参考 `virtual_device.yaml`
3. 运行 `--complete_registry` 自动生成 schema

View File

@@ -1,240 +0,0 @@
---
description: 协议编译器开发规范
globs: ["unilabos/compile/**/*.py"]
---
# 协议编译器开发规范
## 概述
协议编译器负责将高级实验操作(如 Stir、Add、Filter编译为设备可执行的动作序列。
## 文件命名
- 位置: `unilabos/compile/`
- 命名: `{operation}_protocol.py`
- 示例: `stir_protocol.py`, `add_protocol.py`, `filter_protocol.py`
## 协议函数模板
```python
from typing import List, Dict, Any, Union
import networkx as nx
import logging
from .utils.unit_parser import parse_time_input
from .utils.vessel_parser import extract_vessel_id
logger = logging.getLogger(__name__)
def generate_{operation}_protocol(
G: nx.DiGraph,
vessel: Union[str, dict],
param1: Union[str, float] = "0",
param2: float = 0.0,
**kwargs
) -> List[Dict[str, Any]]:
"""
生成{操作}协议序列
Args:
G: 物理拓扑图 (NetworkX DiGraph)
vessel: 容器ID或Resource字典
param1: 参数1支持字符串单位如 "5 min"
param2: 参数2
**kwargs: 其他参数
Returns:
List[Dict]: 动作序列
Raises:
ValueError: 参数无效时
"""
# 1. 提取 vessel_id
vessel_id = extract_vessel_id(vessel)
# 2. 验证参数
if not vessel_id:
raise ValueError("vessel 参数不能为空")
if vessel_id not in G.nodes():
raise ValueError(f"容器 '{vessel_id}' 不存在于系统中")
# 3. 解析参数(支持单位)
parsed_param1 = parse_time_input(param1) # "5 min" -> 300.0
# 4. 查找设备
device_id = find_connected_device(G, vessel_id, device_type="my_device")
# 5. 生成动作序列
action_sequence = []
action = {
"device_id": device_id,
"action_name": "my_action",
"action_kwargs": {
"vessel": {"id": vessel_id}, # 始终使用字典格式
"param1": float(parsed_param1),
"param2": float(param2),
}
}
action_sequence.append(action)
logger.info(f"生成协议: {len(action_sequence)} 个动作")
return action_sequence
def find_connected_device(
G: nx.DiGraph,
vessel_id: str,
device_type: str = ""
) -> str:
"""
查找与容器相连的设备
Args:
G: 拓扑图
vessel_id: 容器ID
device_type: 设备类型关键字
Returns:
str: 设备ID
"""
# 查找所有匹配类型的设备
device_nodes = []
for node in G.nodes():
node_class = G.nodes[node].get('class', '') or ''
if device_type.lower() in node_class.lower():
device_nodes.append(node)
# 检查连接
if vessel_id and device_nodes:
for device in device_nodes:
if G.has_edge(device, vessel_id) or G.has_edge(vessel_id, device):
return device
# 返回第一个可用设备
if device_nodes:
return device_nodes[0]
# 默认设备
return f"{device_type}_1"
```
## 关键规则
### 1. vessel 参数处理
vessel 参数可能是字符串或字典,需要统一处理:
```python
def extract_vessel_id(vessel: Union[str, dict]) -> str:
"""提取vessel_id"""
if isinstance(vessel, dict):
# 可能是 {"id": "xxx"} 或完整 Resource 对象
return vessel.get("id", list(vessel.values())[0].get("id", ""))
return str(vessel) if vessel else ""
```
### 2. action_kwargs 中的 vessel
始终使用 `{"id": vessel_id}` 格式传递 vessel
```python
# 正确
"action_kwargs": {
"vessel": {"id": vessel_id}, # 字符串ID包装为字典
}
# 避免
"action_kwargs": {
"vessel": vessel_resource, # 不要传递完整 Resource 对象
}
```
### 3. 单位解析
使用 `parse_time_input` 解析时间参数:
```python
from .utils.unit_parser import parse_time_input
# 支持格式: "5 min", "1 h", "300", "1.5 hours"
time_seconds = parse_time_input("5 min") # -> 300.0
time_seconds = parse_time_input(120) # -> 120.0
time_seconds = parse_time_input("1 h") # -> 3600.0
```
### 4. 参数验证
所有参数必须进行验证和类型转换:
```python
# 验证范围
if speed < 10.0 or speed > 1500.0:
logger.warning(f"速度 {speed} 超出范围,修正为 300")
speed = 300.0
# 类型转换
param = float(param) if not isinstance(param, (int, float)) else param
```
### 5. 日志记录
使用项目日志记录器:
```python
logger = logging.getLogger(__name__)
def generate_protocol(...):
logger.info(f"开始生成协议...")
logger.debug(f"参数: vessel={vessel_id}, time={time}")
logger.warning(f"参数修正: {old_value} -> {new_value}")
```
## 便捷函数
为常用操作提供便捷函数:
```python
def stir_briefly(G: nx.DiGraph, vessel: Union[str, dict],
speed: float = 300.0) -> List[Dict[str, Any]]:
"""短时间搅拌30秒"""
return generate_stir_protocol(G, vessel, time="30", stir_speed=speed)
def stir_vigorously(G: nx.DiGraph, vessel: Union[str, dict],
time: str = "5 min") -> List[Dict[str, Any]]:
"""剧烈搅拌"""
return generate_stir_protocol(G, vessel, time=time, stir_speed=800.0)
```
## 测试函数
每个协议文件应包含测试函数:
```python
def test_{operation}_protocol():
"""测试协议生成"""
# 测试参数处理
vessel_dict = {"id": "flask_1", "name": "反应瓶1"}
vessel_id = extract_vessel_id(vessel_dict)
assert vessel_id == "flask_1"
# 测试单位解析
time_s = parse_time_input("5 min")
assert time_s == 300.0
if __name__ == "__main__":
test_{operation}_protocol()
```
## 现有协议参考
- `stir_protocol.py` - 搅拌操作
- `add_protocol.py` - 添加物料
- `filter_protocol.py` - 过滤操作
- `heatchill_protocol.py` - 加热/冷却
- `separate_protocol.py` - 分离操作
- `evaporate_protocol.py` - 蒸发操作

View File

@@ -1,319 +0,0 @@
---
description: 注册表配置规范 (YAML)
globs: ["unilabos/registry/**/*.yaml"]
---
# 注册表配置规范
## 概述
注册表使用 YAML 格式定义设备和资源类型,是 Uni-Lab-OS 的核心配置系统。
## 目录结构
```
unilabos/registry/
├── devices/ # 设备类型注册
│ ├── virtual_device.yaml
│ ├── liquid_handler.yaml
│ └── ...
├── device_comms/ # 通信设备配置
│ ├── communication_devices.yaml
│ └── modbus_ioboard.yaml
└── resources/ # 资源类型注册
├── bioyond/
├── organic/
├── opentrons/
└── ...
```
## 设备注册表格式
### 基本结构
```yaml
device_type_id:
# 基本信息
description: "设备描述"
version: "1.0.0"
category:
- category_name
icon: "icon_device.webp"
# 类配置
class:
module: "unilabos.devices.my_module:MyClass"
type: python
# 状态类型(属性 -> ROS消息类型
status_types:
status: String
temperature: Float64
is_running: Bool
# 动作映射
action_value_mappings:
action_name:
type: UniLabJsonCommand # 或 UniLabJsonCommandAsync
goal: {}
feedback: {}
result: {}
schema: {...}
handles: {}
```
### action_value_mappings 详细格式
```yaml
action_value_mappings:
# 同步动作
my_sync_action:
type: UniLabJsonCommand
goal:
param1: param1
param2: param2
feedback: {}
result:
success: success
message: message
goal_default:
param1: 0.0
param2: ""
handles: {}
placeholder_keys:
device_param: unilabos_devices # 设备选择器
resource_param: unilabos_resources # 资源选择器
schema:
title: "动作名称参数"
description: "动作描述"
type: object
properties:
goal:
type: object
properties:
param1:
type: number
param2:
type: string
required:
- param1
feedback: {}
result:
type: object
properties:
success:
type: boolean
message:
type: string
required:
- goal
# 异步动作
my_async_action:
type: UniLabJsonCommandAsync
goal: {}
feedback:
progress: progress
current_status: status
result:
success: success
schema: {...}
```
### 自动生成的动作
以 `auto-` 开头的动作由系统自动生成:
```yaml
action_value_mappings:
auto-initialize:
type: UniLabJsonCommandAsync
goal: {}
feedback: {}
result: {}
schema: {...}
auto-cleanup:
type: UniLabJsonCommandAsync
goal: {}
feedback: {}
result: {}
schema: {...}
```
### handles 配置
用于工作流编辑器中的数据流连接:
```yaml
handles:
input:
- handler_key: "input_resource"
data_type: "resource"
label: "输入资源"
data_source: "handle"
data_key: "resources"
output:
- handler_key: "output_labware"
data_type: "resource"
label: "输出器皿"
data_source: "executor"
data_key: "created_resource.@flatten"
```
## 资源注册表格式
```yaml
resource_type_id:
description: "资源描述"
version: "1.0.0"
category:
- category_name
icon: ""
handles: []
init_param_schema: {}
class:
module: "unilabos.resources.my_module:MyResource"
type: pylabrobot # 或 python
```
### PyLabRobot 资源示例
```yaml
BIOYOND_Electrolyte_6VialCarrier:
category:
- bottle_carriers
- bioyond
class:
module: "unilabos.resources.bioyond.bottle_carriers:BIOYOND_Electrolyte_6VialCarrier"
type: pylabrobot
version: "1.0.0"
```
## 状态类型映射
Python 类型到 ROS 消息类型的映射:
| Python 类型 | ROS 消息类型 |
|------------|-------------|
| `str` | `String` |
| `bool` | `Bool` |
| `int` | `Int64` |
| `float` | `Float64` |
| `list` | `String` (序列化) |
| `dict` | `String` (序列化) |
## 自动完善注册表
使用 `--complete_registry` 参数自动生成 schema
```bash
python -m unilabos.app.main --complete_registry
```
这会:
1. 扫描设备类的方法签名
2. 自动生成 `auto-` 前缀的动作
3. 生成 JSON Schema
4. 更新 YAML 文件
## 验证规则
1. **device_type_id** 必须唯一
2. **module** 路径必须正确可导入
3. **status_types** 的类型必须是有效的 ROS 消息类型
4. **schema** 必须是有效的 JSON Schema
## 示例:完整设备配置
```yaml
virtual_stirrer:
category:
- virtual_device
description: "虚拟搅拌器设备"
version: "1.0.0"
icon: "icon_stirrer.webp"
handles: []
init_param_schema: {}
class:
module: "unilabos.devices.virtual.virtual_stirrer:VirtualStirrer"
type: python
status_types:
status: String
operation_mode: String
current_speed: Float64
is_stirring: Bool
remaining_time: Float64
action_value_mappings:
auto-initialize:
type: UniLabJsonCommandAsync
goal: {}
feedback: {}
result: {}
schema:
title: "initialize参数"
type: object
properties:
goal:
type: object
properties: {}
feedback: {}
result: {}
required:
- goal
stir:
type: UniLabJsonCommandAsync
goal:
stir_time: stir_time
stir_speed: stir_speed
settling_time: settling_time
feedback:
current_speed: current_speed
remaining_time: remaining_time
result:
success: success
goal_default:
stir_time: 60.0
stir_speed: 300.0
settling_time: 30.0
handles: {}
schema:
title: "stir参数"
description: "搅拌操作"
type: object
properties:
goal:
type: object
properties:
stir_time:
type: number
description: "搅拌时间(秒)"
stir_speed:
type: number
description: "搅拌速度RPM"
settling_time:
type: number
description: "沉降时间(秒)"
required:
- stir_time
- stir_speed
feedback:
type: object
properties:
current_speed:
type: number
remaining_time:
type: number
result:
type: object
properties:
success:
type: boolean
required:
- goal
```

View File

@@ -1,233 +0,0 @@
---
description: ROS 2 集成开发规范
globs: ["unilabos/ros/**/*.py", "**/*_node.py"]
---
# ROS 2 集成开发规范
## 概述
Uni-Lab-OS 使用 ROS 2 作为设备通信中间件,基于 rclpy 实现。
## 核心组件
### BaseROS2DeviceNode
设备节点基类,提供:
- ROS Topic 自动发布(状态属性)
- Action Server 自动创建(设备动作)
- 资源管理服务
- 异步任务调度
```python
from unilabos.ros.nodes.base_device_node import BaseROS2DeviceNode
```
### 消息转换器
```python
from unilabos.ros.msgs.message_converter import (
convert_to_ros_msg,
convert_from_ros_msg_with_mapping,
msg_converter_manager,
ros_action_to_json_schema,
ros_message_to_json_schema,
)
```
## 设备与 ROS 集成
### post_init 方法
设备类必须实现 `post_init` 方法接收 ROS 节点:
```python
class MyDevice:
_ros_node: BaseROS2DeviceNode
def post_init(self, ros_node: BaseROS2DeviceNode):
"""ROS节点注入"""
self._ros_node = ros_node
```
### 状态属性发布
设备的 `@property` 属性会自动发布为 ROS Topic
```python
class MyDevice:
@property
def temperature(self) -> float:
return self._temperature
# 自动发布到 /{namespace}/temperature Topic
```
### Topic 配置装饰器
```python
from unilabos.utils.decorator import topic_config
class MyDevice:
@property
@topic_config(period=1.0, print_publish=False, qos=10)
def fast_data(self) -> float:
"""高频数据 - 每秒发布一次"""
return self._fast_data
@property
@topic_config(period=5.0)
def slow_data(self) -> str:
"""低频数据 - 每5秒发布一次"""
return self._slow_data
```
### 订阅装饰器
```python
from unilabos.utils.decorator import subscribe
class MyDevice:
@subscribe(topic="/external/sensor_data", qos=10)
def on_sensor_data(self, msg):
"""订阅外部Topic"""
self._sensor_value = msg.data
```
## 异步操作
### 使用 ROS 节点睡眠
```python
# 推荐使用ROS节点的睡眠方法
await self._ros_node.sleep(1.0)
# 不推荐直接使用asyncio可能导致回调阻塞
await asyncio.sleep(1.0)
```
### 获取事件循环
```python
from unilabos.ros.x.rclpyx import get_event_loop
loop = get_event_loop()
```
## 消息类型
### unilabos_msgs 包
```python
from unilabos_msgs.msg import Resource
from unilabos_msgs.srv import (
ResourceAdd,
ResourceDelete,
ResourceUpdate,
ResourceList,
SerialCommand,
)
from unilabos_msgs.action import SendCmd
```
### Resource 消息结构
```python
Resource:
id: str
name: str
category: str
type: str
parent: str
children: List[str]
config: str # JSON字符串
data: str # JSON字符串
sample_id: str
pose: Pose
```
## 日志适配器
```python
from unilabos.utils.log import info, debug, warning, error, trace
class MyDevice:
def __init__(self):
# 创建设备专属日志器
self.logger = logging.getLogger(f"MyDevice.{self.device_id}")
```
ROSLoggerAdapter 同时向自定义日志和 ROS 日志发送消息。
## Action Server
设备动作自动创建为 ROS Action Server
```yaml
# 在注册表中配置
action_value_mappings:
my_action:
type: UniLabJsonCommandAsync # 异步Action
goal: {...}
feedback: {...}
result: {...}
```
### Action 类型
- **UniLabJsonCommand**: 同步动作
- **UniLabJsonCommandAsync**: 异步动作支持feedback
## 服务客户端
```python
from rclpy.client import Client
# 调用其他节点的服务
response = await self._ros_node.call_service(
service_name="/other_node/service",
request=MyServiceRequest(...)
)
```
## 命名空间
设备节点使用命名空间隔离:
```
/{device_id}/ # 设备命名空间
/{device_id}/status # 状态Topic
/{device_id}/temperature # 温度Topic
/{device_id}/my_action # 动作Server
```
## 调试
### 查看 Topic
```bash
ros2 topic list
ros2 topic echo /{device_id}/status
```
### 查看 Action
```bash
ros2 action list
ros2 action info /{device_id}/my_action
```
### 查看 Service
```bash
ros2 service list
ros2 service call /{device_id}/resource_list unilabos_msgs/srv/ResourceList
```
## 最佳实践
1. **状态属性命名**: 使用蛇形命名法snake_case
2. **Topic 频率**: 根据数据变化频率调整,避免过高频率
3. **Action 反馈**: 长时间操作提供进度反馈
4. **错误处理**: 使用 try-except 捕获并记录错误
5. **资源清理**: 在 cleanup 方法中正确清理资源

