Add Mock Device for Organic Synthesis\添加有机合成的虚拟仪器和Protocol (#43)

* Add Device MockChiller

Add device MockChiller

* Add Device MockFilter

* Add Device MockPump

* Add Device MockRotavap

* Add Device MockSeparator

* Add Device MockStirrer

* Add Device MockHeater

* Add Device MockVacuum

* Add Device MockSolenoidValve

* Add Device Mock \_init_.py

* 规范模拟设备代码与注册表信息

* 更改Mock大写文件夹名

* 删除大写目录

* Edited Mock device json

* Match mock device with action

* Edit mock device yaml

* Add new action

* Add Virtual Device, Action, YAML, Protocol for Organic Syn

* 单独分类测试的protocol文件夹

* 更名Action

---------

Co-authored-by: Xuwznln <18435084+Xuwznln@users.noreply.github.com>
This commit is contained in:
Kongchang Feng
2025-06-12 20:58:39 +08:00
committed by GitHub
parent d7d0a27976
commit 96f37b3b0d
81 changed files with 11387 additions and 114 deletions

View File

@@ -0,0 +1,296 @@
{
"nodes": [
{
"id": "MockChiller1",
"name": "模拟冷却器",
"children": [],
"parent": null,
"type": "device",
"class": "mock_chiller",
"position": {
"x": 620.6111111111111,
"y": 171,
"z": 0
},
"config": {
"port": "MOCK"
},
"data": {
"current_temperature": 25.0,
"target_temperature": 25.0,
"status": "Idle",
"is_cooling": false,
"is_heating": false,
"vessel": "",
"purpose": ""
}
},
{
"id": "MockFilter1",
"name": "模拟过滤器",
"children": [],
"parent": null,
"type": "device",
"class": "mock_filter",
"position": {
"x": 620.6111111111111,
"y": 171,
"z": 0
},
"config": {
"port": "MOCK"
},
"data": {
"status": "Idle",
"is_filtering": false,
"flow_rate": 0.0,
"filter_life": 100.0,
"vessel": "",
"filtrate_vessel": "",
"filtered_volume": 0.0,
"target_volume": 0.0,
"progress": 0.0,
"stir": false,
"stir_speed": 0.0,
"temperature": 25.0,
"continue_heatchill": false
}
},
{
"id": "MockHeater1",
"name": "模拟加热器",
"children": [],
"parent": null,
"type": "device",
"class": "mock_heater",
"position": {
"x": 620.6111111111111,
"y": 171,
"z": 0
},
"config": {
"port": "MOCK"
},
"data": {
"current_temperature": 25.0,
"target_temperature": 25.0,
"status": "Idle",
"is_heating": false,
"heating_power": 0.0,
"max_temperature": 300.0,
"vessel": "Unknown",
"purpose": "Unknown",
"stir": false,
"stir_speed": 0.0
}
},
{
"id": "MockPump1",
"name": "模拟泵设备",
"children": [],
"parent": null,
"type": "device",
"class": "mock_pump",
"position": {
"x": 620.6111111111111,
"y": 171,
"z": 0
},
"config": {
"port": "MOCK"
},
"data": {
"status": "Idle",
"current_device": "MockPump1",
"pump_state": "Stopped",
"flow_rate": 0.0,
"target_flow_rate": 0.0,
"pressure": 0.0,
"total_volume": 0.0,
"max_flow_rate": 100.0,
"max_pressure": 10.0,
"from_vessel": "",
"to_vessel": "",
"transfer_volume": 0.0,
"amount": "",
"transfer_time": 0.0,
"is_viscous": false,
"rinsing_solvent": "",
"rinsing_volume": 0.0,
"rinsing_repeats": 0,
"is_solid": false,
"time_spent": 0.0,
"time_remaining": 0.0
}
},
{
"id": "MockRotavap1",
"name": "模拟旋转蒸发器",
"children": [],
"parent": null,
"type": "device",
"class": "mock_rotavap",
"position": {
"x": 620.6111111111111,
"y": 171,
"z": 0
},
"config": {
"port": "MOCK"
},
"data": {
"status": "Idle",
"rotate_state": "Stopped",
"rotate_time": 0.0,
"rotate_speed": 0.0,
"pump_state": "Stopped",
"pump_time": 0.0,
"vacuum_level": 1013.25,
"temperature": 25.0,
"target_temperature": 25.0,
"success": "True"
}
},
{
"id": "MockSeparator1",
"name": "模拟分离器",
"children": [],
"parent": null,
"type": "device",
"class": "mock_separator",
"position": {
"x": 620.6111111111111,
"y": 171,
"z": 0
},
"config": {
"port": "MOCK"
},
"data": {
"status": "Idle",
"settling_time": 0.0,
"valve_state": "Closed",
"shake_time": 0.0,
"shake_status": "Not Shaking",
"current_device": "MockSeparator1",
"purpose": "",
"product_phase": "",
"from_vessel": "",
"separation_vessel": "",
"to_vessel": "",
"waste_phase_to_vessel": "",
"solvent": "",
"solvent_volume": 0.0,
"through": "",
"repeats": 1,
"stir_time": 0.0,
"stir_speed": 0.0,
"time_spent": 0.0,
"time_remaining": 0.0
}
},
{
"id": "MockSolenoidValve1",
"name": "模拟电磁阀",
"children": [],
"parent": null,
"type": "device",
"class": "mock_solenoid_valve",
"position": {
"x": 620.6111111111111,
"y": 171,
"z": 0
},
"config": {
"port": "MOCK"
},
"data": {
"status": "Idle",
"valve_status": "Closed"
}
},
{
"id": "MockStirrer1NEW",
"name": "模拟搅拌器(new)",
"children": [],
"parent": null,
"type": "device",
"class": "mock_stirrer_new",
"position": {
"x": 620.6111111111111,
"y": 171,
"z": 0
},
"config": {
"port": "MOCK"
},
"data": {
"status": "Idle",
"vessel": "",
"purpose": "",
"stir_speed": 0.0,
"target_stir_speed": 0.0,
"stir_state": "Stopped",
"stir_time": 0.0,
"settling_time": 0.0,
"progress": 0.0,
"max_stir_speed": 2000.0
}
},
{
"id": "MockStirrer1",
"name": "模拟搅拌器",
"children": [],
"parent": null,
"type": "device",
"class": "mock_stirrer",
"position": {
"x": 620.6111111111111,
"y": 171,
"z": 0
},
"config": {
"port": "MOCK"
},
"data": {
"status": "Idle",
"stir_speed": 0.0,
"target_stir_speed": 0.0,
"stir_state": "Stopped",
"temperature": 25.0,
"target_temperature": 25.0,
"heating_state": "Off",
"heating_power": 0.0,
"max_stir_speed": 2000.0,
"max_temperature": 300.0
}
},
{
"id": "MockVacuum1",
"name": "模拟真空泵",
"children": [],
"parent": null,
"type": "device",
"class": "mock_vacuum",
"position": {
"x": 620.6111111111111,
"y": 171,
"z": 0
},
"config": {
"port": "MOCK"
},
"data": {
"status": "Idle",
"power_state": "Off",
"pump_state": "Stopped",
"vacuum_level": 1013.25,
"target_vacuum": 50.0,
"pump_speed": 0.0,
"pump_efficiency": 95.0,
"max_pump_speed": 100.0
}
}
],
"links": []
}

View File

@@ -0,0 +1,30 @@
{
"nodes": [
{
"id": "MockChiller1",
"name": "模拟冷却器",
"children": [],
"parent": null,
"type": "device",
"class": "mock_chiller",
"position": {
"x": 620.6111111111111,
"y": 171,
"z": 0
},
"config": {
"port": "MOCK"
},
"data": {
"current_temperature": 25.0,
"target_temperature": 25.0,
"status": "Idle",
"is_cooling": false,
"is_heating": false,
"vessel": "",
"purpose": ""
}
}
],
"links": []
}

View File

@@ -0,0 +1,36 @@
{
"nodes": [
{
"id": "MockFilter1",
"name": "模拟过滤器",
"children": [],
"parent": null,
"type": "device",
"class": "mock_filter",
"position": {
"x": 620.6111111111111,
"y": 171,
"z": 0
},
"config": {
"port": "MOCK"
},
"data": {
"status": "Idle",
"is_filtering": false,
"flow_rate": 0.0,
"filter_life": 100.0,
"vessel": "",
"filtrate_vessel": "",
"filtered_volume": 0.0,
"target_volume": 0.0,
"progress": 0.0,
"stir": false,
"stir_speed": 0.0,
"temperature": 25.0,
"continue_heatchill": false
}
}
],
"links": []
}

View File

@@ -0,0 +1,33 @@
{
"nodes": [
{
"id": "MockHeater1",
"name": "模拟加热器",
"children": [],
"parent": null,
"type": "device",
"class": "mock_heater",
"position": {
"x": 620.6111111111111,
"y": 171,
"z": 0
},
"config": {
"port": "MOCK"
},
"data": {
"current_temperature": 25.0,
"target_temperature": 25.0,
"status": "Idle",
"is_heating": false,
"heating_power": 0.0,
"max_temperature": 300.0,
"vessel": "Unknown",
"purpose": "Unknown",
"stir": false,
"stir_speed": 0.0
}
}
],
"links": []
}

View File

@@ -0,0 +1,44 @@
{
"nodes": [
{
"id": "MockPump1",
"name": "模拟泵设备",
"children": [],
"parent": null,
"type": "device",
"class": "mock_pump",
"position": {
"x": 620.6111111111111,
"y": 171,
"z": 0
},
"config": {
"port": "MOCK"
},
"data": {
"status": "Idle",
"current_device": "MockPump1",
"pump_state": "Stopped",
"flow_rate": 0.0,
"target_flow_rate": 0.0,
"pressure": 0.0,
"total_volume": 0.0,
"max_flow_rate": 100.0,
"max_pressure": 10.0,
"from_vessel": "",
"to_vessel": "",
"transfer_volume": 0.0,
"amount": "",
"transfer_time": 0.0,
"is_viscous": false,
"rinsing_solvent": "",
"rinsing_volume": 0.0,
"rinsing_repeats": 0,
"is_solid": false,
"time_spent": 0.0,
"time_remaining": 0.0
}
}
],
"links": []
}

View File

@@ -0,0 +1,33 @@
{
"nodes": [
{
"id": "MockRotavap1",
"name": "模拟旋转蒸发器",
"children": [],
"parent": null,
"type": "device",
"class": "mock_rotavap",
"position": {
"x": 620.6111111111111,
"y": 171,
"z": 0
},
"config": {
"port": "MOCK"
},
"data": {
"status": "Idle",
"rotate_state": "Stopped",
"rotate_time": 0.0,
"rotate_speed": 0.0,
"pump_state": "Stopped",
"pump_time": 0.0,
"vacuum_level": 1013.25,
"temperature": 25.0,
"target_temperature": 25.0,
"success": "True"
}
}
],
"links": []
}

View File

@@ -0,0 +1,43 @@
{
"nodes": [
{
"id": "MockSeparator1",
"name": "模拟分离器",
"children": [],
"parent": null,
"type": "device",
"class": "mock_separator",
"position": {
"x": 620.6111111111111,
"y": 171,
"z": 0
},
"config": {
"port": "MOCK"
},
"data": {
"status": "Idle",
"settling_time": 0.0,
"valve_state": "Closed",
"shake_time": 0.0,
"shake_status": "Not Shaking",
"current_device": "MockSeparator1",
"purpose": "",
"product_phase": "",
"from_vessel": "",
"separation_vessel": "",
"to_vessel": "",
"waste_phase_to_vessel": "",
"solvent": "",
"solvent_volume": 0.0,
"through": "",
"repeats": 1,
"stir_time": 0.0,
"stir_speed": 0.0,
"time_spent": 0.0,
"time_remaining": 0.0
}
}
],
"links": []
}

View File

@@ -0,0 +1,25 @@
{
"nodes": [
{
"id": "MockSolenoidValve1",
"name": "模拟电磁阀",
"children": [],
"parent": null,
"type": "device",
"class": "mock_solenoid_valve",
"position": {
"x": 620.6111111111111,
"y": 171,
"z": 0
},
"config": {
"port": "MOCK"
},
"data": {
"status": "Idle",
"valve_status": "Closed"
}
}
],
"links": []
}

View File

@@ -0,0 +1,33 @@
{
"nodes": [
{
"id": "MockStirrer1",
"name": "模拟搅拌器",
"children": [],
"parent": null,
"type": "device",
"class": "mock_stirrer",
"position": {
"x": 620.6111111111111,
"y": 171,
"z": 0
},
"config": {
"port": "MOCK"
},
"data": {
"status": "Idle",
"stir_speed": 0.0,
"target_stir_speed": 0.0,
"stir_state": "Stopped",
"temperature": 25.0,
"target_temperature": 25.0,
"heating_state": "Off",
"heating_power": 0.0,
"max_stir_speed": 2000.0,
"max_temperature": 300.0
}
}
],
"links": []
}

View File

@@ -0,0 +1,33 @@
{
"nodes": [
{
"id": "MockStirrer1COPY",
"name": "模拟搅拌器(Copy)",
"children": [],
"parent": null,
"type": "device",
"class": "mock_stirrer_new",
"position": {
"x": 620.6111111111111,
"y": 171,
"z": 0
},
"config": {
"port": "MOCK"
},
"data": {
"status": "Idle",
"vessel": "",
"purpose": "",
"stir_speed": 0.0,
"target_stir_speed": 0.0,
"stir_state": "Stopped",
"stir_time": 0.0,
"settling_time": 0.0,
"progress": 0.0,
"max_stir_speed": 2000.0
}
}
],
"links": []
}

View File

@@ -0,0 +1,31 @@
{
"nodes": [
{
"id": "MockVacuum1",
"name": "模拟真空泵",
"children": [],
"parent": null,
"type": "device",
"class": "mock_vacuum",
"position": {
"x": 620.6111111111111,
"y": 171,
"z": 0
},
"config": {
"port": "MOCK"
},
"data": {
"status": "Idle",
"power_state": "Off",
"pump_state": "Stopped",
"vacuum_level": 1013.25,
"target_vacuum": 50.0,
"pump_speed": 0.0,
"pump_efficiency": 95.0,
"max_pump_speed": 100.0
}
}
],
"links": []
}

View File

@@ -0,0 +1,250 @@
{
"nodes": [
{
"id": "AddTestStation",
"name": "添加试剂测试工作站",
"children": [
"pump_add",
"flask_1",
"flask_2",
"flask_3",
"flask_4",
"reactor",
"stirrer",
"flask_air"
],
"parent": null,
"type": "device",
"class": "workstation",
"position": {
"x": 620.6111111111111,
"y": 171,
"z": 0
},
"config": {
"protocol_type": ["AddProtocol", "PumpTransferProtocol", "CleanProtocol"]
},
"data": {}
},
{
"id": "pump_add",
"name": "pump_add",
"children": [],
"parent": "AddTestStation",
"type": "device",
"class": "virtual_pump",
"position": {
"x": 520.6111111111111,
"y": 300,
"z": 0
},
"config": {
"port": "VIRTUAL",
"max_volume": 25.0
},
"data": {
"status": "Idle"
}
},
{
"id": "stirrer",
"name": "stirrer",
"children": [],
"parent": "AddTestStation",
"type": "device",
"class": "virtual_stirrer",
"position": {
"x": 698.1111111111111,
"y": 478,
"z": 0
},
"config": {
"port": "VIRTUAL",
"max_temp": 100.0,
"max_speed": 1000.0
},
"data": {
"status": "Idle"
}
},
{
"id": "flask_1",
"name": "通用试剂瓶1",
"children": [],
"parent": "AddTestStation",
"type": "container",
"class": null,
"position": {
"x": 100,
"y": 428,
"z": 0
},
"config": {
"max_volume": 2000.0
},
"data": {
"liquid": []
}
},
{
"id": "flask_2",
"name": "通用试剂瓶2",
"children": [],
"parent": "AddTestStation",
"type": "container",
"class": null,
"position": {
"x": 250,
"y": 428,
"z": 0
},
"config": {
"max_volume": 2000.0
},
"data": {
"liquid": []
}
},
{
"id": "flask_3",
"name": "通用试剂瓶3",
"children": [],
"parent": "AddTestStation",
"type": "container",
"class": null,
"position": {
"x": 400,
"y": 428,
"z": 0
},
"config": {
"max_volume": 2000.0
},
"data": {
"liquid": []
}
},
{
"id": "flask_4",
"name": "通用试剂瓶4",
"children": [],
"parent": "AddTestStation",
"type": "container",
"class": null,
"position": {
"x": 550,
"y": 428,
"z": 0
},
"config": {
"max_volume": 2000.0
},
"data": {
"liquid": []
}
},
{
"id": "reactor",
"name": "reactor",
"children": [],
"parent": "AddTestStation",
"type": "container",
"class": null,
"position": {
"x": 698.1111111111111,
"y": 428,
"z": 0
},
"config": {
"max_volume": 5000.0
},
"data": {
"liquid": []
}
},
{
"id": "flask_air",
"name": "flask_air",
"children": [],
"parent": "AddTestStation",
"type": "container",
"class": null,
"position": {
"x": 800,
"y": 300,
"z": 0
},
"config": {
"max_volume": 2000.0
},
"data": {
"liquid": []
}
}
],
"links": [
{
"source": "stirrer",
"target": "reactor",
"type": "physical",
"port": {
"stirrer": "top",
"reactor": "bottom"
}
},
{
"source": "pump_add",
"target": "flask_1",
"type": "physical",
"port": {
"pump_add": "outlet",
"flask_1": "top"
}
},
{
"source": "pump_add",
"target": "flask_2",
"type": "physical",
"port": {
"pump_add": "inlet",
"flask_2": "top"
}
},
{
"source": "pump_add",
"target": "flask_3",
"type": "physical",
"port": {
"pump_add": "inlet",
"flask_3": "top"
}
},
{
"source": "pump_add",
"target": "flask_4",
"type": "physical",
"port": {
"pump_add": "inlet",
"flask_4": "top"
}
},
{
"source": "pump_add",
"target": "reactor",
"type": "physical",
"port": {
"pump_add": "outlet",
"reactor": "top"
}
},
{
"source": "pump_add",
"target": "flask_air",
"type": "physical",
"port": {
"pump_add": "inlet",
"flask_air": "top"
}
}
]
}