View File

@@ -1,357 +0,0 @@
---
description: 测试开发规范
globs: ["tests/**/*.py", "**/test_*.py"]
---
# 测试开发规范
## 目录结构
```
tests/
├── __init__.py
├── devices/ # 设备测试
│ └── liquid_handling/
│ └── test_transfer_liquid.py
├── resources/ # 资源测试
│ ├── test_bottle_carrier.py
│ └── test_resourcetreeset.py
├── ros/ # ROS消息测试
│ └── msgs/
│ ├── test_basic.py
│ ├── test_conversion.py
│ └── test_mapping.py
└── workflow/ # 工作流测试
└── merge_workflow.py
```
## 测试框架
使用 pytest 作为测试框架:
```bash
# 运行所有测试
pytest tests/
# 运行特定测试文件
pytest tests/resources/test_bottle_carrier.py
# 运行特定测试函数
pytest tests/resources/test_bottle_carrier.py::test_bottle_carrier
# 显示详细输出
pytest -v tests/
# 显示打印输出
pytest -s tests/
```
## 测试文件模板
```python
import pytest
from typing import List, Dict, Any
# 导入被测试的模块
from unilabos.resources.bioyond.bottle_carriers import (
BIOYOND_Electrolyte_6VialCarrier,
)
from unilabos.resources.bioyond.bottles import (
BIOYOND_PolymerStation_Solid_Vial,
)
class TestBottleCarrier:
"""BottleCarrier 测试类"""
def setup_method(self):
"""每个测试方法前执行"""
self.carrier = BIOYOND_Electrolyte_6VialCarrier("test_carrier")
def teardown_method(self):
"""每个测试方法后执行"""
pass
def test_carrier_creation(self):
"""测试载架创建"""
assert self.carrier.name == "test_carrier"
assert len(self.carrier.sites) == 6
def test_bottle_placement(self):
"""测试瓶子放置"""
bottle = BIOYOND_PolymerStation_Solid_Vial("test_bottle")
# 测试逻辑...
assert bottle.name == "test_bottle"
def test_standalone_function():
"""独立测试函数"""
result = some_function()
assert result is True
# 参数化测试
@pytest.mark.parametrize("input,expected", [
("5 min", 300.0),
("1 h", 3600.0),
("120", 120.0),
(60, 60.0),
])
def test_time_parsing(input, expected):
"""测试时间解析"""
from unilabos.compile.utils.unit_parser import parse_time_input
assert parse_time_input(input) == expected
# 异常测试
def test_invalid_input_raises_error():
"""测试无效输入抛出异常"""
with pytest.raises(ValueError) as exc_info:
invalid_function("bad_input")
assert "invalid" in str(exc_info.value).lower()
# 跳过条件测试
@pytest.mark.skipif(
not os.environ.get("ROS_DISTRO"),
reason="需要ROS环境"
)
def test_ros_feature():
"""需要ROS环境的测试"""
pass
```
## 设备测试
### 虚拟设备测试
```python
import pytest
import asyncio
from unittest.mock import MagicMock, AsyncMock
from unilabos.devices.virtual.virtual_stirrer import VirtualStirrer
class TestVirtualStirrer:
"""VirtualStirrer 测试"""
@pytest.fixture
def stirrer(self):
"""创建测试用搅拌器"""
device = VirtualStirrer(
device_id="test_stirrer",
config={"max_speed": 1500.0, "min_speed": 50.0}
)
# Mock ROS节点
mock_node = MagicMock()
mock_node.sleep = AsyncMock(return_value=None)
device.post_init(mock_node)
return device
@pytest.mark.asyncio
async def test_initialize(self, stirrer):
"""测试初始化"""
result = await stirrer.initialize()
assert result is True
assert stirrer.status == "待机中"
@pytest.mark.asyncio
async def test_stir_action(self, stirrer):
"""测试搅拌动作"""
await stirrer.initialize()
result = await stirrer.stir(
stir_time=5.0,
stir_speed=300.0,
settling_time=2.0
)
assert result is True
assert stirrer.operation_mode == "Completed"
@pytest.mark.asyncio
async def test_stir_invalid_speed(self, stirrer):
"""测试无效速度"""
await stirrer.initialize()
# 速度超出范围
result = await stirrer.stir(
stir_time=5.0,
stir_speed=2000.0, # 超过max_speed
settling_time=0.0
)
assert result is False
assert "错误" in stirrer.status
```
### 异步测试配置
```python
# conftest.py
import pytest
import asyncio
@pytest.fixture(scope="session")
def event_loop():
"""创建事件循环"""
loop = asyncio.get_event_loop_policy().new_event_loop()
yield loop
loop.close()
```
## 资源测试
```python
import pytest
from unilabos.resources.resource_tracker import (
ResourceTreeSet,
ResourceTreeInstance,
)
def test_resource_tree_creation():
"""测试资源树创建"""
tree_set = ResourceTreeSet()
# 添加资源
resource = {"id": "res_1", "name": "Resource 1"}
tree_set.add_resource(resource)
# 验证
assert len(tree_set.all_nodes) == 1
assert tree_set.get_resource("res_1") is not None
def test_resource_tree_merge():
"""测试资源树合并"""
local_set = ResourceTreeSet()
remote_set = ResourceTreeSet()
# 设置数据...
local_set.merge_remote_resources(remote_set)
# 验证合并结果...
```
## ROS 消息测试
```python
import pytest
from unilabos.ros.msgs.message_converter import (
convert_to_ros_msg,
convert_from_ros_msg_with_mapping,
msg_converter_manager,
)
def test_message_conversion():
"""测试消息转换"""
# Python -> ROS
python_data = {"id": "test", "value": 42}
ros_msg = convert_to_ros_msg(python_data, MyMsgType)
assert ros_msg.id == "test"
assert ros_msg.value == 42
# ROS -> Python
result = convert_from_ros_msg_with_mapping(ros_msg, mapping)
assert result["id"] == "test"
```
## 协议测试
```python
import pytest
import networkx as nx
from unilabos.compile.stir_protocol import (
generate_stir_protocol,
extract_vessel_id,
)
@pytest.fixture
def topology_graph():
"""创建测试拓扑图"""
G = nx.DiGraph()
G.add_node("flask_1", **{"class": "flask"})
G.add_node("stirrer_1", **{"class": "virtual_stirrer"})
G.add_edge("stirrer_1", "flask_1")
return G
def test_generate_stir_protocol(topology_graph):
"""测试搅拌协议生成"""
actions = generate_stir_protocol(
G=topology_graph,
vessel="flask_1",
time="5 min",
stir_speed=300.0
)
assert len(actions) == 1
assert actions[0]["device_id"] == "stirrer_1"
assert actions[0]["action_name"] == "stir"
def test_extract_vessel_id():
"""测试vessel_id提取"""
# 字典格式
assert extract_vessel_id({"id": "flask_1"}) == "flask_1"
# 字符串格式
assert extract_vessel_id("flask_2") == "flask_2"
# 空值
assert extract_vessel_id("") == ""
```
## 测试标记
```python
# 慢速测试
@pytest.mark.slow
def test_long_running():
pass
# 需要网络
@pytest.mark.network
def test_network_call():
pass
# 需要ROS
@pytest.mark.ros
def test_ros_feature():
pass
```
运行特定标记的测试:
```bash
pytest -m "not slow" # 排除慢速测试
pytest -m ros # 仅ROS测试
```
## 覆盖率
```bash
# 生成覆盖率报告
pytest --cov=unilabos tests/
# HTML报告
pytest --cov=unilabos --cov-report=html tests/
```
## 最佳实践
1. **测试命名**: `test_{功能}_{场景}_{预期结果}`
2. **独立性**: 每个测试独立运行,不依赖其他测试
3. **Mock外部依赖**: 使用 unittest.mock 模拟外部服务
4. **参数化**: 使用 `@pytest.mark.parametrize` 减少重复代码
5. **fixtures**: 使用 fixtures 共享测试设置
6. **断言清晰**: 每个断言只验证一件事

View File

@@ -1,353 +0,0 @@
---
description: Uni-Lab-OS 实验室自动化平台开发规范 - 核心规则
globs: ["**/*.py", "**/*.yaml", "**/*.json"]
---
# Uni-Lab-OS 项目开发规范
## 项目概述
Uni-Lab-OS 是一个实验室自动化操作系统,用于连接和控制各种实验设备,实现实验工作流的自动化和标准化。
## 技术栈
- **Python 3.11** - 核心开发语言
- **ROS 2** - 设备通信中间件 (rclpy)
- **Conda/Mamba** - 包管理 (robostack-staging, conda-forge)
- **FastAPI** - Web API 服务
- **WebSocket** - 实时通信
- **NetworkX** - 拓扑图管理
- **YAML** - 配置和注册表定义
- **PyLabRobot** - 实验室自动化库集成
- **pytest** - 测试框架
- **asyncio** - 异步编程
## 项目结构
```
unilabos/
├── app/ # 应用入口、Web服务、后端
├── compile/ # 协议编译器 (stir, add, filter 等)
├── config/ # 配置管理
├── devices/ # 设备驱动 (真实/虚拟)
├── device_comms/ # 设备通信协议
├── device_mesh/ # 3D网格和可视化
├── registry/ # 设备和资源类型注册表 (YAML)
├── resources/ # 资源定义
├── ros/ # ROS 2 集成
├── utils/ # 工具函数
└── workflow/ # 工作流管理
```
## 代码规范
### Python 风格
1. **类型注解**:所有函数必须使用类型注解
```python
def transfer_liquid(
source: str,
destination: str,
volume: float,
**kwargs
) -> List[Dict[str, Any]]:
```
2. **Docstring**:使用 Google 风格的文档字符串
```python
def initialize(self) -> bool:
"""
初始化设备
Returns:
bool: 初始化是否成功
"""
```
3. **导入顺序**
- 标准库
- 第三方库
- ROS 相关 (rclpy, unilabos_msgs)
- 项目内部模块
### 异步编程
1. 设备操作方法使用 `async def`
2. 使用 `await self._ros_node.sleep()` 而非 `asyncio.sleep()`
3. 长时间运行操作需提供进度反馈
```python
async def stir(self, stir_time: float, stir_speed: float, **kwargs) -> bool:
"""执行搅拌操作"""
start_time = time_module.time()
while True:
elapsed = time_module.time() - start_time
remaining = max(0, stir_time - elapsed)
self.data.update({
"remaining_time": remaining,
"status": f"搅拌中: {stir_speed} RPM"
})
if remaining <= 0:
break
await self._ros_node.sleep(1.0)
return True
```
### 日志规范
使用项目自定义日志系统:
```python
from unilabos.utils.log import logger, info, debug, warning, error, trace
# 在设备类中使用
self.logger = logging.getLogger(f"DeviceName.{self.device_id}")
self.logger.info("设备初始化完成")
```
## 设备驱动开发
### 设备类结构
```python
from unilabos.ros.nodes.base_device_node import BaseROS2DeviceNode
class MyDevice:
"""设备驱动类"""
_ros_node: BaseROS2DeviceNode
def __init__(self, device_id: str = None, config: Dict[str, Any] = None, **kwargs):
self.device_id = device_id or "unknown_device"
self.config = config or {}
self.data = {} # 设备状态数据
def post_init(self, ros_node: BaseROS2DeviceNode):
"""ROS节点注入"""
self._ros_node = ros_node
async def initialize(self) -> bool:
"""初始化设备"""
pass
async def cleanup(self) -> bool:
"""清理设备"""
pass
# 状态属性 - 自动发布为 ROS Topic
@property
def status(self) -> str:
return self.data.get("status", "待机")
```
### 状态属性装饰器
```python
from unilabos.utils.decorator import topic_config
class MyDevice:
@property
@topic_config(period=1.0, qos=10) # 每秒发布一次
def temperature(self) -> float:
return self._temperature
```
### 虚拟设备
虚拟设备放置在 `unilabos/devices/virtual/` 目录下,命名为 `virtual_*.py`
## 注册表配置
### 设备注册表 (YAML)
位置: `unilabos/registry/devices/*.yaml`
```yaml
my_device_type:
category:
- my_category
description: "设备描述"
version: "1.0.0"
class:
module: "unilabos.devices.my_device:MyDevice"
type: python
status_types:
status: String
temperature: Float64
action_value_mappings:
auto-initialize:
type: UniLabJsonCommandAsync
goal: {}
feedback: {}
result: {}
schema: {...}
```
### 资源注册表 (YAML)
位置: `unilabos/registry/resources/**/*.yaml`
```yaml
my_container:
category:
- container
class:
module: "unilabos.resources.my_resource:MyContainer"
type: pylabrobot
version: "1.0.0"
```
## 协议编译器
位置: `unilabos/compile/*_protocol.py`
### 协议生成函数模板
```python
from typing import List, Dict, Any, Union
import networkx as nx
def generate_my_protocol(
G: nx.DiGraph,
vessel: Union[str, dict],
param1: float = 0.0,
**kwargs
) -> List[Dict[str, Any]]:
"""
生成操作协议序列
Args:
G: 物理拓扑图
vessel: 容器ID或字典
param1: 参数1
Returns:
List[Dict]: 动作序列
"""
# 提取vessel_id
vessel_id = vessel if isinstance(vessel, str) else vessel.get("id", "")
# 查找设备
device_id = find_connected_device(G, vessel_id)
# 生成动作
action_sequence = [{
"device_id": device_id,
"action_name": "my_action",
"action_kwargs": {
"vessel": {"id": vessel_id},
"param1": float(param1)
}
}]
return action_sequence
```
## 测试规范
### 测试文件位置
- 单元测试: `tests/` 目录
- 设备测试: `tests/devices/`
- 资源测试: `tests/resources/`
- ROS消息测试: `tests/ros/msgs/`
### 测试命名
```python
# tests/devices/my_device/test_my_device.py
import pytest
def test_device_initialization():
"""测试设备初始化"""
pass
def test_device_action():
"""测试设备动作"""
pass
```
## 错误处理
```python
from unilabos.utils.exception import UniLabException
try:
result = await device.execute_action()
except ValueError as e:
self.logger.error(f"参数错误: {e}")
self.data["status"] = "错误: 参数无效"
return False
except Exception as e:
self.logger.error(f"执行失败: {e}")
raise
```
## 配置管理
```python
from unilabos.config.config import BasicConfig, HTTPConfig
# 读取配置
port = BasicConfig.port
is_host = BasicConfig.is_host_mode
# 配置文件: local_config.py
```
## 常用工具
### 单例模式
```python
from unilabos.utils.decorator import singleton
@singleton
class MyManager:
pass
```
### 类型检查
```python
from unilabos.utils.type_check import NoAliasDumper
yaml.dump(data, f, Dumper=NoAliasDumper)
```
### 导入管理
```python
from unilabos.utils.import_manager import get_class
device_class = get_class("unilabos.devices.my_device:MyDevice")
```
## Git 提交规范
提交信息格式:
```
<type>(<scope>): <subject>
<body>
```
类型:
- `feat`: 新功能
- `fix`: 修复bug
- `docs`: 文档更新
- `refactor`: 重构
- `test`: 测试相关
- `chore`: 构建/工具相关
示例:
```
feat(devices): 添加虚拟搅拌器设备
- 实现VirtualStirrer类
- 支持定时搅拌和持续搅拌模式
- 添加速度验证逻辑
```

View File

@@ -1,188 +0,0 @@
# ============================================================
# Uni-Lab-OS Cursor Ignore 配置,控制 Cursor AI 的文件索引范围
# ============================================================
# ==================== 敏感配置文件 ====================
# 本地配置(可能包含密钥)
**/local_config.py
test_config.py
local_test*.py
# 环境变量和密钥
.env
.env.*
**/.certs/
*.pem
*.key
credentials.json
secrets.yaml
# ==================== 二进制和 3D 模型文件 ====================
# 3D 模型文件(无需索引)
*.stl
*.dae
*.glb
*.gltf
*.obj
*.fbx
*.blend
# URDF/Xacro 机器人描述文件大型XML
*.xacro
# 图片文件
*.png
*.jpg
*.jpeg
*.gif
*.webp
*.ico
*.svg
*.bmp
# 压缩包
*.zip
*.tar
*.tar.gz
*.tgz
*.bz2
*.rar
*.7z
# ==================== Python 生成文件 ====================
__pycache__/
*.py[cod]
*$py.class
*.so
*.pyd
*.egg
*.egg-info/
.eggs/
dist/
build/
*.manifest
*.spec
# ==================== IDE 和编辑器 ====================
.idea/
.vscode/
*.swp
*.swo
*~
.#*
# ==================== 测试和覆盖率 ====================
.pytest_cache/
.coverage
.coverage.*
htmlcov/
.tox/
.nox/
coverage.xml
*.cover
# ==================== 虚拟环境 ====================
.venv/
venv/
env/
ENV/
# ==================== ROS 2 生成文件 ====================
# ROS 构建目录
build/
install/
log/
logs/
devel/
# ROS 消息生成
msg_gen/
srv_gen/
msg/*Action.msg
msg/*ActionFeedback.msg
msg/*ActionGoal.msg
msg/*ActionResult.msg
msg/*Feedback.msg
msg/*Goal.msg
msg/*Result.msg
msg/_*.py
srv/_*.py
build_isolated/
devel_isolated/
# ROS 动态配置
*.cfgc
/cfg/cpp/
/cfg/*.py
# ==================== 项目特定目录 ====================
# 工作数据目录
unilabos_data/
# 临时和输出目录
temp/
output/
cursor_docs/
configs/
# 文档构建
docs/_build/
/site
# ==================== 大型数据文件 ====================
# 点云数据
*.pcd
# GraphML 图形文件
*.graphml
# 日志文件
*.log
# 数据库
*.sqlite3
*.db
# Jupyter 检查点
.ipynb_checkpoints/
# ==================== 设备网格资源 ====================
# 3D 网格文件目录(包含大量 STL/DAE 文件)
unilabos/device_mesh/devices/**/*.stl
unilabos/device_mesh/devices/**/*.dae
unilabos/device_mesh/resources/**/*.stl
unilabos/device_mesh/resources/**/*.glb
unilabos/device_mesh/resources/**/*.xacro
# RViz 配置
*.rviz
# ==================== 系统文件 ====================
.DS_Store
Thumbs.db
desktop.ini
# ==================== 锁文件 ====================
poetry.lock
Pipfile.lock
pdm.lock
package-lock.json
yarn.lock
# ==================== 类型检查缓存 ====================
.mypy_cache/
.dmypy.json
.pytype/
.pyre/
pyrightconfig.json
# ==================== 其他 ====================
# Catkin
CATKIN_IGNORE
# Eclipse/Qt
.project
.cproject
CMakeLists.txt.user
*.user
qtcreator-*

View File

@@ -1,15 +1,11 @@
from __future__ import annotations
import asyncio
import time
import traceback
from collections import Counter
from typing import List, Sequence, Optional, Literal, Union, Iterator, Dict, Any, Callable, Set, cast
from typing_extensions import TypedDict
from pylabrobot.liquid_handling import LiquidHandler, LiquidHandlerBackend, LiquidHandlerChatterboxBackend, Strictness
from unilabos.devices.liquid_handling.rviz_backend import UniLiquidHandlerRvizBackend
from unilabos.devices.liquid_handling.laiyu.backend.laiyu_v_backend import UniLiquidHandlerLaiyuBackend
from pylabrobot.liquid_handling.liquid_handler import TipPresenceProbingMethod
from pylabrobot.liquid_handling.standard import GripDirection
from pylabrobot.resources import (
@@ -27,26 +23,33 @@ from pylabrobot.resources import (
Trash,
Tip,
)
from typing_extensions import TypedDict
from unilabos.devices.liquid_handling.rviz_backend import UniLiquidHandlerRvizBackend
from unilabos.registry.placeholder_type import ResourceSlot
from unilabos.ros.nodes.base_device_node import BaseROS2DeviceNode
from unilabos.resources.resource_tracker import ResourceTreeSet
from unilabos.resources.resource_tracker import ResourceTreeSet, ResourceDict
from unilabos.ros.nodes.base_device_node import BaseROS2DeviceNode, ROS2DeviceNode
class SimpleReturn(TypedDict):
samples: list
volumes: list
samples: List[List[ResourceDict]]
volumes: List[float]
class SetLiquidReturn(TypedDict):
wells: list
volumes: list
wells: List[List[ResourceDict]]
volumes: List[float]
class SetLiquidFromPlateReturn(TypedDict):
plate: list
wells: list
volumes: list
plate: List[List[ResourceDict]]
wells: List[List[ResourceDict]]
volumes: List[float]
class TransferLiquidReturn(TypedDict):
sources: List[List[ResourceDict]]
targets: List[List[ResourceDict]]
class LiquidHandlerMiddleware(LiquidHandler):
@@ -682,14 +685,17 @@ class LiquidHandlerAbstract(LiquidHandlerMiddleware):
wells=ResourceTreeSet.from_plr_resources(wells, known_newly_created=False).dump(), volumes=res_volumes # type: ignore
)
@classmethod
def set_liquid_from_plate(
cls, plate: ResourceSlot, well_names: list[str], liquid_names: list[str], volumes: list[float]
self, plate: List[ResourceSlot], well_names: list[str], liquid_names: list[str], volumes: list[float]
) -> SetLiquidFromPlateReturn:
"""Set the liquid in wells of a plate by well names (e.g., A1, A2, B3).
如果 liquid_names 和 volumes 为空,但 plate 和 well_names 不为空,直接返回 plate 和 wells。
"""
if isinstance(plate, list): # 未来移除
plate = plate[0]
assert issubclass(plate.__class__, Plate), "plate must be a Plate"
plate: Plate = cast(Plate, plate)
# 根据 well_names 获取对应的 Well 对象
wells = [plate.get_well(name) for name in well_names]
res_volumes = []
@@ -706,6 +712,14 @@ class LiquidHandlerAbstract(LiquidHandlerMiddleware):
well.set_liquids([(liquid_name, volume)]) # type: ignore
res_volumes.append(volume)
task = ROS2DeviceNode.run_async_func(self._ros_node.update_resource, True, **{"resources": wells})
submit_time = time.time()
while not task.done():
if time.time() - submit_time > 10:
self._ros_node.lab_logger().info(f"set_liquid_from_plate {plate} 超时")
break
time.sleep(0.01)
return SetLiquidFromPlateReturn(
plate=ResourceTreeSet.from_plr_resources([plate], known_newly_created=False).dump(), # type: ignore
wells=ResourceTreeSet.from_plr_resources(wells, known_newly_created=False).dump(), # type: ignore
@@ -1111,7 +1125,7 @@ class LiquidHandlerAbstract(LiquidHandlerMiddleware):
mix_liquid_height: Optional[float] = None,
delays: Optional[List[int]] = None,
none_keys: List[str] = [],
):
) -> TransferLiquidReturn:
"""Transfer liquid with automatic mode detection.
Supports three transfer modes:
@@ -1251,6 +1265,11 @@ class LiquidHandlerAbstract(LiquidHandlerMiddleware):
"Supported modes: 1->N, N->1, or N->N."
)
return TransferLiquidReturn(
sources=ResourceTreeSet.from_plr_resources(list(sources), known_newly_created=False).dump(), # type: ignore
targets=ResourceTreeSet.from_plr_resources(list(targets), known_newly_created=False).dump(), # type: ignore
)
async def _transfer_one_to_one(
self,
sources: Sequence[Container],

View File

@@ -52,6 +52,7 @@ from unilabos.devices.liquid_handling.liquid_handler_abstract import (
SimpleReturn,
SetLiquidReturn,
SetLiquidFromPlateReturn,
TransferLiquidReturn,
)
from unilabos.registry.placeholder_type import ResourceSlot
from unilabos.ros.nodes.base_device_node import BaseROS2DeviceNode
@@ -154,25 +155,29 @@ class PRCXI9300Plate(Plate):
**kwargs,
):
# 如果 ordered_items 不为 None直接使用
items = None
ordering_param = None
if ordered_items is not None:
items = ordered_items
elif ordering is not None:
# 检查 ordering 中的值是否是字符串(从 JSON 反序列化时的情况)
# 如果是字符串,说明这是位置名称,需要让 Plate 自己创建 Well 对象
# 我们只传递位置信息(键),不传递值,使用 ordering 参数
if ordering and isinstance(next(iter(ordering.values()), None), str):
# ordering 的值是字符串,只使用键(位置信息)创建新的 OrderedDict
# 传递 ordering 参数而不是 ordered_items让 Plate 自己创建 Well 对象
items = None
# 使用 ordering 参数,只包含位置信息(键)
ordering_param = collections.OrderedDict((k, None) for k in ordering.keys())
if ordering:
values = list(ordering.values())
value = values[0]
if isinstance(value, str):
# ordering 的值是字符串,只使用键(位置信息)创建新的 OrderedDict
# 传递 ordering 参数而不是 ordered_items让 Plate 自己创建 Well 对象
items = None
# 使用 ordering 参数,只包含位置信息(键)
ordering_param = collections.OrderedDict((k, None) for k in ordering.keys())
elif value is None:
ordering_param = ordering
else:
# ordering 的值已经是对象,可以直接使用
items = ordering
ordering_param = None
else:
items = None
ordering_param = None
# 根据情况传递不同的参数
if items is not None:
@@ -590,7 +595,7 @@ class PRCXI9300Handler(LiquidHandlerAbstract):
return super().set_liquid(wells, liquid_names, volumes)
def set_liquid_from_plate(
self, plate: ResourceSlot, well_names: list[str], liquid_names: list[str], volumes: list[float]
self, plate: List[ResourceSlot], well_names: list[str], liquid_names: list[str], volumes: list[float]
) -> SetLiquidFromPlateReturn:
return super().set_liquid_from_plate(plate, well_names, liquid_names, volumes)
@@ -713,7 +718,7 @@ class PRCXI9300Handler(LiquidHandlerAbstract):
mix_liquid_height: Optional[float] = None,
delays: Optional[List[int]] = None,
none_keys: List[str] = [],
):
) -> TransferLiquidReturn:
return await super().transfer_liquid(
sources,
targets,