View File

@@ -0,0 +1,271 @@
{
"nodes": [
{
"id": "CentrifugeTestStation",
"name": "离心机测试工作站",
"children": [
"pump_add",
"flask_1",
"flask_2",
"flask_3",
"reactor",
"stirrer",
"centrifuge_1",
"flask_air"
],
"parent": null,
"type": "device",
"class": "workstation",
"position": {
"x": 620.6111111111111,
"y": 171,
"z": 0
},
"config": {
"protocol_type": ["AddProtocol", "PumpTransferProtocol", "CleanProtocol", "CentrifugeProtocol"]
},
"data": {}
},
{
"id": "pump_add",
"name": "pump_add",
"children": [],
"parent": "CentrifugeTestStation",
"type": "device",
"class": "virtual_pump",
"position": {
"x": 520.6111111111111,
"y": 300,
"z": 0
},
"config": {
"port": "VIRTUAL",
"max_volume": 25.0
},
"data": {
"status": "Idle"
}
},
{
"id": "stirrer",
"name": "stirrer",
"children": [],
"parent": "CentrifugeTestStation",
"type": "device",
"class": "virtual_stirrer",
"position": {
"x": 650.1111111111111,
"y": 478,
"z": 0
},
"config": {
"port": "VIRTUAL",
"max_temp": 100.0,
"max_speed": 1000.0
},
"data": {
"status": "Idle"
}
},
{
"id": "centrifuge_1",
"name": "离心机",
"children": [],
"parent": "CentrifugeTestStation",
"type": "device",
"class": "virtual_centrifuge",
"position": {
"x": 800,
"y": 300,
"z": 0
},
"config": {
"port": "VIRTUAL",
"max_speed": 15000.0,
"max_temp": 40.0,
"min_temp": 4.0
},
"data": {
"status": "Idle"
}
},
{
"id": "flask_1",
"name": "样品瓶1",
"children": [],
"parent": "CentrifugeTestStation",
"type": "container",
"class": null,
"position": {
"x": 100,
"y": 428,
"z": 0
},
"config": {
"max_volume": 1500.0
},
"data": {
"liquid": []
}
},
{
"id": "flask_2",
"name": "样品瓶2",
"children": [],
"parent": "CentrifugeTestStation",
"type": "container",
"class": null,
"position": {
"x": 250,
"y": 428,
"z": 0
},
"config": {
"max_volume": 1500.0
},
"data": {
"liquid": []
}
},
{
"id": "flask_3",
"name": "缓冲液瓶",
"children": [],
"parent": "CentrifugeTestStation",
"type": "container",
"class": null,
"position": {
"x": 400,
"y": 428,
"z": 0
},
"config": {
"max_volume": 2000.0
},
"data": {
"liquid": []
}
},
{
"id": "reactor",
"name": "反应器",
"children": [],
"parent": "CentrifugeTestStation",
"type": "container",
"class": null,
"position": {
"x": 698.1111111111111,
"y": 428,
"z": 0
},
"config": {
"max_volume": 5000.0
},
"data": {
"liquid": []
}
},
{
"id": "flask_air",
"name": "空气瓶",
"children": [],
"parent": "CentrifugeTestStation",
"type": "container",
"class": null,
"position": {
"x": 950,
"y": 300,
"z": 0
},
"config": {
"max_volume": 2000.0
},
"data": {
"liquid": []
}
}
],
"links": [
{
"source": "stirrer",
"target": "reactor",
"type": "physical",
"port": {
"stirrer": "top",
"reactor": "bottom"
}
},
{
"source": "pump_add",
"target": "flask_1",
"type": "physical",
"port": {
"pump_add": "outlet",
"flask_1": "top"
}
},
{
"source": "pump_add",
"target": "flask_2",
"type": "physical",
"port": {
"pump_add": "inlet",
"flask_2": "top"
}
},
{
"source": "pump_add",
"target": "flask_3",
"type": "physical",
"port": {
"pump_add": "inlet",
"flask_3": "top"
}
},
{
"source": "pump_add",
"target": "reactor",
"type": "physical",
"port": {
"pump_add": "outlet",
"reactor": "top"
}
},
{
"source": "pump_add",
"target": "flask_air",
"type": "physical",
"port": {
"pump_add": "inlet",
"flask_air": "top"
}
},
{
"source": "centrifuge_1",
"target": "reactor",
"type": "logical",
"port": {
"centrifuge_1": "chamber",
"reactor": "vessel"
}
},
{
"source": "centrifuge_1",
"target": "flask_1",
"type": "logical",
"port": {
"centrifuge_1": "chamber",
"flask_1": "vessel"
}
},
{
"source": "centrifuge_1",
"target": "flask_2",
"type": "logical",
"port": {
"centrifuge_1": "chamber",
"flask_2": "vessel"
}
}
]
}

View File

@@ -0,0 +1,362 @@
{
"nodes": [
{
"id": "CleanVesselTestStation",
"name": "容器清洗测试工作站",
"children": [
"transfer_pump_cleaner",
"heatchill_1",
"flask_water",
"flask_ethanol",
"flask_acetone",
"flask_waste",
"reactor",
"flask_buffer",
"flask_sample",
"flask_air"
],
"parent": null,
"type": "device",
"class": "workstation",
"position": {
"x": 620.6111111111111,
"y": 171,
"z": 0
},
"config": {
"protocol_type": ["CleanVesselProtocol", "TransferProtocol", "AddProtocol"]
},
"data": {}
},
{
"id": "transfer_pump_cleaner",
"name": "清洗转移泵",
"children": [],
"parent": "CleanVesselTestStation",
"type": "device",
"class": "virtual_transfer_pump",
"position": {
"x": 520.6111111111111,
"y": 300,
"z": 0
},
"config": {
"port": "VIRTUAL",
"max_volume": 50.0,
"transfer_rate": 10.0
},
"data": {
"status": "Idle",
"current_volume": 0.0,
"max_volume": 50.0,
"transfer_rate": 10.0,
"from_vessel": "",
"to_vessel": "",
"progress": 0.0,
"transferred_volume": 0.0,
"current_status": "Ready"
}
},
{
"id": "heatchill_1",
"name": "加热冷却器",
"children": [],
"parent": "CleanVesselTestStation",
"type": "device",
"class": "virtual_heatchill",
"position": {
"x": 650.1111111111111,
"y": 478,
"z": 0
},
"config": {
"port": "VIRTUAL",
"max_temp": 150.0,
"min_temp": -20.0
},
"data": {
"status": "Idle",
"current_temp": 25.0,
"target_temp": 25.0,
"vessel": "",
"purpose": "",
"progress": 0.0,
"current_status": "Ready"
}
},
{
"id": "flask_water",
"name": "水溶剂瓶",
"children": [],
"parent": "CleanVesselTestStation",
"type": "container",
"class": null,
"position": {
"x": 100,
"y": 428,
"z": 0
},
"config": {
"max_volume": 2000.0
},
"data": {
"liquid": [
{
"name": "water",
"volume": 1500.0,
"concentration": 100.0
}
]
}
},
{
"id": "flask_ethanol",
"name": "乙醇溶剂瓶",
"children": [],
"parent": "CleanVesselTestStation",
"type": "container",
"class": null,
"position": {
"x": 250,
"y": 428,
"z": 0
},
"config": {
"max_volume": 2000.0
},
"data": {
"liquid": [
{
"name": "ethanol",
"volume": 1500.0,
"concentration": 99.5
}
]
}
},
{
"id": "flask_acetone",
"name": "丙酮溶剂瓶",
"children": [],
"parent": "CleanVesselTestStation",
"type": "container",
"class": null,
"position": {
"x": 400,
"y": 428,
"z": 0
},
"config": {
"max_volume": 2000.0
},
"data": {
"liquid": [
{
"name": "acetone",
"volume": 1800.0,
"concentration": 99.9
}
]
}
},
{
"id": "flask_waste",
"name": "废液瓶",
"children": [],
"parent": "CleanVesselTestStation",
"type": "container",
"class": null,
"position": {
"x": 550,
"y": 428,
"z": 0
},
"config": {
"max_volume": 5000.0
},
"data": {
"liquid": []
}
},
{
"id": "reactor",
"name": "反应器",
"children": [],
"parent": "CleanVesselTestStation",
"type": "container",
"class": null,
"position": {
"x": 698.1111111111111,
"y": 428,
"z": 0
},
"config": {
"max_volume": 1000.0
},
"data": {
"liquid": [
{
"name": "residue",
"volume": 50.0,
"concentration": 100.0
}
]
}
},
{
"id": "flask_buffer",
"name": "缓冲液瓶",
"children": [],
"parent": "CleanVesselTestStation",
"type": "container",
"class": null,
"position": {
"x": 850,
"y": 428,
"z": 0
},
"config": {
"max_volume": 2000.0
},
"data": {
"liquid": [
{
"name": "buffer",
"volume": 1000.0,
"concentration": 10.0
}
]
}
},
{
"id": "flask_sample",
"name": "样品瓶",
"children": [],
"parent": "CleanVesselTestStation",
"type": "container",
"class": null,
"position": {
"x": 1000,
"y": 428,
"z": 0
},
"config": {
"max_volume": 500.0
},
"data": {
"liquid": []
}
},
{
"id": "flask_air",
"name": "空气瓶",
"children": [],
"parent": "CleanVesselTestStation",
"type": "container",
"class": null,
"position": {
"x": 950,
"y": 300,
"z": 0
},
"config": {
"max_volume": 2000.0
},
"data": {
"liquid": []
}
}
],
"links": [
{
"source": "transfer_pump_cleaner",
"target": "flask_water",
"type": "physical",
"port": {
"transfer_pump_cleaner": "1",
"flask_water": "top"
}
},
{
"source": "transfer_pump_cleaner",
"target": "flask_ethanol",
"type": "physical",
"port": {
"transfer_pump_cleaner": "2",
"flask_ethanol": "top"
}
},
{
"source": "transfer_pump_cleaner",
"target": "flask_acetone",
"type": "physical",
"port": {
"transfer_pump_cleaner": "3",
"flask_acetone": "top"
}
},
{
"source": "transfer_pump_cleaner",
"target": "flask_waste",
"type": "physical",
"port": {
"transfer_pump_cleaner": "4",
"flask_waste": "top"
}
},
{
"source": "transfer_pump_cleaner",
"target": "reactor",
"type": "physical",
"port": {
"transfer_pump_cleaner": "5",
"reactor": "top"
}
},
{
"source": "transfer_pump_cleaner",
"target": "flask_buffer",
"type": "physical",
"port": {
"transfer_pump_cleaner": "6",
"flask_buffer": "top"
}
},
{
"source": "transfer_pump_cleaner",
"target": "flask_sample",
"type": "physical",
"port": {
"transfer_pump_cleaner": "7",
"flask_sample": "top"
}
},
{
"source": "transfer_pump_cleaner",
"target": "flask_air",
"type": "physical",
"port": {
"transfer_pump_cleaner": "8",
"flask_air": "top"
}
},
{
"source": "heatchill_1",
"target": "reactor",
"type": "physical",
"port": {
"heatchill_1": "heating_element",
"reactor": "bottom"
}
},
{
"source": "heatchill_1",
"target": "flask_sample",
"type": "physical",
"port": {
"heatchill_1": "heating_element",
"flask_sample": "bottom"
}
}
]
}

View File

@@ -0,0 +1,343 @@
{
"nodes": [
{
"id": "DissolveTestStation",
"name": "溶解测试工作站",
"children": [
"transfer_pump_1",
"heatchill_1",
"stirrer_1",
"flask_water",
"flask_ethanol",
"flask_dmso",
"reactor",
"flask_sample",
"flask_buffer"
],
"parent": null,
"type": "device",
"class": "workstation",
"position": {
"x": 620.6111111111111,
"y": 171,
"z": 0
},
"config": {
"protocol_type": ["DissolveProtocol", "TransferProtocol", "HeatChillProtocol", "StirProtocol"]
},
"data": {}
},
{
"id": "transfer_pump_1",
"name": "转移泵",
"children": [],
"parent": "DissolveTestStation",
"type": "device",
"class": "virtual_transfer_pump",
"position": {
"x": 520.6111111111111,
"y": 300,
"z": 0
},
"config": {
"port": "VIRTUAL",
"max_volume": 50.0,
"transfer_rate": 10.0
},
"data": {
"status": "Idle",
"current_volume": 0.0,
"max_volume": 50.0,
"transfer_rate": 10.0,
"from_vessel": "",
"to_vessel": "",
"progress": 0.0,
"transferred_volume": 0.0,
"current_status": "Ready"
}
},
{
"id": "heatchill_1",
"name": "加热冷却器",
"children": [],
"parent": "DissolveTestStation",
"type": "device",
"class": "virtual_heatchill",
"position": {
"x": 650.1111111111111,
"y": 478,
"z": 0
},
"config": {
"port": "VIRTUAL",
"max_temp": 150.0,
"min_temp": -20.0
},
"data": {
"status": "Idle",
"current_temp": 25.0,
"target_temp": 25.0,
"vessel": "",
"purpose": "",
"progress": 0.0,
"current_status": "Ready"
}
},
{
"id": "stirrer_1",
"name": "搅拌器",
"children": [],
"parent": "DissolveTestStation",
"type": "device",
"class": "virtual_stirrer",
"position": {
"x": 750.1111111111111,
"y": 300,
"z": 0
},
"config": {
"port": "VIRTUAL",
"max_speed": 1000.0
},
"data": {
"status": "Idle"
}
},
{
"id": "flask_water",
"name": "水溶剂瓶",
"children": [],
"parent": "DissolveTestStation",
"type": "container",
"class": null,
"position": {
"x": 100,
"y": 428,
"z": 0
},
"config": {
"max_volume": 2000.0
},
"data": {
"liquid": [
{
"name": "water",
"volume": 1500.0,
"concentration": 100.0
}
]
}
},
{
"id": "flask_ethanol",
"name": "乙醇溶剂瓶",
"children": [],
"parent": "DissolveTestStation",
"type": "container",
"class": null,
"position": {
"x": 250,
"y": 428,
"z": 0
},
"config": {
"max_volume": 2000.0
},
"data": {
"liquid": [
{
"name": "ethanol",
"volume": 1500.0,
"concentration": 99.5
}
]
}
},
{
"id": "flask_dmso",
"name": "DMSO溶剂瓶",
"children": [],
"parent": "DissolveTestStation",
"type": "container",
"class": null,
"position": {
"x": 400,
"y": 428,
"z": 0
},
"config": {
"max_volume": 1000.0
},
"data": {
"liquid": [
{
"name": "dmso",
"volume": 800.0,
"concentration": 99.9
}
]
}
},
{
"id": "reactor",
"name": "反应器",
"children": [],
"parent": "DissolveTestStation",
"type": "container",
"class": null,
"position": {
"x": 698.1111111111111,
"y": 428,
"z": 0
},
"config": {
"max_volume": 1000.0
},
"data": {
"liquid": [
{
"name": "solid_sample",
"volume": 10.0,
"concentration": 100.0
}
]
}
},
{
"id": "flask_sample",
"name": "样品瓶",
"children": [],
"parent": "DissolveTestStation",
"type": "container",
"class": null,
"position": {
"x": 1000,
"y": 428,
"z": 0
},
"config": {
"max_volume": 500.0
},
"data": {
"liquid": []
}
},
{
"id": "flask_buffer",
"name": "缓冲液瓶",
"children": [],
"parent": "DissolveTestStation",
"type": "container",
"class": null,
"position": {
"x": 850,
"y": 428,
"z": 0
},
"config": {
"max_volume": 2000.0
},
"data": {
"liquid": [
{
"name": "buffer",
"volume": 1000.0,
"concentration": 10.0
}
]
}
}
],
"links": [
{
"source": "transfer_pump_1",
"target": "flask_water",
"type": "physical",
"port": {
"transfer_pump_1": "1",
"flask_water": "top"
}
},
{
"source": "transfer_pump_1",
"target": "flask_ethanol",
"type": "physical",
"port": {
"transfer_pump_1": "2",
"flask_ethanol": "top"
}
},
{
"source": "transfer_pump_1",
"target": "flask_dmso",
"type": "physical",
"port": {
"transfer_pump_1": "3",
"flask_dmso": "top"
}
},
{
"source": "transfer_pump_1",
"target": "reactor",
"type": "physical",
"port": {
"transfer_pump_1": "4",
"reactor": "top"
}
},
{
"source": "transfer_pump_1",
"target": "flask_sample",
"type": "physical",
"port": {
"transfer_pump_1": "5",
"flask_sample": "top"
}
},
{
"source": "transfer_pump_1",
"target": "flask_buffer",
"type": "physical",
"port": {
"transfer_pump_1": "6",
"flask_buffer": "top"
}
},
{
"source": "heatchill_1",
"target": "reactor",
"type": "physical",
"port": {
"heatchill_1": "heating_element",
"reactor": "bottom"
}
},
{
"source": "heatchill_1",
"target": "flask_sample",
"type": "physical",
"port": {
"heatchill_1": "heating_element",
"flask_sample": "bottom"
}
},
{
"source": "stirrer_1",
"target": "reactor",
"type": "physical",
"port": {
"stirrer_1": "stir_rod",
"reactor": "center"
}
},
{
"source": "stirrer_1",
"target": "flask_sample",
"type": "physical",
"port": {
"stirrer_1": "stir_rod",
"flask_sample": "center"
}
}
]
}

View File

@@ -0,0 +1,270 @@
{
"nodes": [
{
"id": "FilterTestStation",
"name": "过滤器测试工作站",
"children": [
"pump_add",
"flask_sample",
"flask_filtrate",
"flask_buffer",
"reactor",
"stirrer",
"filter_1",
"flask_air"
],
"parent": null,
"type": "device",
"class": "workstation",
"position": {
"x": 620.6111111111111,
"y": 171,
"z": 0
},
"config": {
"protocol_type": ["AddProtocol", "PumpTransferProtocol", "CleanProtocol", "FilterProtocol"]
},
"data": {}
},
{
"id": "pump_add",
"name": "pump_add",
"children": [],
"parent": "FilterTestStation",
"type": "device",
"class": "virtual_pump",
"position": {
"x": 520.6111111111111,
"y": 300,
"z": 0
},
"config": {
"port": "VIRTUAL",
"max_volume": 25.0
},
"data": {
"status": "Idle"
}
},
{
"id": "stirrer",
"name": "stirrer",
"children": [],
"parent": "FilterTestStation",
"type": "device",
"class": "virtual_stirrer",
"position": {
"x": 650.1111111111111,
"y": 478,
"z": 0
},
"config": {
"port": "VIRTUAL",
"max_temp": 100.0,
"max_speed": 1000.0
},
"data": {
"status": "Idle"
}
},
{
"id": "filter_1",
"name": "过滤器",
"children": [],
"parent": "FilterTestStation",
"type": "device",
"class": "virtual_filter",
"position": {
"x": 800,
"y": 300,
"z": 0
},
"config": {
"port": "VIRTUAL",
"max_temp": 100.0,
"max_stir_speed": 1000.0
},
"data": {
"status": "Idle"
}
},
{
"id": "flask_sample",
"name": "样品瓶",
"children": [],
"parent": "FilterTestStation",
"type": "container",
"class": null,
"position": {
"x": 100,
"y": 428,
"z": 0
},
"config": {
"max_volume": 1000.0
},
"data": {
"liquid": []
}
},
{
"id": "flask_filtrate",
"name": "滤液瓶",
"children": [],
"parent": "FilterTestStation",
"type": "container",
"class": null,
"position": {
"x": 250,
"y": 428,
"z": 0
},
"config": {
"max_volume": 1000.0
},
"data": {
"liquid": []
}
},
{
"id": "flask_buffer",
"name": "缓冲液瓶",
"children": [],
"parent": "FilterTestStation",
"type": "container",
"class": null,
"position": {
"x": 400,
"y": 428,
"z": 0
},
"config": {
"max_volume": 2000.0
},
"data": {
"liquid": []
}
},
{
"id": "reactor",
"name": "反应器",
"children": [],
"parent": "FilterTestStation",
"type": "container",
"class": null,
"position": {
"x": 698.1111111111111,
"y": 428,
"z": 0
},
"config": {
"max_volume": 5000.0
},
"data": {
"liquid": []
}
},
{
"id": "flask_air",
"name": "空气瓶",
"children": [],
"parent": "FilterTestStation",
"type": "container",
"class": null,
"position": {
"x": 950,
"y": 300,
"z": 0
},
"config": {
"max_volume": 2000.0
},
"data": {
"liquid": []
}
}
],
"links": [
{
"source": "stirrer",
"target": "reactor",
"type": "physical",
"port": {
"stirrer": "top",
"reactor": "bottom"
}
},
{
"source": "pump_add",
"target": "flask_sample",
"type": "physical",
"port": {
"pump_add": "outlet",
"flask_sample": "top"
}
},
{
"source": "pump_add",
"target": "flask_filtrate",
"type": "physical",
"port": {
"pump_add": "inlet",
"flask_filtrate": "top"
}
},
{
"source": "pump_add",
"target": "flask_buffer",
"type": "physical",
"port": {
"pump_add": "inlet",
"flask_buffer": "top"
}
},
{
"source": "pump_add",
"target": "reactor",
"type": "physical",
"port": {
"pump_add": "outlet",
"reactor": "top"
}
},
{
"source": "pump_add",
"target": "flask_air",
"type": "physical",
"port": {
"pump_add": "inlet",
"flask_air": "top"
}
},
{
"source": "filter_1",
"target": "reactor",
"type": "logical",
"port": {
"filter_1": "input",
"reactor": "vessel"
}
},
{
"source": "filter_1",
"target": "flask_sample",
"type": "logical",
"port": {
"filter_1": "input",
"flask_sample": "vessel"
}
},
{
"source": "filter_1",
"target": "flask_filtrate",
"type": "logical",
"port": {
"filter_1": "output",
"flask_filtrate": "vessel"
}
}
]
}