View File

@@ -1,376 +0,0 @@
# -*- coding: utf-8 -*-
"""
ZDT X42 Closed-Loop Stepper Motor Driver
RS485 Serial Communication via USB-Serial Converter
- Baudrate: 115200
"""
import serial
import time
import threading
import struct
import logging
from typing import Optional, Any
try:
from unilabos.device_comms.universal_driver import UniversalDriver
except ImportError:
class UniversalDriver:
def __init__(self, *args, **kwargs):
self.logger = logging.getLogger(self.__class__.__name__)
def execute_command_from_outer(self, command: Any): pass
from serial.rs485 import RS485Settings
class ZDTX42Driver(UniversalDriver):
"""
ZDT X42 闭环步进电机驱动器
支持功能:
- 速度模式运行
- 位置模式运行 (相对/绝对)
- 位置读取和清零
- 使能/禁用控制
通信协议:
- 帧格式: [设备ID] [功能码] [数据...] [校验位=0x6B]
- 响应长度根据功能码决定
"""
def __init__(
self,
port: str,
baudrate: int = 115200,
device_id: int = 1,
timeout: float = 0.5,
debug: bool = False
):
"""
初始化 ZDT X42 电机驱动
Args:
port: 串口设备路径
baudrate: 波特率 (默认 115200)
device_id: 设备地址 (1-255)
timeout: 通信超时时间(秒)
debug: 是否启用调试输出
"""
super().__init__()
self.id = device_id
self.debug = debug
self.lock = threading.RLock()
self.status = "idle" # 对应注册表中的 status (str)
self.position = 0 # 对应注册表中的 position (int)
try:
self.ser = serial.Serial(
port=port,
baudrate=baudrate,
timeout=timeout,
bytesize=serial.EIGHTBITS,
parity=serial.PARITY_NONE,
stopbits=serial.STOPBITS_ONE
)
# 启用 RS485 模式
try:
self.ser.rs485_mode = RS485Settings(
rts_level_for_tx=True,
rts_level_for_rx=False
)
except Exception:
pass # RS485 模式是可选的
self.logger.info(
f"ZDT X42 Motor connected: {port} "
f"(Baud: {baudrate}, ID: {device_id})"
)
# 自动使能电机,确保初始状态可运动
self.enable(True)
# 启动背景轮询线程,确保 position 实时刷新
self._stop_event = threading.Event()
self._polling_thread = threading.Thread(
target=self._update_loop,
name=f"ZDTPolling_{port}",
daemon=True
)
self._polling_thread.start()
except Exception as e:
self.logger.error(f"Failed to open serial port {port}: {e}")
self.ser = None
def _update_loop(self):
"""背景循环读取电机位置"""
while not self._stop_event.is_set():
try:
self.get_position()
except Exception as e:
if self.debug:
self.logger.error(f"Polling error: {e}")
time.sleep(1.0) # 每1秒刷新一次位置数据
def _send(self, func_code: int, payload: list) -> bytes:
"""
发送指令并接收响应
Args:
func_code: 功能码
payload: 数据负载 (list of bytes)
Returns:
响应数据 (bytes)
"""
if not self.ser:
self.logger.error("Serial port not available")
return b""
with self.lock:
# 清空输入缓冲区
self.ser.reset_input_buffer()
# 构建消息: [ID] [功能码] [数据...] [校验位=0x6B]
message = bytes([self.id, func_code] + payload + [0x6B])
# 发送
self.ser.write(message)
# 根据功能码决定响应长度
# 查询类指令返回 10 字节,控制类指令返回 4 字节
read_len = 10 if func_code in [0x31, 0x32, 0x35, 0x24, 0x27] else 4
response = self.ser.read(read_len)
# 调试输出
if self.debug:
sent_hex = message.hex().upper()
recv_hex = response.hex().upper() if response else 'TIMEOUT'
print(f"[ID {self.id}] TX: {sent_hex} → RX: {recv_hex}")
return response
def enable(self, on: bool = True) -> bool:
"""
使能/禁用电机
Args:
on: True=使能(锁轴), False=禁用(松轴)
Returns:
是否成功
"""
state = 1 if on else 0
resp = self._send(0xF3, [0xAB, state, 0])
return len(resp) >= 4
def move_speed(
self,
speed_rpm: int,
direction: str = "CW",
acceleration: int = 10
) -> bool:
"""
速度模式运行
Args:
speed_rpm: 转速 (RPM)
direction: 方向 ("CW"=顺时针, "CCW"=逆时针)
acceleration: 加速度 (0-255)
Returns:
是否成功
"""
dir_val = 0 if direction.upper() in ["CW", "顺时针"] else 1
speed_bytes = struct.pack('>H', int(speed_rpm))
self.status = f"moving@{speed_rpm}rpm"
resp = self._send(0xF6, [dir_val, speed_bytes[0], speed_bytes[1], acceleration, 0])
return len(resp) >= 4
def move_position(
self,
pulses: int,
speed_rpm: int,
direction: str = "CW",
acceleration: int = 10,
absolute: bool = False
) -> bool:
"""
位置模式运行
Args:
pulses: 脉冲数
speed_rpm: 转速 (RPM)
direction: 方向 ("CW"=顺时针, "CCW"=逆时针)
acceleration: 加速度 (0-255)
absolute: True=绝对位置, False=相对位置
Returns:
是否成功
"""
dir_val = 0 if direction.upper() in ["CW", "顺时针"] else 1
speed_bytes = struct.pack('>H', int(speed_rpm))
self.status = f"moving_to_{pulses}"
pulse_bytes = struct.pack('>I', int(pulses))
abs_flag = 1 if absolute else 0
payload = [
dir_val,
speed_bytes[0], speed_bytes[1],
acceleration,
pulse_bytes[0], pulse_bytes[1], pulse_bytes[2], pulse_bytes[3],
abs_flag,
0
]
resp = self._send(0xFD, payload)
return len(resp) >= 4
def stop(self) -> bool:
"""
停止电机
Returns:
是否成功
"""
self.status = "idle"
resp = self._send(0xFE, [0x98, 0])
return len(resp) >= 4
def rotate_quarter(self, speed_rpm: int = 60, direction: str = "CW") -> bool:
"""
电机旋转 1/4 圈 (阻塞式)
假设电机细分为 3200 脉冲/圈1/4 圈 = 800 脉冲
"""
pulses = 800
success = self.move_position(pulses=pulses, speed_rpm=speed_rpm, direction=direction, absolute=False)
if success:
# 计算预估旋转时间并进行阻塞等待 (Time = revolutions / (RPM/60))
# 1/4 rev / (RPM/60) = 15.0 / RPM
estimated_time = 15.0 / max(1, speed_rpm)
time.sleep(estimated_time + 0.5) # 额外给 0.5 秒缓冲
self.status = "idle"
return success
def wait_time(self, duration_s: float) -> bool:
"""
等待指定时间 (秒)
"""
self.logger.info(f"Waiting for {duration_s} seconds...")
time.sleep(duration_s)
return True
def set_zero(self) -> bool:
"""
清零当前位置
Returns:
是否成功
"""
resp = self._send(0x0A, [])
return len(resp) >= 4
def get_position(self) -> Optional[int]:
"""
读取当前位置 (脉冲数)
Returns:
当前位置脉冲数,失败返回 None
"""
resp = self._send(0x32, [])
if len(resp) >= 8:
# 响应格式: [ID] [Func] [符号位] [数值4字节] [校验]
sign = resp[2] # 0=正, 1=负
value = struct.unpack('>I', resp[3:7])[0]
self.position = -value if sign == 1 else value
if self.debug:
print(f"[Position] Raw: {resp.hex().upper()}, Parsed: {self.position}")
return self.position
self.logger.warning("Failed to read position")
return None
def close(self):
"""关闭串口连接并停止线程"""
if hasattr(self, '_stop_event'):
self._stop_event.set()
if self.ser and self.ser.is_open:
self.ser.close()
self.logger.info("Serial port closed")
# ============================================================
# 测试和调试代码
# ============================================================
def test_motor():
"""基础功能测试"""
logging.basicConfig(level=logging.INFO)
print("="*60)
print("ZDT X42 电机驱动测试")
print("="*60)
driver = ZDTX42Driver(
port="/dev/tty.usbserial-3110",
baudrate=115200,
device_id=2,
debug=True
)
if not driver.ser:
print("❌ 串口打开失败")
return
try:
# 测试 1: 读取位置
print("\n[1] 读取当前位置")
pos = driver.get_position()
print(f"✓ 当前位置: {pos} 脉冲")
# 测试 2: 使能
print("\n[2] 使能电机")
driver.enable(True)
time.sleep(0.3)
print("✓ 电机已锁定")
# 测试 3: 相对位置运动
print("\n[3] 相对位置运动 (1000脉冲)")
driver.move_position(pulses=1000, speed_rpm=60, direction="CW")
time.sleep(2)
pos = driver.get_position()
print(f"✓ 新位置: {pos}")
# 测试 4: 速度运动
print("\n[4] 速度模式 (30RPM, 3秒)")
driver.move_speed(speed_rpm=30, direction="CW")
time.sleep(3)
driver.stop()
pos = driver.get_position()
print(f"✓ 停止后位置: {pos}")
# 测试 5: 禁用
print("\n[5] 禁用电机")
driver.enable(False)
print("✓ 电机已松开")
print("\n" + "="*60)
print("✅ 测试完成")
print("="*60)
except Exception as e:
print(f"\n❌ 测试失败: {e}")
import traceback
traceback.print_exc()
finally:
driver.close()
if __name__ == "__main__":
test_motor()

View File

@@ -623,119 +623,6 @@ class ChinweDevice(UniversalDriver):
time.sleep(duration)
return True
def separation_step(self, motor_id: int = 5, speed: int = 60, pulses: int = 700,
max_cycles: int = 0, timeout: int = 300) -> bool:
"""
分液步骤 - 液位传感器与电机联动
当液位传感器检测到"有液"时,电机顺时针旋转指定脉冲数
当液位传感器检测到"无液"时,电机逆时针旋转指定脉冲数
:param motor_id: 电机ID (必须在初始化时配置的motor_ids中)
:param speed: 电机转速 (RPM)
:param pulses: 每次旋转的脉冲数 (默认700约为1/4圈,假设3200脉冲/圈)
:param max_cycles: 最大执行循环次数 (0=无限制,默认0)
:param timeout: 整体超时时间 (秒)
:return: 成功返回True,超时或失败返回False
"""
motor_id = int(motor_id)
speed = int(speed)
pulses = int(pulses)
max_cycles = int(max_cycles)
timeout = int(timeout)
# 检查电机是否存在
if motor_id not in self.motors:
self.logger.error(f"Motor {motor_id} not found in configured motors: {list(self.motors.keys())}")
return False
# 检查传感器是否可用
if not self.sensor:
self.logger.error("Sensor not initialized")
return False
motor = self.motors[motor_id]
# 停止轮询线程,避免与 separation_step 同时读取传感器造成串口冲突
self.logger.info("Stopping polling thread for separation_step...")
self._stop_event.set()
if self._poll_thread and self._poll_thread.is_alive():
self._poll_thread.join(timeout=2.0)
# 使能电机
self.logger.info(f"Enabling motor {motor_id}...")
motor.enable(True)
time.sleep(0.2)
self.logger.info(f"Starting separation step: motor_id={motor_id}, speed={speed} RPM, "
f"pulses={pulses}, max_cycles={max_cycles}, timeout={timeout}s")
# 记录上一次的液位状态
last_level = None
cycle_count = 0
start_time = time.time()
error_count = 0
try:
while True:
# 检查超时
if time.time() - start_time > timeout:
self.logger.warning(f"Separation step timeout after {timeout} seconds")
return False
# 检查循环次数限制
if max_cycles > 0 and cycle_count >= max_cycles:
self.logger.info(f"Separation step completed: reached max_cycles={max_cycles}")
return True
# 读取传感器数据
data = self.sensor.read_level()
if data is None:
error_count += 1
if error_count > 5:
self.logger.warning("Sensor read failed multiple times, retrying...")
error_count = 0
time.sleep(0.5)
continue
error_count = 0
current_level = data['level']
rssi = data['rssi']
# 检测状态变化 (包括首次检测)
if current_level != last_level:
cycle_count += 1
if current_level:
# 有液 -> 电机顺时针旋转
self.logger.info(f"[Cycle {cycle_count}] Liquid detected (RSSI={rssi}), "
f"rotating motor {motor_id} clockwise {pulses} pulses")
motor.run_position(pulses=pulses, speed_rpm=speed, direction=0, absolute=False)
# 等待电机完成 (预估时间)
estimated_time = 15.0 / max(1, speed)
time.sleep(estimated_time + 0.5)
else:
# 无液 -> 电机逆时针旋转
self.logger.info(f"[Cycle {cycle_count}] No liquid detected (RSSI={rssi}), "
f"rotating motor {motor_id} counter-clockwise {pulses} pulses")
motor.run_position(pulses=pulses, speed_rpm=speed, direction=1, absolute=False)
# 等待电机完成 (预估时间)
estimated_time = 15.0 / max(1, speed)
time.sleep(estimated_time + 0.5)
# 更新状态
last_level = current_level
# 轮询间隔
time.sleep(0.1)
finally:
# 恢复轮询线程
self.logger.info("Restarting polling thread...")
self._start_polling()
def execute_command_from_outer(self, command_dict: Dict[str, Any]) -> bool:
"""支持标准 JSON 指令调用"""
return super().execute_command_from_outer(command_dict)

View File

@@ -1,379 +0,0 @@
# -*- coding: utf-8 -*-
"""
XKC RS485 液位传感器 (Modbus RTU)
说明:
1. 遵循 Modbus-RTU 协议。
2. 数据寄存器: 0x0001 (液位状态, 1=有液, 0=无液), 0x0002 (RSSI 信号强度)。
3. 地址寄存器: 0x0004 (可读写, 范围 1-254)。
4. 波特率寄存器: 0x0005 (可写, 代码表见 change_baudrate 方法)。
"""
import struct
import threading
import time
import logging
import serial
from typing import Optional, Dict, Any, List
from unilabos.device_comms.universal_driver import UniversalDriver
class TransportManager:
"""
统一通信管理类。
仅支持 串口 (Serial/有线) 连接。
"""
def __init__(self, port: str, baudrate: int = 9600, timeout: float = 3.0, logger=None):
self.port = port
self.baudrate = baudrate
self.timeout = timeout
self.logger = logger
self.lock = threading.RLock() # 线程锁,确保多设备共用一个连接时不冲突
self.serial = None
self._connect_serial()
def _connect_serial(self):
try:
self.serial = serial.Serial(
port=self.port,
baudrate=self.baudrate,
timeout=self.timeout
)
except Exception as e:
raise ConnectionError(f"Serial open failed: {e}")
def close(self):
"""关闭连接"""
if self.serial and self.serial.is_open:
self.serial.close()
def clear_buffer(self):
"""清空缓冲区 (Thread-safe)"""
with self.lock:
if self.serial:
self.serial.reset_input_buffer()
def write(self, data: bytes):
"""发送原始字节"""
with self.lock:
if self.serial:
self.serial.write(data)
def read(self, size: int) -> bytes:
"""读取指定长度字节"""
if self.serial:
return self.serial.read(size)
return b''
class XKCSensorDriver(UniversalDriver):
"""XKC RS485 液位传感器 (Modbus RTU)"""
def __init__(self, port: str, baudrate: int = 9600, device_id: int = 6,
threshold: int = 300, timeout: float = 3.0, debug: bool = False):
super().__init__()
self.port = port
self.baudrate = baudrate
self.device_id = device_id
self.threshold = threshold
self.timeout = timeout
self.debug = debug
self.level = False
self.rssi = 0
self.status = {"level": self.level, "rssi": self.rssi}
try:
self.transport = TransportManager(port, baudrate, timeout, logger=self.logger)
self.logger.info(f"XKCSensorDriver connected to {port} (ID: {device_id})")
except Exception as e:
self.logger.error(f"Failed to connect XKCSensorDriver: {e}")
self.transport = None
# 启动背景轮询线程,确保 status 实时刷新
self._stop_event = threading.Event()
self._polling_thread = threading.Thread(
target=self._update_loop,
name=f"XKCPolling_{port}",
daemon=True
)
if self.transport:
self._polling_thread.start()
def _update_loop(self):
"""背景循环读取传感器数据"""
while not self._stop_event.is_set():
try:
self.read_level()
except Exception as e:
if self.debug:
self.logger.error(f"Polling error: {e}")
time.sleep(2.0) # 每2秒刷新一次数据
def _crc(self, data: bytes) -> bytes:
crc = 0xFFFF
for byte in data:
crc ^= byte
for _ in range(8):
if crc & 0x0001: crc = (crc >> 1) ^ 0xA001
else: crc >>= 1
return struct.pack('<H', crc)
def read_level(self) -> Optional[Dict[str, Any]]:
"""
读取液位。
返回: {'level': bool, 'rssi': int}
"""
if not self.transport:
return None
with self.transport.lock:
self.transport.clear_buffer()
# Modbus Read Registers: 01 03 00 01 00 02 CRC
payload = struct.pack('>HH', 0x0001, 0x0002)
msg = struct.pack('BB', self.device_id, 0x03) + payload
msg += self._crc(msg)
if self.debug:
self.logger.info(f"TX (ID {self.device_id}): {msg.hex().upper()}")
self.transport.write(msg)
# Read header
h = self.transport.read(3) # Addr, Func, Len
if self.debug:
self.logger.info(f"RX Header: {h.hex().upper()}")
if len(h) < 3: return None
length = h[2]
# Read body + CRC
body = self.transport.read(length + 2)
if self.debug:
self.logger.info(f"RX Body+CRC: {body.hex().upper()}")
if len(body) < length + 2:
# Firmware bug fix specific to some modules
if len(body) == 4 and length == 4:
pass
else:
return None
data = body[:-2]
# 根据手册说明:
# 寄存器 0x0001 (data[0:2]): 液位状态 (00 01 为有液, 00 00 为无液)
# 寄存器 0x0002 (data[2:4]): 信号强度 RSSI
hw_level = False
rssi = 0
if len(data) >= 4:
hw_level = ((data[0] << 8) | data[1]) == 1
rssi = (data[2] << 8) | data[3]
elif len(data) == 2:
# 兼容模式: 某些老固件可能只返回 1 个寄存器
rssi = (data[0] << 8) | data[1]
hw_level = rssi > self.threshold
else:
return None
# 最终判定: 优先使用硬件层级的 level 判定,但 RSSI 阈值逻辑作为补充/校验
# 注意: 如果用户显式设置了 THRESHOLD我们可以在逻辑中做权衡
self.level = hw_level or (rssi > self.threshold)
self.rssi = rssi
result = {
'level': self.level,
'rssi': self.rssi
}
self.status = result
return result
def wait_level(self, target_state: bool, timeout: float = 60.0) -> bool:
"""
等待液位达到目标状态 (阻塞式)
"""
self.logger.info(f"Waiting for level: {target_state}")
start_time = time.time()
while (time.time() - start_time) < timeout:
res = self.read_level()
if res and res.get('level') == target_state:
return True
time.sleep(0.5)
self.logger.warning(f"Wait level timeout ({timeout}s)")
return False
def wait_for_liquid(self, target_state: bool, timeout: float = 120.0) -> bool:
"""
实时检测电导率(RSSI)并等待用户指定的“有液”或“无液”状态。
一旦检测到符合目标状态,立即返回。
Args:
target_state: True 为“有液”, False 为“无液”
timeout: 最大等待时间(秒)
"""
state_str = "有液" if target_state else "无液"
self.logger.info(f"开始实时检测电导率,等待状态: {state_str} (超时: {timeout}s)")
start_time = time.time()
while (time.time() - start_time) < timeout:
res = self.read_level() # 内部已更新 self.level 和 self.rssi
if res:
current_level = res.get('level')
current_rssi = res.get('rssi')
if current_level == target_state:
self.logger.info(f"✅ 检测到目标状态: {state_str} (当前电导率/RSSI: {current_rssi})")
return True
if self.debug:
self.logger.debug(f"当前状态: {'有液' if current_level else '无液'}, RSSI: {current_rssi}")
time.sleep(0.2) # 高频采样
self.logger.warning(f"❌ 等待 {state_str} 状态超时 ({timeout}s)")
return False
def set_threshold(self, threshold: int):
"""设置液位判定阈值"""
self.threshold = int(threshold)
self.logger.info(f"Threshold updated to: {self.threshold}")
def change_device_id(self, new_id: int) -> bool:
"""
修改设备的 Modbus 从站地址。
寄存器: 0x0004, 功能码: 0x06
"""
if not (1 <= new_id <= 254):
self.logger.error(f"Invalid device ID: {new_id}. Must be 1-254.")
return False
self.logger.info(f"Changing device ID from {self.device_id} to {new_id}")
success = self._write_single_register(0x0004, new_id)
if success:
self.device_id = new_id # 更新内存中的地址
self.logger.info(f"Device ID update command sent successfully (target {new_id}).")
return success
def change_baudrate(self, baud_code: int) -> bool:
"""
更改通讯波特率 (寄存器: 0x0005)。
设置成功后传感器 LED 会闪烁,通常无数据返回。
波特率代码对照表 (16进制):
05: 2400
06: 4800
07: 9600 (默认)
08: 14400
09: 19200
0A: 28800
0C: 57600
0D: 115200
0E: 128000
0F: 256000
"""
self.logger.info(f"Sending baudrate change command (Code: {baud_code:02X})")
# 写入寄存器 0x0005
self._write_single_register(0x0005, baud_code)
self.logger.info("Baudrate change command executed. Device LED should flash. Please update connection settings.")
return True
def factory_reset(self) -> bool:
"""
恢复出厂设置 (通过广播地址 FF)。
设置地址为 01逻辑为向 0x0004 写入 0x0002
"""
self.logger.info("Sending factory reset command via broadcast address FF...")
# 广播指令通常无回显
self._write_single_register(0x0004, 0x0002, slave_id=0xFF)
self.logger.info("Factory reset command sent. Device address should be 01 now.")
return True
def _write_single_register(self, reg_addr: int, value: int, slave_id: Optional[int] = None) -> bool:
"""内部辅助函数: Modbus 功能码 06 写单个寄存器"""
if not self.transport: return False
target_id = slave_id if slave_id is not None else self.device_id
msg = struct.pack('BBHH', target_id, 0x06, reg_addr, value)
msg += self._crc(msg)
with self.transport.lock:
self.transport.clear_buffer()
if self.debug:
self.logger.info(f"TX Write (Reg {reg_addr:#06x}): {msg.hex().upper()}")
self.transport.write(msg)
# 广播地址、波特率修改或厂家特定指令可能无回显
if target_id == 0xFF or reg_addr == 0x0005:
time.sleep(0.5)
return True
# 等待返回 (正常应返回相同报文)
resp = self.transport.read(len(msg))
if self.debug:
self.logger.info(f"RX Write Response: {resp.hex().upper()}")
return resp == msg
def close(self):
if self.transport:
self.transport.close()
if __name__ == "__main__":
# 快速实例化测试
import logging
# 减少冗余日志,仅显示重要信息
logging.basicConfig(level=logging.INFO, format='%(levelname)s: %(message)s')
# 硬件配置 (根据实际情况修改)
TEST_PORT = "/dev/tty.usbserial-3110"
SLAVE_ID = 1
THRESHOLD = 300
print("\n" + "="*50)
print(f" XKC RS485 传感器独立测试程序")
print(f" 端口: {TEST_PORT} | 地址: {SLAVE_ID} | 阈值: {THRESHOLD}")
print("="*50)
sensor = XKCSensorDriver(port=TEST_PORT, device_id=SLAVE_ID, threshold=THRESHOLD, debug=False)
try:
if sensor.transport:
print(f"\n开始实时连续采样测试 (持续 15 秒)...")
print(f"按 Ctrl+C 可提前停止\n")
start_time = time.time()
duration = 15
count = 0
while time.time() - start_time < duration:
count += 1
res = sensor.read_level()
if res:
rssi = res['rssi']
level = res['level']
status_str = "【有液】" if level else "【无液】"
# 使用 \r 实现单行刷新显示 (或者不刷,直接打印历史)
# 为了方便查看变化,我们直接打印
elapsed = time.time() - start_time
print(f" [{elapsed:4.1f}s] 采样 {count:<3}: 电导率/RSSI = {rssi:<5} | 判定结果: {status_str}")
else:
print(f" [{time.time()-start_time:4.1f}s] 采样 {count:<3}: 通信失败 (无响应)")
time.sleep(0.5) # 每秒采样 2 次
print(f"\n--- 15 秒采样测试完成 (总计 {count} 次) ---")
# [3] 测试动态修改阈值
print(f"\n[3] 动态修改阈值演示...")
new_threshold = 400
sensor.set_threshold(new_threshold)
res = sensor.read_level()
if res:
print(f" 采样 (当前阈值={new_threshold}): 电导率/RSSI = {res['rssi']:<5} | 判定结果: {'【有液】' if res['level'] else '【无液】'}")
sensor.set_threshold(THRESHOLD) # 还原
except KeyboardInterrupt:
print("\n[!] 用户中断测试")
except Exception as e:
print(f"\n[!] 测试运行出错: {e}")
finally:
sensor.close()
print("\n--- 测试程序已退出 ---\n")

View File

@@ -258,7 +258,7 @@ class BioyondResourceSynchronizer(ResourceSynchronizer):
logger.info(f"[同步→Bioyond] 物料不存在于 Bioyond将创建新物料并入库")
# 第1步从配置中获取仓库配置
warehouse_mapping = self.workstation.bioyond_config.get("warehouse_mapping", {})
warehouse_mapping = self.bioyond_config.get("warehouse_mapping", {})
# 确定目标仓库名称
parent_name = None

View File

@@ -317,47 +317,6 @@ separator.chinwe:
- port
type: object
type: UniLabJsonCommand
separation_step:
goal:
max_cycles: 0
motor_id: 5
pulses: 700
speed: 60
timeout: 300
handles: {}
schema:
description: 分液步骤 - 液位传感器与电机联动 (有液→顺时针, 无液→逆时针)
properties:
goal:
properties:
max_cycles:
default: 0
description: 最大循环次数 (0=无限制)
type: integer
motor_id:
default: '5'
description: 选择电机
enum:
- '4'
- '5'
title: '注: 4=搅拌, 5=旋钮'
type: string
pulses:
default: 700
description: 每次旋转脉冲数 (约1/4圈)
type: integer
speed:
default: 60
description: 电机转速 (RPM)
type: integer
timeout:
default: 300
description: 超时时间 (秒)
type: integer
required:
- motor_id
type: object
type: UniLabJsonCommand
wait_sensor_level:
goal:
target_state: 有液

View File

@@ -638,7 +638,7 @@ liquid_handler:
placeholder_keys: {}
result: {}
schema:
description: 吸头迭代函数。用于自动管理和切换吸头架中的吸头,实现批量实验中的吸头自动分配和追踪。该函数监控吸头使用状态,自动切换到下一个可用吸头位置,确保实验流程的连续性。适用于高通量实验、批量处理、自动化流水线等需要大量吸头管理的应用场景。
description: 吸头迭代函数。用于自动管理和切换枪头盒中的吸头,实现批量实验中的吸头自动分配和追踪。该函数监控吸头使用状态,自动切换到下一个可用吸头位置,确保实验流程的连续性。适用于高通量实验、批量处理、自动化流水线等需要大量吸头管理的应用场景。
properties:
feedback: {}
goal:
@@ -712,6 +712,43 @@ liquid_handler:
title: set_group参数
type: object
type: UniLabJsonCommand
auto-set_liquid_from_plate:
feedback: {}
goal: {}
goal_default:
liquid_names: null
plate: null
volumes: null
well_names: null
handles: {}
placeholder_keys: {}
result: {}
schema:
description: ''
properties:
feedback: {}
goal:
properties:
liquid_names:
type: string
plate:
type: string
volumes:
type: string
well_names:
type: string
required:
- plate
- well_names
- liquid_names
- volumes
type: object
result: {}
required:
- goal
title: set_liquid_from_plate参数
type: object
type: UniLabJsonCommand
auto-set_tiprack:
feedback: {}
goal: {}
@@ -721,7 +758,7 @@ liquid_handler:
placeholder_keys: {}
result: {}
schema:
description: 吸头架设置函数。用于配置和初始化液体处理系统的吸头架信息,包括吸头架位置、类型、容量等参数。该函数建立吸头资源管理系统,为后续的吸头选择和使用提供基础配置。适用于系统初始化、吸头架更换、实验配置等需要吸头资源管理的操作场景。
description: 枪头盒设置函数。用于配置和初始化液体处理系统的枪头盒信息,包括枪头盒位置、类型、容量等参数。该函数建立吸头资源管理系统,为后续的吸头选择和使用提供基础配置。适用于系统初始化、枪头盒更换、实验配置等需要吸头资源管理的操作场景。
properties:
feedback: {}
goal:
@@ -4093,32 +4130,32 @@ liquid_handler:
- 0
handles:
input:
- data_key: liquid
- data_key: sources
data_source: handle
data_type: resource
handler_key: sources
label: sources
- data_key: liquid
data_source: executor
data_type: resource
handler_key: targets
label: targets
- data_key: liquid
data_source: executor
data_type: resource
handler_key: tip_rack
label: tip_rack
output:
- data_key: liquid
label: 待移动液体
- data_key: targets
data_source: handle
data_type: resource
handler_key: targets
label: 转移目标
- data_key: tip_racks
data_source: handle
data_type: resource
handler_key: tip_rack
label: 枪头盒
output:
- data_key: sources.@flatten
data_source: executor
data_type: resource
handler_key: sources_out
label: sources
- data_key: liquid
label: 移液后源孔
- data_key: targets.@flatten
data_source: executor
data_type: resource
handler_key: targets_out
label: targets
label: 移液后目标孔
placeholder_keys:
sources: unilabos_resources
targets: unilabos_resources
@@ -5114,19 +5151,34 @@ liquid_handler.biomek:
- 0
handles:
input:
- data_key: liquid
- data_key: sources
data_source: handle
data_type: resource
handler_key: liquid-input
handler_key: sources
io_type: target
label: Liquid Input
label: 待移动液体
- data_key: targets
data_source: handle
data_type: resource
handler_key: targets
label: 转移目标
- data_key: tip_racks
data_source: handle
data_type: resource
handler_key: tip_rack
label: 枪头盒
output:
- data_key: liquid
- data_key: sources.@flatten
data_source: executor
data_type: resource
handler_key: liquid-output
handler_key: sources_out
io_type: source
label: Liquid Output
label: 移液后源孔
- data_key: targets.@flatten
data_source: executor
data_type: resource
handler_key: targets_out
label: 移液后目标孔
placeholder_keys:
sources: unilabos_resources
targets: unilabos_resources
@@ -9451,78 +9503,81 @@ liquid_handler.prcxi:
type: string
type: array
plate:
properties:
category:
type: string
children:
items:
items:
properties:
category:
type: string
type: array
config:
type: string
data:
type: string
id:
type: string
name:
type: string
parent:
type: string
pose:
properties:
orientation:
properties:
w:
type: number
x:
type: number
y:
type: number
z:
type: number
required:
- x
- y
- z
- w
title: orientation
type: object
position:
properties:
x:
type: number
y:
type: number
z:
type: number
required:
- x
- y
- z
title: position
type: object
required:
- position
- orientation
title: pose
type: object
sample_id:
type: string
type:
type: string
required:
- id
- name
- sample_id
- children
- parent
- type
- category
- pose
- config
- data
children:
items:
type: string
type: array
config:
type: string
data:
type: string
id:
type: string
name:
type: string
parent:
type: string
pose:
properties:
orientation:
properties:
w:
type: number
x:
type: number
y:
type: number
z:
type: number
required:
- x
- y
- z
- w
title: orientation
type: object
position:
properties:
x:
type: number
y:
type: number
z:
type: number
required:
- x
- y
- z
title: position
type: object
required:
- position
- orientation
title: pose
type: object
sample_id:
type: string
type:
type: string
required:
- id
- name
- sample_id
- children
- parent
- type
- category
- pose
- config
- data
title: plate
type: object
title: plate
type: object
type: array
volumes:
items:
type: number
@@ -9544,8 +9599,7 @@ liquid_handler.prcxi:
title: Plate
type: array
volumes:
items:
type: number
items: {}
title: Volumes
type: array
wells:
@@ -9922,18 +9976,18 @@ liquid_handler.prcxi:
data_source: handle
data_type: resource
handler_key: tip_rack_identifier
label: 头盒
label: 头盒
output:
- data_key: liquid
data_source: handle
- data_key: sources.@flatten
data_source: executor
data_type: resource
handler_key: sources_out
label: sources
- data_key: liquid
label: 移液后源孔
- data_key: targets.@flatten
data_source: executor
data_type: resource
handler_key: targets_out
label: targets
label: 移液后目标孔
placeholder_keys:
sources: unilabos_resources
targets: unilabos_resources