View File

@@ -0,0 +1,388 @@
{
"nodes": [
{
"id": "FilterThroughTestStation",
"name": "过滤通过测试工作站",
"children": [
"transfer_pump_1",
"filter_1",
"flask_ethanol",
"flask_water",
"flask_methanol",
"reactor",
"collection_flask",
"waste_flask",
"flask_sample",
"flask_celite",
"flask_silica"
],
"parent": null,
"type": "device",
"class": "workstation",
"position": {
"x": 620.6111111111111,
"y": 171,
"z": 0
},
"config": {
"protocol_type": ["FilterThroughProtocol", "TransferProtocol", "FilterProtocol"]
},
"data": {}
},
{
"id": "transfer_pump_1",
"name": "转移泵",
"children": [],
"parent": "FilterThroughTestStation",
"type": "device",
"class": "virtual_transfer_pump",
"position": {
"x": 520.6111111111111,
"y": 300,
"z": 0
},
"config": {
"port": "VIRTUAL",
"max_volume": 50.0,
"transfer_rate": 10.0
},
"data": {
"status": "Idle",
"current_volume": 0.0,
"max_volume": 50.0,
"transfer_rate": 10.0,
"from_vessel": "",
"to_vessel": "",
"progress": 0.0,
"transferred_volume": 0.0,
"current_status": "Ready"
}
},
{
"id": "filter_1",
"name": "过滤器",
"children": [],
"parent": "FilterThroughTestStation",
"type": "device",
"class": "virtual_filter",
"position": {
"x": 650.1111111111111,
"y": 478,
"z": 0
},
"config": {
"port": "VIRTUAL",
"max_temp": 100.0,
"max_stir_speed": 1000.0
},
"data": {
"status": "Idle",
"filter_state": "Ready",
"current_temp": 25.0,
"target_temp": 25.0,
"max_temp": 100.0,
"stir_speed": 0.0,
"max_stir_speed": 1000.0,
"filtered_volume": 0.0,
"progress": 0.0,
"message": ""
}
},
{
"id": "flask_ethanol",
"name": "乙醇溶剂瓶",
"children": [],
"parent": "FilterThroughTestStation",
"type": "container",
"class": null,
"position": {
"x": 100,
"y": 428,
"z": 0
},
"config": {
"max_volume": 2000.0
},
"data": {
"liquid": [
{
"name": "ethanol",
"volume": 1500.0,
"concentration": 99.5
}
]
}
},
{
"id": "flask_water",
"name": "水溶剂瓶",
"children": [],
"parent": "FilterThroughTestStation",
"type": "container",
"class": null,
"position": {
"x": 250,
"y": 428,
"z": 0
},
"config": {
"max_volume": 2000.0
},
"data": {
"liquid": [
{
"name": "water",
"volume": 1800.0,
"concentration": 100.0
}
]
}
},
{
"id": "flask_methanol",
"name": "甲醇溶剂瓶",
"children": [],
"parent": "FilterThroughTestStation",
"type": "container",
"class": null,
"position": {
"x": 400,
"y": 428,
"z": 0
},
"config": {
"max_volume": 1000.0
},
"data": {
"liquid": [
{
"name": "methanol",
"volume": 800.0,
"concentration": 99.9
}
]
}
},
{
"id": "reactor",
"name": "反应器",
"children": [],
"parent": "FilterThroughTestStation",
"type": "container",
"class": null,
"position": {
"x": 698.1111111111111,
"y": 428,
"z": 0
},
"config": {
"max_volume": 1000.0
},
"data": {
"liquid": [
{
"name": "crude_product",
"volume": 200.0,
"concentration": 80.0
}
]
}
},
{
"id": "collection_flask",
"name": "收集瓶",
"children": [],
"parent": "FilterThroughTestStation",
"type": "container",
"class": null,
"position": {
"x": 850,
"y": 428,
"z": 0
},
"config": {
"max_volume": 1000.0
},
"data": {
"liquid": []
}
},
{
"id": "waste_flask",
"name": "废液瓶",
"children": [],
"parent": "FilterThroughTestStation",
"type": "container",
"class": null,
"position": {
"x": 1000,
"y": 428,
"z": 0
},
"config": {
"max_volume": 2000.0
},
"data": {
"liquid": []
}
},
{
"id": "flask_sample",
"name": "样品瓶",
"children": [],
"parent": "FilterThroughTestStation",
"type": "container",
"class": null,
"position": {
"x": 550,
"y": 300,
"z": 0
},
"config": {
"max_volume": 500.0
},
"data": {
"liquid": [
{
"name": "sample_mixture",
"volume": 100.0,
"concentration": 50.0
}
]
}
},
{
"id": "flask_celite",
"name": "硅藻土容器",
"children": [],
"parent": "FilterThroughTestStation",
"type": "container",
"class": null,
"position": {
"x": 150,
"y": 300,
"z": 0
},
"config": {
"max_volume": 500.0
},
"data": {
"liquid": [
{
"name": "celite",
"volume": 50.0,
"concentration": 100.0
}
]
}
},
{
"id": "flask_silica",
"name": "硅胶容器",
"children": [],
"parent": "FilterThroughTestStation",
"type": "container",
"class": null,
"position": {
"x": 300,
"y": 300,
"z": 0
},
"config": {
"max_volume": 500.0
},
"data": {
"liquid": [
{
"name": "silica",
"volume": 30.0,
"concentration": 100.0
}
]
}
}
],
"links": [
{
"source": "transfer_pump_1",
"target": "flask_ethanol",
"type": "physical",
"port": {
"transfer_pump_1": "1",
"flask_ethanol": "top"
}
},
{
"source": "transfer_pump_1",
"target": "flask_water",
"type": "physical",
"port": {
"transfer_pump_1": "2",
"flask_water": "top"
}
},
{
"source": "transfer_pump_1",
"target": "flask_methanol",
"type": "physical",
"port": {
"transfer_pump_1": "3",
"flask_methanol": "top"
}
},
{
"source": "transfer_pump_1",
"target": "reactor",
"type": "physical",
"port": {
"transfer_pump_1": "4",
"reactor": "top"
}
},
{
"source": "transfer_pump_1",
"target": "collection_flask",
"type": "physical",
"port": {
"transfer_pump_1": "5",
"collection_flask": "top"
}
},
{
"source": "transfer_pump_1",
"target": "waste_flask",
"type": "physical",
"port": {
"transfer_pump_1": "6",
"waste_flask": "top"
}
},
{
"source": "transfer_pump_1",
"target": "flask_sample",
"type": "physical",
"port": {
"transfer_pump_1": "7",
"flask_sample": "top"
}
},
{
"source": "filter_1",
"target": "collection_flask",
"type": "physical",
"port": {
"filter_1": "filter_element",
"collection_flask": "top"
}
},
{
"source": "filter_1",
"target": "reactor",
"type": "physical",
"port": {
"filter_1": "filter_element",
"reactor": "top"
}
}
]
}

View File

@@ -0,0 +1,262 @@
{
"nodes": [
{
"id": "HeatChillTestStation",
"name": "加热冷却测试工作站",
"children": [
"pump_add",
"flask_sample",
"flask_buffer1",
"flask_buffer2",
"reactor",
"stirrer",
"heatchill_1",
"flask_air"
],
"parent": null,
"type": "device",
"class": "workstation",
"position": {
"x": 620.6111111111111,
"y": 171,
"z": 0
},
"config": {
"protocol_type": ["AddProtocol", "PumpTransferProtocol", "CleanProtocol", "HeatChillProtocol", "HeatChillStartProtocol", "HeatChillStopProtocol"]
},
"data": {}
},
{
"id": "pump_add",
"name": "pump_add",
"children": [],
"parent": "HeatChillTestStation",
"type": "device",
"class": "virtual_pump",
"position": {
"x": 520.6111111111111,
"y": 300,
"z": 0
},
"config": {
"port": "VIRTUAL",
"max_volume": 25.0
},
"data": {
"status": "Idle"
}
},
{
"id": "stirrer",
"name": "stirrer",
"children": [],
"parent": "HeatChillTestStation",
"type": "device",
"class": "virtual_stirrer",
"position": {
"x": 650.1111111111111,
"y": 478,
"z": 0
},
"config": {
"port": "VIRTUAL",
"max_temp": 100.0,
"max_speed": 1000.0
},
"data": {
"status": "Idle"
}
},
{
"id": "heatchill_1",
"name": "加热冷却器",
"children": [],
"parent": "HeatChillTestStation",
"type": "device",
"class": "virtual_heatchill",
"position": {
"x": 800,
"y": 300,
"z": 0
},
"config": {
"port": "VIRTUAL",
"max_temp": 200.0,
"min_temp": -80.0,
"max_stir_speed": 1000.0
},
"data": {
"status": "Idle"
}
},
{
"id": "flask_sample",
"name": "样品瓶",
"children": [],
"parent": "HeatChillTestStation",
"type": "container",
"class": null,
"position": {
"x": 100,
"y": 428,
"z": 0
},
"config": {
"max_volume": 1000.0
},
"data": {
"liquid": []
}
},
{
"id": "flask_buffer1",
"name": "缓冲液瓶1",
"children": [],
"parent": "HeatChillTestStation",
"type": "container",
"class": null,
"position": {
"x": 250,
"y": 428,
"z": 0
},
"config": {
"max_volume": 2000.0
},
"data": {
"liquid": []
}
},
{
"id": "flask_buffer2",
"name": "缓冲液瓶2",
"children": [],
"parent": "HeatChillTestStation",
"type": "container",
"class": null,
"position": {
"x": 400,
"y": 428,
"z": 0
},
"config": {
"max_volume": 2000.0
},
"data": {
"liquid": []
}
},
{
"id": "reactor",
"name": "反应器",
"children": [],
"parent": "HeatChillTestStation",
"type": "container",
"class": null,
"position": {
"x": 698.1111111111111,
"y": 428,
"z": 0
},
"config": {
"max_volume": 5000.0
},
"data": {
"liquid": []
}
},
{
"id": "flask_air",
"name": "空气瓶",
"children": [],
"parent": "HeatChillTestStation",
"type": "container",
"class": null,
"position": {
"x": 950,
"y": 300,
"z": 0
},
"config": {
"max_volume": 2000.0
},
"data": {
"liquid": []
}
}
],
"links": [
{
"source": "stirrer",
"target": "reactor",
"type": "physical",
"port": {
"stirrer": "top",
"reactor": "bottom"
}
},
{
"source": "pump_add",
"target": "flask_sample",
"type": "physical",
"port": {
"pump_add": "outlet",
"flask_sample": "top"
}
},
{
"source": "pump_add",
"target": "flask_buffer1",
"type": "physical",
"port": {
"pump_add": "inlet",
"flask_buffer1": "top"
}
},
{
"source": "pump_add",
"target": "flask_buffer2",
"type": "physical",
"port": {
"pump_add": "inlet",
"flask_buffer2": "top"
}
},
{
"source": "pump_add",
"target": "reactor",
"type": "physical",
"port": {
"pump_add": "outlet",
"reactor": "top"
}
},
{
"source": "pump_add",
"target": "flask_air",
"type": "physical",
"port": {
"pump_add": "inlet",
"flask_air": "top"
}
},
{
"source": "heatchill_1",
"target": "reactor",
"type": "logical",
"port": {
"heatchill_1": "heating_element",
"reactor": "vessel"
}
},
{
"source": "heatchill_1",
"target": "flask_sample",
"type": "logical",
"port": {
"heatchill_1": "heating_element",
"flask_sample": "vessel"
}
}
]
}