View File

@@ -1,286 +0,0 @@
motor.zdt_x42:
category:
- motor
class:
action_value_mappings:
auto-enable:
feedback: {}
goal: {}
goal_default:
'on': true
handles: {}
placeholder_keys: {}
result: {}
schema:
description: 使能或禁用电机。使能后电机进入锁轴状态,可接收运动指令;禁用后电机进入松轴状态。
properties:
feedback: {}
goal:
properties:
'on':
default: true
type: boolean
required: []
type: object
result: {}
required:
- goal
title: enable参数
type: object
type: UniLabJsonCommand
auto-get_position:
feedback: {}
goal: {}
goal_default: {}
handles: {}
placeholder_keys: {}
result: {}
schema:
description: 获取当前电机脉冲位置。
properties:
feedback: {}
goal:
properties: {}
required: []
type: object
result:
properties:
position:
type: integer
type: object
required:
- goal
title: get_position参数
type: object
type: UniLabJsonCommand
auto-move_position:
feedback: {}
goal: {}
goal_default:
absolute: false
acceleration: 10
direction: CW
pulses: 1000
speed_rpm: 60
handles: {}
placeholder_keys: {}
result: {}
schema:
description: 位置模式运行。控制电机移动到指定脉冲位置或相对于当前位置移动指定脉冲数。
properties:
feedback: {}
goal:
properties:
absolute:
default: false
type: boolean
acceleration:
default: 10
maximum: 255
minimum: 0
type: integer
direction:
default: CW
enum:
- CW
- CCW
type: string
pulses:
default: 1000
type: integer
speed_rpm:
default: 60
minimum: 0
type: integer
required:
- pulses
- speed_rpm
type: object
result: {}
required:
- goal
title: move_position参数
type: object
type: UniLabJsonCommand
auto-move_speed:
feedback: {}
goal: {}
goal_default:
acceleration: 10
direction: CW
speed_rpm: 60
handles: {}
placeholder_keys: {}
result: {}
schema:
description: 速度模式运行。控制电机以指定转速和方向持续转动。
properties:
feedback: {}
goal:
properties:
acceleration:
default: 10
maximum: 255
minimum: 0
type: integer
direction:
default: CW
enum:
- CW
- CCW
type: string
speed_rpm:
default: 60
minimum: 0
type: integer
required:
- speed_rpm
type: object
result: {}
required:
- goal
title: move_speed参数
type: object
type: UniLabJsonCommand
auto-rotate_quarter:
feedback: {}
goal: {}
goal_default:
direction: CW
speed_rpm: 60
handles: {}
placeholder_keys: {}
result: {}
schema:
description: 电机旋转 1/4 圈 (阻塞式)。
properties:
feedback: {}
goal:
properties:
direction:
default: CW
enum:
- CW
- CCW
type: string
speed_rpm:
default: 60
minimum: 1
type: integer
required: []
type: object
result: {}
required:
- goal
title: rotate_quarter参数
type: object
type: UniLabJsonCommand
auto-set_zero:
feedback: {}
goal: {}
goal_default: {}
handles: {}
placeholder_keys: {}
result: {}
schema:
description: 将当前电机位置设为零点。
properties:
feedback: {}
goal:
properties: {}
required: []
type: object
result: {}
required:
- goal
title: set_zero参数
type: object
type: UniLabJsonCommand
auto-stop:
feedback: {}
goal: {}
goal_default: {}
handles: {}
placeholder_keys: {}
result: {}
schema:
description: 立即停止电机运动。
properties:
feedback: {}
goal:
properties: {}
required: []
type: object
result: {}
required:
- goal
title: stop参数
type: object
type: UniLabJsonCommand
auto-wait_time:
feedback: {}
goal: {}
goal_default:
duration_s: 1.0
handles: {}
placeholder_keys: {}
result: {}
schema:
description: 等待指定时间 (秒)。
properties:
feedback: {}
goal:
properties:
duration_s:
default: 1.0
minimum: 0
type: number
required:
- duration_s
type: object
result: {}
required:
- goal
title: wait_time参数
type: object
type: UniLabJsonCommand
module: unilabos.devices.motor.ZDT_X42:ZDTX42Driver
status_types:
position: int
status: str
type: python
config_info: []
description: ZDT X42 闭环步进电机驱动。支持速度运行、精确位置控制、位置查询和清零功能。适用于各种需要精确运动控制的实验室自动化场景。
handles: []
icon: ''
init_param_schema:
config:
properties:
baudrate:
default: 115200
type: integer
debug:
default: false
type: boolean
device_id:
default: 1
type: integer
port:
type: string
timeout:
default: 0.5
type: number
required:
- port
type: object
data:
properties:
position:
type: integer
status:
type: string
required:
- status
- position
type: object
version: 1.0.0

View File

@@ -1,148 +0,0 @@
sensor.xkc_rs485:
category:
- sensor
- separator
class:
action_value_mappings:
auto-change_baudrate:
goal:
baud_code: 7
handles: {}
schema:
description: '更改通讯波特率 (设置成功后无返回,且需手动切换波特率重连)。代码表 (16进制): 05=2400, 06=4800,
07=9600, 08=14400, 09=19200, 0A=28800, 0C=57600, 0D=115200, 0E=128000,
0F=256000'
properties:
goal:
properties:
baud_code:
description: '波特率代码 (例如: 7 为 9600, 13 即 0x0D 为 115200)'
type: integer
required:
- baud_code
type: object
type: UniLabJsonCommand
auto-change_device_id:
goal:
new_id: 1
handles: {}
schema:
description: 修改传感器的 Modbus 从站地址
properties:
goal:
properties:
new_id:
description: 新的从站地址 (1-254)
maximum: 254
minimum: 1
type: integer
required:
- new_id
type: object
type: UniLabJsonCommand
auto-factory_reset:
goal: {}
handles: {}
schema:
description: 恢复出厂设置 (地址重置为 01)
properties:
goal:
type: object
type: UniLabJsonCommand
auto-read_level:
goal: {}
handles: {}
schema:
description: 直接读取当前液位及信号强度
properties:
goal:
type: object
type: object
type: UniLabJsonCommand
auto-set_threshold:
goal:
threshold: 300
handles: {}
schema:
description: 设置液位判定阈值
properties:
goal:
properties:
threshold:
type: integer
required:
- threshold
type: object
type: UniLabJsonCommand
auto-wait_for_liquid:
goal:
target_state: true
timeout: 120
handles: {}
schema:
description: 实时检测电导率(RSSI)并等待用户指定的状态
properties:
goal:
properties:
target_state:
default: true
description: 目标状态 (True=有液, False=无液)
type: boolean
timeout:
default: 120
description: 超时时间 (秒)
required:
- target_state
type: object
type: UniLabJsonCommand
auto-wait_level:
goal:
level: true
timeout: 10
handles: {}
schema:
description: 等待液位达到目标状态
properties:
goal:
properties:
level:
type: boolean
timeout:
type: number
required:
- level
type: object
type: UniLabJsonCommand
module: unilabos.devices.separator.xkc_sensor:XKCSensorDriver
status_types:
level: bool
rssi: int
type: python
config_info: []
description: XKC RS485 非接触式液位传感器 (Modbus RTU)
handles: []
icon: ''
init_param_schema:
config:
properties:
baudrate:
default: 9600
type: integer
debug:
default: false
type: boolean
device_id:
default: 1
type: integer
port:
type: string
threshold:
default: 300
type: integer
timeout:
default: 3.0
type: number
required:
- port
type: object
version: 1.0.0

View File

@@ -46,16 +46,3 @@ BIOYOND_PolymerStation_8StockCarrier:
init_param_schema: {}
registry_type: resource
version: 1.0.0
BIOYOND_PolymerStation_TipBox:
category:
- bottle_carriers
- tip_racks
class:
module: unilabos.resources.bioyond.bottle_carriers:BIOYOND_PolymerStation_TipBox
type: pylabrobot
description: BIOYOND_PolymerStation_TipBox (4x6布局24个枪头孔位)
handles: []
icon: ''
init_param_schema: {}
registry_type: resource
version: 1.0.0

View File

@@ -82,3 +82,14 @@ BIOYOND_PolymerStation_Solution_Beaker:
icon: ''
init_param_schema: {}
version: 1.0.0
BIOYOND_PolymerStation_TipBox:
category:
- bottles
- tip_boxes
class:
module: unilabos.resources.bioyond.bottles:BIOYOND_PolymerStation_TipBox
type: pylabrobot
handles: []
icon: ''
init_param_schema: {}
version: 1.0.0

View File

@@ -1,4 +1,4 @@
from pylabrobot.resources import create_homogeneous_resources, Coordinate, ResourceHolder, create_ordered_items_2d, Container
from pylabrobot.resources import create_homogeneous_resources, Coordinate, ResourceHolder, create_ordered_items_2d
from unilabos.resources.itemized_carrier import BottleCarrier
from unilabos.resources.bioyond.bottles import (
@@ -9,28 +9,6 @@ from unilabos.resources.bioyond.bottles import (
BIOYOND_PolymerStation_Reagent_Bottle,
BIOYOND_PolymerStation_Flask,
)
def BIOYOND_PolymerStation_Tip(name: str, size_x: float = 8.0, size_y: float = 8.0, size_z: float = 50.0) -> Container:
"""创建单个枪头资源
Args:
name: 枪头名称
size_x: 枪头宽度 (mm)
size_y: 枪头长度 (mm)
size_z: 枪头高度 (mm)
Returns:
Container: 枪头容器
"""
return Container(
name=name,
size_x=size_x,
size_y=size_y,
size_z=size_z,
category="tip",
model="BIOYOND_PolymerStation_Tip",
)
# 命名约定:试剂瓶-Bottle烧杯-Beaker烧瓶-Flask,小瓶-Vial
@@ -344,88 +322,3 @@ def BIOYOND_Electrolyte_1BottleCarrier(name: str) -> BottleCarrier:
carrier.num_items_z = 1
carrier[0] = BIOYOND_PolymerStation_Solution_Beaker(f"{name}_beaker_1")
return carrier
def BIOYOND_PolymerStation_TipBox(
name: str,
size_x: float = 127.76, # 枪头盒宽度
size_y: float = 85.48, # 枪头盒长度
size_z: float = 100.0, # 枪头盒高度
barcode: str = None,
) -> BottleCarrier:
"""创建4×6枪头盒 (24个枪头) - 使用 BottleCarrier 结构
Args:
name: 枪头盒名称
size_x: 枪头盒宽度 (mm)
size_y: 枪头盒长度 (mm)
size_z: 枪头盒高度 (mm)
barcode: 条形码
Returns:
BottleCarrier: 包含24个枪头孔位的枪头盒载架
布局说明:
- 4行×6列 (A-D, 1-6)
- 枪头孔位间距: 18mm (x方向) × 18mm (y方向)
- 起始位置居中对齐
- 索引顺序: 列优先 (0=A1, 1=B1, 2=C1, 3=D1, 4=A2, ...)
"""
# 枪头孔位参数
num_cols = 6 # 1-6 (x方向)
num_rows = 4 # A-D (y方向)
tip_diameter = 8.0 # 枪头孔位直径
tip_spacing_x = 18.0 # 列间距 (增加到18mm更宽松)
tip_spacing_y = 18.0 # 行间距 (增加到18mm更宽松)
# 计算起始位置 (居中对齐)
total_width = (num_cols - 1) * tip_spacing_x + tip_diameter
total_height = (num_rows - 1) * tip_spacing_y + tip_diameter
start_x = (size_x - total_width) / 2
start_y = (size_y - total_height) / 2
# 使用 create_ordered_items_2d 创建孔位
# create_ordered_items_2d 返回的 key 是数字索引: 0, 1, 2, ...
# 顺序是列优先: 先y后x (即 0=A1, 1=B1, 2=C1, 3=D1, 4=A2, 5=B2, ...)
sites = create_ordered_items_2d(
klass=ResourceHolder,
num_items_x=num_cols,
num_items_y=num_rows,
dx=start_x,
dy=start_y,
dz=5.0,
item_dx=tip_spacing_x,
item_dy=tip_spacing_y,
size_x=tip_diameter,
size_y=tip_diameter,
size_z=50.0, # 枪头深度
)
# 更新 sites 中每个 ResourceHolder 的名称
for k, v in sites.items():
v.name = f"{name}_{v.name}"
# 创建枪头盒载架
# 注意:不设置 category使用默认的 "bottle_carrier",这样前端会显示为完整的矩形载架
tip_box = BottleCarrier(
name=name,
size_x=size_x,
size_y=size_y,
size_z=size_z,
sites=sites, # 直接使用数字索引的 sites
model="BIOYOND_PolymerStation_TipBox",
)
# 设置自定义属性
tip_box.barcode = barcode
tip_box.tip_count = 24 # 4行×6列
tip_box.num_items_x = num_cols
tip_box.num_items_y = num_rows
tip_box.num_items_z = 1
# ⭐ 枪头盒不需要放入子资源
# 与其他 carrier 不同,枪头盒在 Bioyond 中是一个整体
# 不需要追踪每个枪头的状态,保持为空的 ResourceHolder 即可
# 这样前端会显示24个空槽位可以用于放置枪头
return tip_box

View File

@@ -116,9 +116,7 @@ def BIOYOND_PolymerStation_TipBox(
size_z: float = 100.0, # 枪头盒高度
barcode: str = None,
):
"""创建4×6枪头盒 (24个枪头) - 使用 BottleCarrier 结构
注意:此函数已弃用,请使用 bottle_carriers.py 中的版本
"""创建4×6枪头盒 (24个枪头)
Args:
name: 枪头盒名称
@@ -128,11 +126,55 @@ def BIOYOND_PolymerStation_TipBox(
barcode: 条形码
Returns:
BottleCarrier: 包含24个枪头孔位的枪头盒载架
TipBoxCarrier: 包含24个枪头孔位的枪头盒
"""
# 重定向到 bottle_carriers.py 中的实现
from unilabos.resources.bioyond.bottle_carriers import BIOYOND_PolymerStation_TipBox as TipBox_Carrier
return TipBox_Carrier(name=name, size_x=size_x, size_y=size_y, size_z=size_z, barcode=barcode)
from pylabrobot.resources import Container, Coordinate
# 创建枪头盒容器
tip_box = Container(
name=name,
size_x=size_x,
size_y=size_y,
size_z=size_z,
category="tip_rack",
model="BIOYOND_PolymerStation_TipBox_4x6",
)
# 设置自定义属性
tip_box.barcode = barcode
tip_box.tip_count = 24 # 4行×6列
tip_box.num_items_x = 6 # 6列
tip_box.num_items_y = 4 # 4行
# 创建24个枪头孔位 (4行×6列)
# 假设孔位间距为 9mm
tip_spacing_x = 9.0 # 列间距
tip_spacing_y = 9.0 # 行间距
start_x = 14.38 # 第一个孔位的x偏移
start_y = 11.24 # 第一个孔位的y偏移
for row in range(4): # A, B, C, D
for col in range(6): # 1-6
spot_name = f"{chr(65 + row)}{col + 1}" # A1, A2, ..., D6
x = start_x + col * tip_spacing_x
y = start_y + row * tip_spacing_y
# 创建枪头孔位容器
tip_spot = Container(
name=spot_name,
size_x=8.0, # 单个枪头孔位大小
size_y=8.0,
size_z=size_z - 10.0, # 略低于盒子高度
category="tip_spot",
)
# 添加到枪头盒
tip_box.assign_child_resource(
tip_spot,
location=Coordinate(x=x, y=y, z=0)
)
return tip_box
def BIOYOND_PolymerStation_Flask(

View File

@@ -759,12 +759,9 @@ def resource_bioyond_to_plr(bioyond_materials: list[dict], type_mapping: Dict[st
bottle = plr_material[number] = initialize_resource(
{"name": f'{detail["name"]}_{number}', "class": reverse_type_mapping[typeName][0]}, resource_type=ResourcePLR
)
# 只有具有 tracker 属性的容器才设置液体信息(如 Bottle, Well
# ResourceHolder 等不支持液体追踪的容器跳过
if hasattr(bottle, "tracker"):
bottle.tracker.liquids = [
(detail["name"], float(detail.get("quantity", 0)) if detail.get("quantity") else 0)
]
bottle.tracker.liquids = [
(detail["name"], float(detail.get("quantity", 0)) if detail.get("quantity") else 0)
]
bottle.code = detail.get("code", "")
logger.debug(f" └─ [子物料] {detail['name']}{plr_material.name}[{number}] (类型:{typeName})")
else:
@@ -773,11 +770,9 @@ def resource_bioyond_to_plr(bioyond_materials: list[dict], type_mapping: Dict[st
# 只对有 capacity 属性的容器(液体容器)处理液体追踪
if hasattr(plr_material, 'capacity'):
bottle = plr_material[0] if plr_material.capacity > 0 else plr_material
# 确保 bottletracker 属性才设置液体信息
if hasattr(bottle, "tracker"):
bottle.tracker.liquids = [
(material["name"], float(material.get("quantity", 0)) if material.get("quantity") else 0)
]
bottle.tracker.liquids = [
(material["name"], float(material.get("quantity", 0)) if material.get("quantity") else 0)
]
plr_materials.append(plr_material)
@@ -806,29 +801,24 @@ def resource_bioyond_to_plr(bioyond_materials: list[dict], type_mapping: Dict[st
wh_name = loc.get("whName")
logger.debug(f"[物料位置] {unique_name} 尝试放置到 warehouse: {wh_name} (Bioyond坐标: x={loc.get('x')}, y={loc.get('y')}, z={loc.get('z')})")
# Bioyond坐标映射 (重要!): x→行(1=A,2=B...), y→列(1=01,2=02...), z→层(通常=1)
# 必须在warehouse映射之前先获取坐标以便后续调整
x = loc.get("x", 1) # 行号 (1-based: 1=A, 2=B, 3=C, 4=D)
y = loc.get("y", 1) # 列号 (1-based: 1=01, 2=02, 3=03...)
z = loc.get("z", 1) # 层号 (1-based, 通常为1)
# 特殊处理: Bioyond的"堆栈1"需要映射到"堆栈1左"或"堆栈1右"
# 根据列号(y)判断: 1-4映射到左侧, 5-8映射到右侧
# 根据列号(x)判断: 1-4映射到左侧, 5-8映射到右侧
if wh_name == "堆栈1":
if 1 <= y <= 4:
x_val = loc.get("x", 1)
if 1 <= x_val <= 4:
wh_name = "堆栈1左"
elif 5 <= y <= 8:
elif 5 <= x_val <= 8:
wh_name = "堆栈1右"
y = y - 4 # 调整列号: 5-8映射到1-4
else:
logger.warning(f"物料 {material['name']} 的列号 y={y} 超出范围无法映射到堆栈1左或堆栈1右")
logger.warning(f"物料 {material['name']} 的列号 x={x_val} 超出范围无法映射到堆栈1左或堆栈1右")
continue
# 特殊处理: Bioyond的"站内Tip盒堆栈"也需要进行拆分映射
if wh_name == "站内Tip盒堆栈":
if y == 1:
y_val = loc.get("y", 1)
if y_val == 1:
wh_name = "站内Tip盒堆栈(右)"
elif y in [2, 3]:
elif y_val in [2, 3]:
wh_name = "站内Tip盒堆栈(左)"
y = y - 1 # 调整列号,因为左侧仓库对应的 Bioyond y=2 实际上是它的第1列
@@ -836,6 +826,15 @@ def resource_bioyond_to_plr(bioyond_materials: list[dict], type_mapping: Dict[st
warehouse = deck.warehouses[wh_name]
logger.debug(f"[Warehouse匹配] 找到warehouse: {wh_name} (容量: {warehouse.capacity}, 行×列: {warehouse.num_items_x}×{warehouse.num_items_y})")
# Bioyond坐标映射 (重要!): x→行(1=A,2=B...), y→列(1=01,2=02...), z→层(通常=1)
x = loc.get("x", 1) # 行号 (1-based: 1=A, 2=B, 3=C, 4=D)
y = loc.get("y", 1) # 列号 (1-based: 1=01, 2=02, 3=03...)
z = loc.get("z", 1) # 层号 (1-based, 通常为1)
# 如果是右侧堆栈,需要调整列号 (5→1, 6→2, 7→3, 8→4)
if wh_name == "堆栈1右":
y = y - 4 # 将5-8映射到1-4
# 特殊处理竖向warehouse站内试剂存放堆栈、测量小瓶仓库
# 这些warehouse使用 vertical-col-major 布局
if wh_name in ["站内试剂存放堆栈", "测量小瓶仓库(测密度)"]:

View File

@@ -18,9 +18,3 @@ def register():
from unilabos.devices.liquid_handling.rviz_backend import UniLiquidHandlerRvizBackend
from unilabos.devices.liquid_handling.laiyu.backend.laiyu_v_backend import UniLiquidHandlerLaiyuBackend
# noinspection PyUnresolvedReferences
from unilabos.resources.bioyond.decks import (
BIOYOND_PolymerReactionStation_Deck,
BIOYOND_PolymerPreparationStation_Deck,
BIOYOND_YB_Deck,
)

View File

@@ -341,7 +341,6 @@ class ResourceTreeSet(object):
"deck": "deck",
"tip_rack": "tip_rack",
"tip_spot": "tip_spot",
"tip": "tip", # 添加 tip 类型支持
"tube": "tube",
"bottle_carrier": "bottle_carrier",
}

View File

@@ -1581,7 +1581,7 @@ class BaseROS2DeviceNode(Node, Generic[T]):
f"转换ResourceSlot列表参数 {arg_name} 失败: {e}\n{traceback.format_exc()}"
)
raise JsonCommandInitError(f"ResourceSlot列表参数转换失败: {arg_name}")
# todo: 默认反报送
return function(**function_args)
except KeyError as ex:
raise JsonCommandInitError(
@@ -1614,8 +1614,8 @@ class BaseROS2DeviceNode(Node, Generic[T]):
timeout = 30.0
elapsed = 0.0
while not future.done() and elapsed < timeout:
time.sleep(0.05)
elapsed += 0.05
time.sleep(0.02)
elapsed += 0.02
if not future.done():
raise Exception(f"资源查询超时: {uuids_list}")

View File

@@ -807,7 +807,7 @@ class HostNode(BaseROS2DeviceNode):
assign_sample_id(action_kwargs)
goal_msg = convert_to_ros_msg(action_client._action_type.Goal(), action_kwargs)
self.lab_logger().info(f"[Host Node] Sending goal for {action_id}: {str(goal_msg)[:1000]}")
# self.lab_logger().trace(f"[Host Node] Sending goal for {action_id}: {str(goal_msg)[:1000]}")
self.lab_logger().trace(f"[Host Node] Sending goal for {action_id}: {action_kwargs}")
self.lab_logger().trace(f"[Host Node] Sending goal for {action_id}: {goal_msg}")
action_client.wait_for_server()
@@ -1180,7 +1180,7 @@ class HostNode(BaseROS2DeviceNode):
"""
更新节点信息回调
"""
# self.lab_logger().info(f"[Host Node] Node info update request received: {request}")
self.lab_logger().trace(f"[Host Node] Node info update request received: {request}")
try:
from unilabos.app.communication import get_communication_client
from unilabos.app.web.client import HTTPClient, http_client