View File

@@ -0,0 +1,412 @@
{
"nodes": [
{
"id": "RunColumnTestStation",
"name": "柱层析测试工作站",
"children": [
"transfer_pump_1",
"column_1",
"flask_sample",
"flask_hexane",
"flask_ethyl_acetate",
"flask_methanol",
"collection_flask_1",
"collection_flask_2",
"collection_flask_3",
"waste_flask",
"reactor"
],
"parent": null,
"type": "device",
"class": "workstation",
"position": {
"x": 620.6111111111111,
"y": 171,
"z": 0
},
"config": {
"protocol_type": ["RunColumnProtocol", "TransferProtocol"]
},
"data": {}
},
{
"id": "transfer_pump_1",
"name": "转移泵",
"children": [],
"parent": "RunColumnTestStation",
"type": "device",
"class": "virtual_transfer_pump",
"position": {
"x": 520.6111111111111,
"y": 300,
"z": 0
},
"config": {
"port": "VIRTUAL",
"max_volume": 50.0,
"transfer_rate": 10.0
},
"data": {
"status": "Idle",
"current_volume": 0.0,
"max_volume": 50.0,
"transfer_rate": 10.0,
"from_vessel": "",
"to_vessel": "",
"progress": 0.0,
"transferred_volume": 0.0,
"current_status": "Ready"
}
},
{
"id": "column_1",
"name": "柱层析设备",
"children": [],
"parent": "RunColumnTestStation",
"type": "device",
"class": "virtual_column",
"position": {
"x": 650.1111111111111,
"y": 478,
"z": 0
},
"config": {
"port": "VIRTUAL",
"max_flow_rate": 5.0,
"column_length": 30.0,
"column_diameter": 2.5
},
"data": {
"status": "Idle",
"column_state": "Ready",
"current_flow_rate": 0.0,
"max_flow_rate": 5.0,
"column_length": 30.0,
"column_diameter": 2.5,
"processed_volume": 0.0,
"progress": 0.0,
"current_status": "Ready"
}
},
{
"id": "flask_sample",
"name": "样品瓶",
"children": [],
"parent": "RunColumnTestStation",
"type": "container",
"class": null,
"position": {
"x": 100,
"y": 428,
"z": 0
},
"config": {
"max_volume": 500.0
},
"data": {
"liquid": [
{
"name": "crude_mixture",
"volume": 200.0,
"concentration": 70.0
}
]
}
},
{
"id": "flask_hexane",
"name": "正己烷洗脱剂",
"children": [],
"parent": "RunColumnTestStation",
"type": "container",
"class": null,
"position": {
"x": 250,
"y": 428,
"z": 0
},
"config": {
"max_volume": 2000.0
},
"data": {
"liquid": [
{
"name": "hexane",
"volume": 1500.0,
"concentration": 99.8
}
]
}
},
{
"id": "flask_ethyl_acetate",
"name": "乙酸乙酯洗脱剂",
"children": [],
"parent": "RunColumnTestStation",
"type": "container",
"class": null,
"position": {
"x": 400,
"y": 428,
"z": 0
},
"config": {
"max_volume": 2000.0
},
"data": {
"liquid": [
{
"name": "ethyl_acetate",
"volume": 1500.0,
"concentration": 99.5
}
]
}
},
{
"id": "flask_methanol",
"name": "甲醇洗脱剂",
"children": [],
"parent": "RunColumnTestStation",
"type": "container",
"class": null,
"position": {
"x": 550,
"y": 428,
"z": 0
},
"config": {
"max_volume": 1000.0
},
"data": {
"liquid": [
{
"name": "methanol",
"volume": 800.0,
"concentration": 99.9
}
]
}
},
{
"id": "collection_flask_1",
"name": "收集瓶1",
"children": [],
"parent": "RunColumnTestStation",
"type": "container",
"class": null,
"position": {
"x": 750,
"y": 428,
"z": 0
},
"config": {
"max_volume": 1000.0
},
"data": {
"liquid": []
}
},
{
"id": "collection_flask_2",
"name": "收集瓶2",
"children": [],
"parent": "RunColumnTestStation",
"type": "container",
"class": null,
"position": {
"x": 900,
"y": 428,
"z": 0
},
"config": {
"max_volume": 1000.0
},
"data": {
"liquid": []
}
},
{
"id": "collection_flask_3",
"name": "收集瓶3",
"children": [],
"parent": "RunColumnTestStation",
"type": "container",
"class": null,
"position": {
"x": 1050,
"y": 428,
"z": 0
},
"config": {
"max_volume": 1000.0
},
"data": {
"liquid": []
}
},
{
"id": "waste_flask",
"name": "废液瓶",
"children": [],
"parent": "RunColumnTestStation",
"type": "container",
"class": null,
"position": {
"x": 1200,
"y": 428,
"z": 0
},
"config": {
"max_volume": 2000.0
},
"data": {
"liquid": []
}
},
{
"id": "reactor",
"name": "反应器",
"children": [],
"parent": "RunColumnTestStation",
"type": "container",
"class": null,
"position": {
"x": 698.1111111111111,
"y": 300,
"z": 0
},
"config": {
"max_volume": 1000.0
},
"data": {
"liquid": [
{
"name": "reaction_mixture",
"volume": 300.0,
"concentration": 85.0
}
]
}
}
],
"links": [
{
"source": "transfer_pump_1",
"target": "flask_sample",
"type": "physical",
"port": {
"transfer_pump_1": "1",
"flask_sample": "top"
}
},
{
"source": "transfer_pump_1",
"target": "flask_hexane",
"type": "physical",
"port": {
"transfer_pump_1": "2",
"flask_hexane": "top"
}
},
{
"source": "transfer_pump_1",
"target": "flask_ethyl_acetate",
"type": "physical",
"port": {
"transfer_pump_1": "3",
"flask_ethyl_acetate": "top"
}
},
{
"source": "transfer_pump_1",
"target": "flask_methanol",
"type": "physical",
"port": {
"transfer_pump_1": "4",
"flask_methanol": "top"
}
},
{
"source": "transfer_pump_1",
"target": "column_1",
"type": "physical",
"port": {
"transfer_pump_1": "5",
"column_1": "inlet"
}
},
{
"source": "transfer_pump_1",
"target": "collection_flask_1",
"type": "physical",
"port": {
"transfer_pump_1": "6",
"collection_flask_1": "top"
}
},
{
"source": "transfer_pump_1",
"target": "collection_flask_2",
"type": "physical",
"port": {
"transfer_pump_1": "7",
"collection_flask_2": "top"
}
},
{
"source": "transfer_pump_1",
"target": "collection_flask_3",
"type": "physical",
"port": {
"transfer_pump_1": "8",
"collection_flask_3": "top"
}
},
{
"source": "transfer_pump_1",
"target": "waste_flask",
"type": "physical",
"port": {
"transfer_pump_1": "9",
"waste_flask": "top"
}
},
{
"source": "transfer_pump_1",
"target": "reactor",
"type": "physical",
"port": {
"transfer_pump_1": "10",
"reactor": "top"
}
},
{
"source": "column_1",
"target": "collection_flask_1",
"type": "physical",
"port": {
"column_1": "outlet",
"collection_flask_1": "top"
}
},
{
"source": "column_1",
"target": "collection_flask_2",
"type": "physical",
"port": {
"column_1": "outlet",
"collection_flask_2": "top"
}
},
{
"source": "column_1",
"target": "collection_flask_3",
"type": "physical",
"port": {
"column_1": "outlet",
"collection_flask_3": "top"
}
}
]
}

View File

@@ -0,0 +1,250 @@
{
"nodes": [
{
"id": "StirTestStation",
"name": "搅拌测试工作站",
"children": [
"pump_add",
"flask_sample",
"flask_buffer1",
"flask_buffer2",
"reactor",
"stirrer",
"flask_waste",
"flask_air"
],
"parent": null,
"type": "device",
"class": "workstation",
"position": {
"x": 620.6111111111111,
"y": 171,
"z": 0
},
"config": {
"protocol_type": ["AddProtocol", "PumpTransferProtocol", "CleanProtocol", "StirProtocol", "StartStirProtocol", "StopStirProtocol"]
},
"data": {}
},
{
"id": "pump_add",
"name": "添加泵",
"children": [],
"parent": "StirTestStation",
"type": "device",
"class": "virtual_pump",
"position": {
"x": 520.6111111111111,
"y": 300,
"z": 0
},
"config": {
"port": "VIRTUAL",
"max_volume": 25.0
},
"data": {
"status": "Idle"
}
},
{
"id": "stirrer",
"name": "搅拌器",
"children": [],
"parent": "StirTestStation",
"type": "device",
"class": "virtual_stirrer",
"position": {
"x": 650.1111111111111,
"y": 478,
"z": 0
},
"config": {
"port": "VIRTUAL",
"max_temp": 100.0,
"max_speed": 1000.0
},
"data": {
"status": "Idle"
}
},
{
"id": "flask_sample",
"name": "样品瓶",
"children": [],
"parent": "StirTestStation",
"type": "container",
"class": null,
"position": {
"x": 100,
"y": 428,
"z": 0
},
"config": {
"max_volume": 1000.0
},
"data": {
"liquid": []
}
},
{
"id": "flask_buffer1",
"name": "缓冲液瓶1",
"children": [],
"parent": "StirTestStation",
"type": "container",
"class": null,
"position": {
"x": 250,
"y": 428,
"z": 0
},
"config": {
"max_volume": 2000.0
},
"data": {
"liquid": []
}
},
{
"id": "flask_buffer2",
"name": "缓冲液瓶2",
"children": [],
"parent": "StirTestStation",
"type": "container",
"class": null,
"position": {
"x": 400,
"y": 428,
"z": 0
},
"config": {
"max_volume": 2000.0
},
"data": {
"liquid": []
}
},
{
"id": "reactor",
"name": "反应器",
"children": [],
"parent": "StirTestStation",
"type": "container",
"class": null,
"position": {
"x": 698.1111111111111,
"y": 428,
"z": 0
},
"config": {
"max_volume": 5000.0
},
"data": {
"liquid": []
}
},
{
"id": "flask_waste",
"name": "废液瓶",
"children": [],
"parent": "StirTestStation",
"type": "container",
"class": null,
"position": {
"x": 850,
"y": 428,
"z": 0
},
"config": {
"max_volume": 3000.0
},
"data": {
"liquid": []
}
},
{
"id": "flask_air",
"name": "空气瓶",
"children": [],
"parent": "StirTestStation",
"type": "container",
"class": null,
"position": {
"x": 950,
"y": 300,
"z": 0
},
"config": {
"max_volume": 2000.0
},
"data": {
"liquid": []
}
}
],
"links": [
{
"source": "stirrer",
"target": "reactor",
"type": "physical",
"port": {
"stirrer": "top",
"reactor": "bottom"
}
},
{
"source": "pump_add",
"target": "flask_sample",
"type": "physical",
"port": {
"pump_add": "inlet",
"flask_sample": "top"
}
},
{
"source": "pump_add",
"target": "flask_buffer1",
"type": "physical",
"port": {
"pump_add": "inlet",
"flask_buffer1": "top"
}
},
{
"source": "pump_add",
"target": "flask_buffer2",
"type": "physical",
"port": {
"pump_add": "inlet",
"flask_buffer2": "top"
}
},
{
"source": "pump_add",
"target": "reactor",
"type": "physical",
"port": {
"pump_add": "outlet",
"reactor": "top"
}
},
{
"source": "pump_add",
"target": "flask_waste",
"type": "physical",
"port": {
"pump_add": "outlet",
"flask_waste": "top"
}
},
{
"source": "pump_add",
"target": "flask_air",
"type": "physical",
"port": {
"pump_add": "inlet",
"flask_air": "top"
}
}
]
}

View File

@@ -0,0 +1,249 @@
{
"nodes": [
{
"id": "TransferTestStation",
"name": "液体转移测试工作站",
"children": [
"transfer_pump",
"flask_source1",
"flask_source2",
"flask_target1",
"flask_target2",
"reactor",
"flask_waste",
"flask_rinsing"
],
"parent": null,
"type": "device",
"class": "workstation",
"position": {
"x": 620.6111111111111,
"y": 171,
"z": 0
},
"config": {
"protocol_type": ["TransferProtocol"]
},
"data": {}
},
{
"id": "transfer_pump",
"name": "转移泵",
"children": [],
"parent": "TransferTestStation",
"type": "device",
"class": "virtual_transfer_pump",
"position": {
"x": 520.6111111111111,
"y": 300,
"z": 0
},
"config": {
"port": "VIRTUAL",
"max_volume": 50.0,
"transfer_rate": 5.0
},
"data": {
"status": "Idle"
}
},
{
"id": "flask_source1",
"name": "源容器1",
"children": [],
"parent": "TransferTestStation",
"type": "container",
"class": null,
"position": {
"x": 100,
"y": 428,
"z": 0
},
"config": {
"max_volume": 1000.0
},
"data": {
"liquid": []
}
},
{
"id": "flask_source2",
"name": "源容器2",
"children": [],
"parent": "TransferTestStation",
"type": "container",
"class": null,
"position": {
"x": 250,
"y": 428,
"z": 0
},
"config": {
"max_volume": 1000.0
},
"data": {
"liquid": []
}
},
{
"id": "flask_target1",
"name": "目标容器1",
"children": [],
"parent": "TransferTestStation",
"type": "container",
"class": null,
"position": {
"x": 400,
"y": 428,
"z": 0
},
"config": {
"max_volume": 1000.0
},
"data": {
"liquid": []
}
},
{
"id": "flask_target2",
"name": "目标容器2",
"children": [],
"parent": "TransferTestStation",
"type": "container",
"class": null,
"position": {
"x": 550,
"y": 428,
"z": 0
},
"config": {
"max_volume": 1000.0
},
"data": {
"liquid": []
}
},
{
"id": "reactor",
"name": "反应器",
"children": [],
"parent": "TransferTestStation",
"type": "container",
"class": null,
"position": {
"x": 698.1111111111111,
"y": 428,
"z": 0
},
"config": {
"max_volume": 2000.0
},
"data": {
"liquid": []
}
},
{
"id": "flask_waste",
"name": "废液瓶",
"children": [],
"parent": "TransferTestStation",
"type": "container",
"class": null,
"position": {
"x": 850,
"y": 428,
"z": 0
},
"config": {
"max_volume": 2000.0
},
"data": {
"liquid": []
}
},
{
"id": "flask_rinsing",
"name": "冲洗液瓶",
"children": [],
"parent": "TransferTestStation",
"type": "container",
"class": null,
"position": {
"x": 950,
"y": 300,
"z": 0
},
"config": {
"max_volume": 1000.0
},
"data": {
"liquid": []
}
}
],
"links": [
{
"source": "transfer_pump",
"target": "flask_source1",
"type": "physical",
"port": {
"transfer_pump": "inlet",
"flask_source1": "top"
}
},
{
"source": "transfer_pump",
"target": "flask_source2",
"type": "physical",
"port": {
"transfer_pump": "inlet",
"flask_source2": "top"
}
},
{
"source": "transfer_pump",
"target": "flask_target1",
"type": "physical",
"port": {
"transfer_pump": "outlet",
"flask_target1": "top"
}
},
{
"source": "transfer_pump",
"target": "flask_target2",
"type": "physical",
"port": {
"transfer_pump": "outlet",
"flask_target2": "top"
}
},
{
"source": "transfer_pump",
"target": "reactor",
"type": "physical",
"port": {
"transfer_pump": "outlet",
"reactor": "top"
}
},
{
"source": "transfer_pump",
"target": "flask_waste",
"type": "physical",
"port": {
"transfer_pump": "outlet",
"flask_waste": "top"
}
},
{
"source": "transfer_pump",
"target": "flask_rinsing",
"type": "physical",
"port": {
"transfer_pump": "inlet",
"flask_rinsing": "top"
}
}
]
}

View File

@@ -0,0 +1,494 @@
{
"nodes": [
{
"id": "WashSolidTestStation",
"name": "固体清洗测试工作站",
"children": [
"transfer_pump_1",
"heatchill_1",
"stirrer_1",
"filter_1",
"flask_ethanol",
"flask_water",
"flask_acetone",
"flask_methanol",
"reactor",
"collection_flask",
"waste_flask",
"flask_sample",
"filtrate_flask"
],
"parent": null,
"type": "device",
"class": "workstation",
"position": {
"x": 620.6111111111111,
"y": 171,
"z": 0
},
"config": {
"protocol_type": ["WashSolidProtocol", "TransferProtocol", "FilterProtocol", "HeatChillProtocol", "StirProtocol"]
},
"data": {}
},
{
"id": "transfer_pump_1",
"name": "转移泵",
"children": [],
"parent": "WashSolidTestStation",
"type": "device",
"class": "virtual_transfer_pump",
"position": {
"x": 520.6111111111111,
"y": 300,
"z": 0
},
"config": {
"port": "VIRTUAL",
"max_volume": 50.0,
"transfer_rate": 10.0
},
"data": {
"status": "Idle",
"current_volume": 0.0,
"max_volume": 50.0,
"transfer_rate": 10.0,
"from_vessel": "",
"to_vessel": "",
"progress": 0.0,
"transferred_volume": 0.0,
"current_status": "Ready"
}
},
{
"id": "heatchill_1",
"name": "加热冷却器",
"children": [],
"parent": "WashSolidTestStation",
"type": "device",
"class": "virtual_heatchill",
"position": {
"x": 650.1111111111111,
"y": 478,
"z": 0
},
"config": {
"port": "VIRTUAL",
"max_temp": 150.0,
"min_temp": -20.0
},
"data": {
"status": "Idle",
"current_temp": 25.0,
"target_temp": 25.0,
"vessel": "",
"purpose": "",
"progress": 0.0,
"current_status": "Ready"
}
},
{
"id": "stirrer_1",
"name": "搅拌器",
"children": [],
"parent": "WashSolidTestStation",
"type": "device",
"class": "virtual_stirrer",
"position": {
"x": 750.1111111111111,
"y": 300,
"z": 0
},
"config": {
"port": "VIRTUAL",
"max_speed": 1000.0
},
"data": {
"status": "Idle"
}
},
{
"id": "filter_1",
"name": "过滤器",
"children": [],
"parent": "WashSolidTestStation",
"type": "device",
"class": "virtual_filter",
"position": {
"x": 850.1111111111111,
"y": 478,
"z": 0
},
"config": {
"port": "VIRTUAL",
"max_temp": 100.0,
"max_stir_speed": 1000.0
},
"data": {
"status": "Idle",
"filter_state": "Ready",
"current_temp": 25.0,
"target_temp": 25.0,
"max_temp": 100.0,
"stir_speed": 0.0,
"max_stir_speed": 1000.0,
"filtered_volume": 0.0,
"progress": 0.0,
"message": ""
}
},
{
"id": "flask_ethanol",
"name": "乙醇清洗剂",
"children": [],
"parent": "WashSolidTestStation",
"type": "container",
"class": null,
"position": {
"x": 100,
"y": 428,
"z": 0
},
"config": {
"max_volume": 2000.0
},
"data": {
"liquid": [
{
"name": "ethanol",
"volume": 1500.0,
"concentration": 99.5
}
]
}
},
{
"id": "flask_water",
"name": "水清洗剂",
"children": [],
"parent": "WashSolidTestStation",
"type": "container",
"class": null,
"position": {
"x": 250,
"y": 428,
"z": 0
},
"config": {
"max_volume": 2000.0
},
"data": {
"liquid": [
{
"name": "water",
"volume": 1800.0,
"concentration": 100.0
}
]
}
},
{
"id": "flask_acetone",
"name": "丙酮清洗剂",
"children": [],
"parent": "WashSolidTestStation",
"type": "container",
"class": null,
"position": {
"x": 400,
"y": 428,
"z": 0
},
"config": {
"max_volume": 1000.0
},
"data": {
"liquid": [
{
"name": "acetone",
"volume": 800.0,
"concentration": 99.8
}
]
}
},
{
"id": "flask_methanol",
"name": "甲醇清洗剂",
"children": [],
"parent": "WashSolidTestStation",
"type": "container",
"class": null,
"position": {
"x": 550,
"y": 428,
"z": 0
},
"config": {
"max_volume": 1000.0
},
"data": {
"liquid": [
{
"name": "methanol",
"volume": 800.0,
"concentration": 99.9
}
]
}
},
{
"id": "reactor",
"name": "反应器",
"children": [],
"parent": "WashSolidTestStation",
"type": "container",
"class": null,
"position": {
"x": 698.1111111111111,
"y": 428,
"z": 0
},
"config": {
"max_volume": 1000.0
},
"data": {
"liquid": [
{
"name": "solid_product",
"volume": 50.0,
"concentration": 100.0
}
]
}
},
{
"id": "collection_flask",
"name": "收集瓶",
"children": [],
"parent": "WashSolidTestStation",
"type": "container",
"class": null,
"position": {
"x": 850,
"y": 300,
"z": 0
},
"config": {
"max_volume": 1000.0
},
"data": {
"liquid": []
}
},
{
"id": "waste_flask",
"name": "废液瓶",
"children": [],
"parent": "WashSolidTestStation",
"type": "container",
"class": null,
"position": {
"x": 1000,
"y": 428,
"z": 0
},
"config": {
"max_volume": 2000.0
},
"data": {
"liquid": []
}
},
{
"id": "flask_sample",
"name": "样品瓶",
"children": [],
"parent": "WashSolidTestStation",
"type": "container",
"class": null,
"position": {
"x": 1150,
"y": 300,
"z": 0
},
"config": {
"max_volume": 500.0
},
"data": {
"liquid": [
{
"name": "crude_solid",
"volume": 30.0,
"concentration": 80.0
}
]
}
},
{
"id": "filtrate_flask",
"name": "滤液收集瓶",
"children": [],
"parent": "WashSolidTestStation",
"type": "container",
"class": null,
"position": {
"x": 1000,
"y": 300,
"z": 0
},
"config": {
"max_volume": 1500.0
},
"data": {
"liquid": []
}
}
],
"links": [
{
"source": "transfer_pump_1",
"target": "flask_ethanol",
"type": "physical",
"port": {
"transfer_pump_1": "1",
"flask_ethanol": "top"
}
},
{
"source": "transfer_pump_1",
"target": "flask_water",
"type": "physical",
"port": {
"transfer_pump_1": "2",
"flask_water": "top"
}
},
{
"source": "transfer_pump_1",
"target": "flask_acetone",
"type": "physical",
"port": {
"transfer_pump_1": "3",
"flask_acetone": "top"
}
},
{
"source": "transfer_pump_1",
"target": "flask_methanol",
"type": "physical",
"port": {
"transfer_pump_1": "4",
"flask_methanol": "top"
}
},
{
"source": "transfer_pump_1",
"target": "reactor",
"type": "physical",
"port": {
"transfer_pump_1": "5",
"reactor": "top"
}
},
{
"source": "transfer_pump_1",
"target": "collection_flask",
"type": "physical",
"port": {
"transfer_pump_1": "6",
"collection_flask": "top"
}
},
{
"source": "transfer_pump_1",
"target": "waste_flask",
"type": "physical",
"port": {
"transfer_pump_1": "7",
"waste_flask": "top"
}
},
{
"source": "transfer_pump_1",
"target": "flask_sample",
"type": "physical",
"port": {
"transfer_pump_1": "8",
"flask_sample": "top"
}
},
{
"source": "transfer_pump_1",
"target": "filtrate_flask",
"type": "physical",
"port": {
"transfer_pump_1": "9",
"filtrate_flask": "top"
}
},
{
"source": "heatchill_1",
"target": "reactor",
"type": "physical",
"port": {
"heatchill_1": "heating_element",
"reactor": "bottom"
}
},
{
"source": "heatchill_1",
"target": "flask_sample",
"type": "physical",
"port": {
"heatchill_1": "heating_element",
"flask_sample": "bottom"
}
},
{
"source": "stirrer_1",
"target": "reactor",
"type": "physical",
"port": {
"stirrer_1": "stir_rod",
"reactor": "center"
}
},
{
"source": "stirrer_1",
"target": "flask_sample",
"type": "physical",
"port": {
"stirrer_1": "stir_rod",
"flask_sample": "center"
}
},
{
"source": "filter_1",
"target": "reactor",
"type": "physical",
"port": {
"filter_1": "filter_element",
"reactor": "top"
}
},
{
"source": "filter_1",
"target": "flask_sample",
"type": "physical",
"port": {
"filter_1": "filter_element",
"flask_sample": "top"
}
},
{
"source": "filter_1",
"target": "filtrate_flask",
"type": "physical",
"port": {
"filter_1": "filter_element",
"filtrate_flask": "top"
}
}
]
}

View File

@@ -5,6 +5,17 @@ from .separate_protocol import generate_separate_protocol
from .evaporate_protocol import generate_evaporate_protocol
from .evacuateandrefill_protocol import generate_evacuateandrefill_protocol
from .agv_transfer_protocol import generate_agv_transfer_protocol
from .add_protocol import generate_add_protocol
from .centrifuge_protocol import generate_centrifuge_protocol
from .filter_protocol import generate_filter_protocol
from .heatchill_protocol import generate_heat_chill_protocol, generate_heat_chill_start_protocol, generate_heat_chill_stop_protocol
from .stir_protocol import generate_stir_protocol, generate_start_stir_protocol, generate_stop_stir_protocol
from .transfer_protocol import generate_transfer_protocol
from .clean_vessel_protocol import generate_clean_vessel_protocol
from .dissolve_protocol import generate_dissolve_protocol
from .filter_through_protocol import generate_filter_through_protocol
from .run_column_protocol import generate_run_column_protocol
from .wash_solid_protocol import generate_wash_solid_protocol
# Define a dictionary of protocol generators.
@@ -15,5 +26,19 @@ action_protocol_generators = {
EvaporateProtocol: generate_evaporate_protocol,
EvacuateAndRefillProtocol: generate_evacuateandrefill_protocol,
AGVTransferProtocol: generate_agv_transfer_protocol,
CentrifugeProtocol: generate_centrifuge_protocol,
AddProtocol: generate_add_protocol,
FilterProtocol: generate_filter_protocol,
HeatChillProtocol: generate_heat_chill_protocol,
HeatChillStartProtocol: generate_heat_chill_start_protocol,
HeatChillStopProtocol: generate_heat_chill_stop_protocol,
StirProtocol: generate_stir_protocol,
StartStirProtocol: generate_start_stir_protocol,
StopStirProtocol: generate_stop_stir_protocol,
TransferProtocol: generate_transfer_protocol,
CleanVesselProtocol: generate_clean_vessel_protocol,
DissolveProtocol: generate_dissolve_protocol,
FilterThroughProtocol: generate_filter_through_protocol,
RunColumnProtocol: generate_run_column_protocol,
WashSolidProtocol: generate_wash_solid_protocol,
}
# End Protocols

View File

@@ -0,0 +1,74 @@
import networkx as nx
from typing import List, Dict, Any
def generate_add_protocol(
G: nx.DiGraph,
vessel: str,
reagent: str,
volume: float,
mass: float,
amount: str,
time: float,
stir: bool,
stir_speed: float,
viscous: bool,
purpose: str
) -> List[Dict[str, Any]]:
"""
生成添加试剂的协议序列 - 严格按照 Add.action
"""
action_sequence = []
# 如果指定了体积,执行液体转移
if volume > 0:
# 查找可用的试剂瓶
available_flasks = [node for node in G.nodes()
if node.startswith('flask_')
and G.nodes[node].get('type') == 'container']
if not available_flasks:
raise ValueError("没有找到可用的试剂容器")
reagent_vessel = available_flasks[0]
# 查找泵设备
pump_nodes = [node for node in G.nodes()
if G.nodes[node].get('class') == 'virtual_pump']
if pump_nodes:
pump_id = pump_nodes[0]
action_sequence.append({
"device_id": pump_id,
"action_name": "transfer",
"action_kwargs": {
"from_vessel": reagent_vessel,
"to_vessel": vessel,
"volume": volume,
"amount": amount,
"time": time,
"viscous": viscous,
"rinsing_solvent": "",
"rinsing_volume": 0.0,
"rinsing_repeats": 0,
"solid": False
}
})
# 如果需要搅拌,使用 StartStir 而不是 Stir
if stir:
stirrer_nodes = [node for node in G.nodes()
if G.nodes[node].get('class') == 'virtual_stirrer']
if stirrer_nodes:
stirrer_id = stirrer_nodes[0]
action_sequence.append({
"device_id": stirrer_id,
"action_name": "start_stir", # 使用 start_stir 而不是 stir
"action_kwargs": {
"vessel": vessel,
"stir_speed": stir_speed,
"purpose": f"添加 {reagent} 后搅拌"
}
})
return action_sequence

View File

@@ -0,0 +1,123 @@
from typing import List, Dict, Any
import networkx as nx
def generate_centrifuge_protocol(
G: nx.DiGraph,
vessel: str,
speed: float,
time: float,
temp: float = 25.0
) -> List[Dict[str, Any]]:
"""
生成离心操作的协议序列
Args:
G: 有向图,节点为设备和容器
vessel: 离心容器名称
speed: 离心速度 (rpm)
time: 离心时间 (秒)
temp: 温度 (摄氏度,可选)
Returns:
List[Dict[str, Any]]: 离心操作的动作序列
Raises:
ValueError: 当找不到离心机设备时抛出异常
Examples:
centrifuge_protocol = generate_centrifuge_protocol(G, "reactor", 5000, 300, 4.0)
"""
action_sequence = []
# 查找离心机设备
centrifuge_nodes = [node for node in G.nodes()
if G.nodes[node].get('class') == 'virtual_centrifuge