View File

@@ -0,0 +1,795 @@
{
"nodes": [
{
"id": "PRCXI",
"name": "PRCXI",
"type": "device",
"class": "liquid_handler.prcxi",
"parent": "",
"pose": {
"size": {
"width": 562,
"height": 394,
"depth": 0
}
},
"config": {
"axis": "Left",
"deck": {
"_resource_type": "unilabos.devices.liquid_handling.prcxi.prcxi:PRCXI9300Deck",
"_resource_child_name": "PRCXI_Deck"
},
"host": "10.20.30.184",
"port": 9999,
"debug": true,
"setup": true,
"is_9320": true,
"timeout": 10,
"matrix_id": "5de524d0-3f95-406c-86dd-f83626ebc7cb",
"simulator": true,
"channel_num": 2
},
"data": {
"reset_ok": true
},
"schema": {},
"description": "",
"model": null,
"position": {
"x": 0,
"y": 240,
"z": 0
}
},
{
"id": "PRCXI_Deck",
"name": "PRCXI_Deck",
"children": [],
"parent": "PRCXI",
"type": "deck",
"class": "",
"position": {
"x": 10,
"y": 10,
"z": 0
},
"config": {
"type": "PRCXI9300Deck",
"size_x": 542,
"size_y": 374,
"size_z": 0,
"rotation": {
"x": 0,
"y": 0,
"z": 0,
"type": "Rotation"
},
"category": "deck",
"barcode": null
},
"data": {}
},
{
"id": "T1",
"name": "T1",
"children": [],
"parent": "PRCXI_Deck",
"type": "plate",
"class": "",
"position": {
"x": 0,
"y": 288,
"z": 0
},
"config": {
"type": "PRCXI9300Container",
"size_x": 127,
"size_y": 85.5,
"size_z": 10,
"rotation": {
"x": 0,
"y": 0,
"z": 0,
"type": "Rotation"
},
"category": "plate",
"model": null,
"barcode": null,
"ordering": {},
"sites": [
{
"label": "T1",
"visible": true,
"position": { "x": 0, "y": 0, "z": 0 },
"size": { "width": 128.0, "height": 86, "depth": 0 },
"content_type": [
"plate",
"tip_rack",
"plates",
"tip_racks",
"tube_rack"
]
}
]
},
"data": {}
},
{
"id": "T2",
"name": "T2",
"children": [],
"parent": "PRCXI_Deck",
"type": "plate",
"class": "",
"position": {
"x": 138,
"y": 288,
"z": 0
},
"config": {
"type": "PRCXI9300Container",
"size_x": 127,
"size_y": 85.5,
"size_z": 10,
"rotation": {
"x": 0,
"y": 0,
"z": 0,
"type": "Rotation"
},
"category": "plate",
"model": null,
"barcode": null,
"ordering": {},
"sites": [
{
"label": "T2",
"visible": true,
"position": { "x": 0, "y": 0, "z": 0 },
"size": { "width": 128.0, "height": 86, "depth": 0 },
"content_type": [
"plate",
"tip_rack",
"plates",
"tip_racks",
"tube_rack"
]
}
]
},
"data": {}
},
{
"id": "T3",
"name": "T3",
"children": [],
"parent": "PRCXI_Deck",
"type": "plate",
"class": "",
"position": {
"x": 276,
"y": 288,
"z": 0
},
"config": {
"type": "PRCXI9300Container",
"size_x": 127,
"size_y": 85.5,
"size_z": 10,
"rotation": {
"x": 0,
"y": 0,
"z": 0,
"type": "Rotation"
},
"category": "plate",
"model": null,
"barcode": null,
"ordering": {},
"sites": [
{
"label": "T3",
"visible": true,
"position": { "x": 0, "y": 0, "z": 0 },
"size": { "width": 128.0, "height": 86, "depth": 0 },
"content_type": [
"plate",
"tip_rack",
"plates",
"tip_racks",
"tube_rack"
]
}
]
},
"data": {}
},
{
"id": "T4",
"name": "T4",
"children": [],
"parent": "PRCXI_Deck",
"type": "plate",
"class": "",
"position": {
"x": 414,
"y": 288,
"z": 0
},
"config": {
"type": "PRCXI9300Container",
"size_x": 127,
"size_y": 85.5,
"size_z": 10,
"rotation": {
"x": 0,
"y": 0,
"z": 0,
"type": "Rotation"
},
"category": "plate",
"model": null,
"barcode": null,
"ordering": {},
"sites": [
{
"label": "T4",
"visible": true,
"position": { "x": 0, "y": 0, "z": 0 },
"size": { "width": 128.0, "height": 86, "depth": 0 },
"content_type": [
"plate",
"tip_rack",
"plates",
"tip_racks",
"tube_rack"
]
}
]
},
"data": {}
},
{
"id": "T5",
"name": "T5",
"children": [],
"parent": "PRCXI_Deck",
"type": "plate",
"class": "",
"position": {
"x": 0,
"y": 192,
"z": 0
},
"config": {
"type": "PRCXI9300Container",
"size_x": 127,
"size_y": 85.5,
"size_z": 10,
"rotation": {
"x": 0,
"y": 0,
"z": 0,
"type": "Rotation"
},
"category": "plate",
"model": null,
"barcode": null,
"ordering": {},
"sites": [
{
"label": "T5",
"visible": true,
"position": { "x": 0, "y": 0, "z": 0 },
"size": { "width": 128.0, "height": 86, "depth": 0 },
"content_type": [
"plate",
"tip_rack",
"plates",
"tip_racks",
"tube_rack"
]
}
]
},
"data": {}
},
{
"id": "T6",
"name": "T6",
"children": [],
"parent": "PRCXI_Deck",
"type": "plate",
"class": "",
"position": {
"x": 138,
"y": 192,
"z": 0
},
"config": {
"type": "PRCXI9300Container",
"size_x": 127,
"size_y": 85.5,
"size_z": 10,
"rotation": {
"x": 0,
"y": 0,
"z": 0,
"type": "Rotation"
},
"category": "plate",
"model": null,
"barcode": null,
"ordering": {},
"sites": [
{
"label": "T6",
"visible": true,
"position": { "x": 0, "y": 0, "z": 0 },
"size": { "width": 128.0, "height": 86, "depth": 0 },
"content_type": [
"plate",
"tip_rack",
"plates",
"tip_racks",
"tube_rack"
]
}
]
},
"data": {}
},
{
"id": "T7",
"name": "T7",
"children": [],
"parent": "PRCXI_Deck",
"type": "plate",
"class": "",
"position": {
"x": 276,
"y": 192,
"z": 0
},
"config": {
"type": "PRCXI9300Container",
"size_x": 127,
"size_y": 85.5,
"size_z": 10,
"rotation": {
"x": 0,
"y": 0,
"z": 0,
"type": "Rotation"
},
"category": "plate",
"model": null,
"barcode": null,
"ordering": {},
"sites": [
{
"label": "T7",
"visible": true,
"position": { "x": 0, "y": 0, "z": 0 },
"size": { "width": 128.0, "height": 86, "depth": 0 },
"content_type": [
"plate",
"tip_rack",
"plates",
"tip_racks",
"tube_rack"
]
}
]
},
"data": {}
},
{
"id": "T8",
"name": "T8",
"children": [],
"parent": "PRCXI_Deck",
"type": "plate",
"class": "",
"position": {
"x": 414,
"y": 192,
"z": 0
},
"config": {
"type": "PRCXI9300Container",
"size_x": 127,
"size_y": 85.5,
"size_z": 10,
"rotation": {
"x": 0,
"y": 0,
"z": 0,
"type": "Rotation"
},
"category": "plate",
"model": null,
"barcode": null,
"ordering": {},
"sites": [
{
"label": "T8",
"visible": true,
"position": { "x": 0, "y": 0, "z": 0 },
"size": { "width": 128.0, "height": 86, "depth": 0 },
"content_type": [
"plate",
"tip_rack",
"plates",
"tip_racks",
"tube_rack"
]
}
]
},
"data": {}
},
{
"id": "T9",
"name": "T9",
"children": [],
"parent": "PRCXI_Deck",
"type": "plate",
"class": "",
"position": {
"x": 0,
"y": 96,
"z": 0
},
"config": {
"type": "PRCXI9300Container",
"size_x": 127,
"size_y": 85.5,
"size_z": 10,
"rotation": {
"x": 0,
"y": 0,
"z": 0,
"type": "Rotation"
},
"category": "plate",
"model": null,
"barcode": null,
"ordering": {},
"sites": [
{
"label": "T9",
"visible": true,
"position": { "x": 0, "y": 0, "z": 0 },
"size": { "width": 128.0, "height": 86, "depth": 0 },
"content_type": [
"plate",
"tip_rack",
"plates",
"tip_racks",
"tube_rack"
]
}
]
},
"data": {}
},
{
"id": "T10",
"name": "T10",
"children": [],
"parent": "PRCXI_Deck",
"type": "plate",
"class": "",
"position": {
"x": 138,
"y": 96,
"z": 0
},
"config": {
"type": "PRCXI9300Container",
"size_x": 127,
"size_y": 85.5,
"size_z": 10,
"rotation": {
"x": 0,
"y": 0,
"z": 0,
"type": "Rotation"
},
"category": "plate",
"model": null,
"barcode": null,
"ordering": {},
"sites": [
{
"label": "T10",
"visible": true,
"position": { "x": 0, "y": 0, "z": 0 },
"size": { "width": 128.0, "height": 86, "depth": 0 },
"content_type": [
"plate",
"tip_rack",
"plates",
"tip_racks",
"tube_rack"
]
}
]
},
"data": {}
},
{
"id": "T11",
"name": "T11",
"children": [],
"parent": "PRCXI_Deck",
"type": "plate",
"class": "",
"position": {
"x": 276,
"y": 96,
"z": 0
},
"config": {
"type": "PRCXI9300Container",
"size_x": 127,
"size_y": 85.5,
"size_z": 10,
"rotation": {
"x": 0,
"y": 0,
"z": 0,
"type": "Rotation"
},
"category": "plate",
"model": null,
"barcode": null,
"ordering": {},
"sites": [
{
"label": "T11",
"visible": true,
"position": { "x": 0, "y": 0, "z": 0 },
"size": { "width": 128.0, "height": 86, "depth": 0 },
"content_type": [
"plate",
"tip_rack",
"plates",
"tip_racks",
"tube_rack"
]
}
]
},
"data": {}
},
{
"id": "T12",
"name": "T12",
"children": [],
"parent": "PRCXI_Deck",
"type": "plate",
"class": "",
"position": {
"x": 414,
"y": 96,
"z": 0
},
"config": {
"type": "PRCXI9300Container",
"size_x": 127,
"size_y": 85.5,
"size_z": 10,
"rotation": {
"x": 0,
"y": 0,
"z": 0,
"type": "Rotation"
},
"category": "plate",
"model": null,
"barcode": null,
"ordering": {},
"sites": [
{
"label": "T12",
"visible": true,
"position": { "x": 0, "y": 0, "z": 0 },
"size": { "width": 128.0, "height": 86, "depth": 0 },
"content_type": [
"plate",
"tip_rack",
"plates",
"tip_racks",
"tube_rack"
]
}
]
},
"data": {}
},
{
"id": "T13",
"name": "T13",
"children": [],
"parent": "PRCXI_Deck",
"type": "plate",
"class": "",
"position": {
"x": 0,
"y": 0,
"z": 0
},
"config": {
"type": "PRCXI9300Container",
"size_x": 127,
"size_y": 85.5,
"size_z": 10,
"rotation": {
"x": 0,
"y": 0,
"z": 0,
"type": "Rotation"
},
"category": "plate",
"model": null,
"barcode": null,
"ordering": {},
"sites": [
{
"label": "T13",
"visible": true,
"position": { "x": 0, "y": 0, "z": 0 },
"size": { "width": 128.0, "height": 86, "depth": 0 },
"content_type": [
"plate",
"tip_rack",
"plates",
"tip_racks",
"tube_rack"
]
}
]
},
"data": {}
},
{
"id": "T14",
"name": "T14",
"children": [],
"parent": "PRCXI_Deck",
"type": "plate",
"class": "",
"position": {
"x": 138,
"y": 0,
"z": 0
},
"config": {
"type": "PRCXI9300Container",
"size_x": 127,
"size_y": 85.5,
"size_z": 10,
"rotation": {
"x": 0,
"y": 0,
"z": 0,
"type": "Rotation"
},
"category": "plate",
"model": null,
"barcode": null,
"ordering": {},
"sites": [
{
"label": "T14",
"visible": true,
"position": { "x": 0, "y": 0, "z": 0 },
"size": { "width": 128.0, "height": 86, "depth": 0 },
"content_type": [
"plate",
"tip_rack",
"plates",
"tip_racks",
"tube_rack"
]
}
]
},
"data": {}
},
{
"id": "T15",
"name": "T15",
"children": [],
"parent": "PRCXI_Deck",
"type": "plate",
"class": "",
"position": {
"x": 276,
"y": 0,
"z": 0
},
"config": {
"type": "PRCXI9300Container",
"size_x": 127,
"size_y": 85.5,
"size_z": 10,
"rotation": {
"x": 0,
"y": 0,
"z": 0,
"type": "Rotation"
},
"category": "plate",
"model": null,
"barcode": null,
"ordering": {},
"sites": [
{
"label": "T15",
"visible": true,
"position": { "x": 0, "y": 0, "z": 0 },
"size": { "width": 128.0, "height": 86, "depth": 0 },
"content_type": [
"plate",
"tip_rack",
"plates",
"tip_racks",
"tube_rack"
]
}
]
},
"data": {}
},
{
"id": "T16",
"name": "T16",
"children": [],
"parent": "PRCXI_Deck",
"type": "plate",
"class": "",
"position": {
"x": 414,
"y": 0,
"z": 0
},
"config": {
"type": "PRCXI9300Container",
"size_x": 127,
"size_y": 85.5,
"size_z": 10,
"rotation": {
"x": 0,
"y": 0,
"z": 0,
"type": "Rotation"
},
"category": "plate",
"model": null,
"barcode": null,
"ordering": {},
"sites": [
{
"label": "T16",
"visible": true,
"position": { "x": 0, "y": 0, "z": 0 },
"size": { "width": 128.0, "height": 86, "depth": 0 },
"content_type": [
"plate",
"tip_rack",
"plates",
"tip_racks",
"tube_rack"
]
}
]
},
"data": {}
}
],
"edges": []
}

View File

@@ -1,29 +0,0 @@
{
"nodes": [
{
"id": "Liquid_Sensor_1",
"name": "XKC Sensor",
"children": [],
"parent": null,
"type": "device",
"class": "sensor.xkc_rs485",
"position": {
"x": 0,
"y": 0,
"z": 0
},
"config": {
"port": "/dev/tty.usbserial-3110",
"baudrate": 9600,
"device_id": 1,
"threshold": 300,
"timeout": 3.0
},
"data": {
"level": false,
"rssi": 0
}
}
],
"links": []
}

View File

@@ -1,28 +0,0 @@
{
"nodes": [
{
"id": "ZDT_Motor",
"name": "ZDT Motor",
"children": [],
"parent": null,
"type": "device",
"class": "motor.zdt_x42",
"position": {
"x": 0,
"y": 0,
"z": 0
},
"config": {
"port": "/dev/tty.usbserial-3110",
"baudrate": 115200,
"device_id": 1,
"debug": true
},
"data": {
"position": 0,
"status": "idle"
}
}
],
"links": []
}

View File

@@ -19,7 +19,9 @@
第一步: 按 slot 去重创建 create_resource 节点(创建板子)
--------------------------------------------------------------------------------
- 首先创建一个 Group 节点type="Group", minimized=true用于包含所有 create_resource 节点
- 遍历所有 reagent按 slot 去重,为每个唯一的 slot 创建一个板子
- 所有 create_resource 节点的 parent_uuid 指向 Group 节点minimized=true
- 生成参数:
res_id: plate_slot_{slot}
device_id: /PRCXI
@@ -29,11 +31,13 @@
- 输出端口: labware用于连接 set_liquid_from_plate
- 控制流: create_resource 之间通过 ready 端口串联
示例: slot=1, slot=4 -> 创建 2 个 create_resource 节点
示例: slot=1, slot=4 -> 创建 1 个 Group + 2 个 create_resource 节点
第二步: 为每个 reagent 创建 set_liquid_from_plate 节点(设置液体)
--------------------------------------------------------------------------------
- 首先创建一个 Group 节点type="Group", minimized=true用于包含所有 set_liquid_from_plate 节点
- 遍历所有 reagent为每个试剂创建 set_liquid_from_plate 节点
- 所有 set_liquid_from_plate 节点的 parent_uuid 指向 Group 节点minimized=true
- 生成参数:
plate: [](通过连接传递,来自 create_resource 的 labware
well_names: ["A1", "A3", "A5"](来自 reagent 的 well 数组)
@@ -76,6 +80,13 @@ transfer_liquid:
输入: sources -> sources_identifier, targets -> targets_identifier
输出: sources -> sources_out, targets -> targets_out
==================== 设备名配置 (device_name) ====================
每个节点都有 device_name 字段,指定在哪个设备上执行:
- create_resource: device_name = "host_node"(固定)
- set_liquid_from_plate: device_name = "PRCXI"(可配置,见 DEVICE_NAME_DEFAULT
- transfer_liquid 等动作: device_name = "PRCXI"(可配置,见 DEVICE_NAME_DEFAULT
==================== 校验规则 ====================
- 检查 sources/targets 是否在 reagent 中定义
@@ -97,6 +108,13 @@ Json = Dict[str, Any]
# ==================== 默认配置 ====================
# 设备名配置
DEVICE_NAME_HOST = "host_node" # create_resource 固定在 host_node 上执行
DEVICE_NAME_DEFAULT = "PRCXI" # transfer_liquid, set_liquid_from_plate 等动作的默认设备名
# 节点类型
NODE_TYPE_DEFAULT = "ILab" # 所有节点的默认类型
# create_resource 节点默认参数
CREATE_RESOURCE_DEFAULTS = {
"device_id": "/PRCXI",
@@ -367,6 +385,21 @@ def build_protocol_graph(
"res_id": res_id,
}
# 创建 Group 节点,包含所有 create_resource 节点
group_node_id = str(uuid.uuid4())
G.add_node(
group_node_id,
name="Resources Group",
type="Group",
parent_uuid="",
lab_node_type="Device",
template_name="",
resource_name="",
footer="",
minimized=True,
param=None,
)
# 为每个唯一的 slot 创建 create_resource 节点
res_index = 0
last_create_resource_id = None
@@ -383,6 +416,10 @@ def build_protocol_graph(
description=f"Create plate on slot {slot}",
lab_node_type="Labware",
footer="create_resource-host_node",
device_name=DEVICE_NAME_HOST,
type=NODE_TYPE_DEFAULT,
parent_uuid=group_node_id, # 指向 Group 节点
minimized=True, # 折叠显示
param={
"res_id": res_id,
"device_id": CREATE_RESOURCE_DEFAULTS["device_id"],
@@ -400,6 +437,21 @@ def build_protocol_graph(
last_create_resource_id = node_id
# ==================== 第二步:为每个 reagent 创建 set_liquid_from_plate 节点 ====================
# 创建 Group 节点,包含所有 set_liquid_from_plate 节点
set_liquid_group_id = str(uuid.uuid4())
G.add_node(
set_liquid_group_id,
name="SetLiquid Group",
type="Group",
parent_uuid="",
lab_node_type="Device",
template_name="",
resource_name="",
footer="",
minimized=True,
param=None,
)
set_liquid_index = 0
last_set_liquid_id = last_create_resource_id # set_liquid_from_plate 连接在 create_resource 之后
@@ -430,6 +482,10 @@ def build_protocol_graph(
description=f"Set liquid: {labware_id}",
lab_node_type="Reagent",
footer="set_liquid_from_plate-liquid_handler.prcxi",
device_name=DEVICE_NAME_DEFAULT,
type=NODE_TYPE_DEFAULT,
parent_uuid=set_liquid_group_id, # 指向 Group 节点
minimized=True, # 折叠显示
param={
"plate": [], # 通过连接传递
"well_names": wells, # 孔位名数组,如 ["A1", "A3", "A5"]
@@ -544,9 +600,11 @@ def build_protocol_graph(
if param_key in params:
params[param_key] = []
# 更新 step 的 paramfooter
# 更新 step 的 paramfooter、device_name 和 type
step_copy = step.copy()
step_copy["param"] = params
step_copy["device_name"] = DEVICE_NAME_DEFAULT # 动作节点使用默认设备名
step_copy["type"] = NODE_TYPE_DEFAULT # 节点类型
# 如果有警告,修改 footer 添加警告标记(警告放前面)
if warnings: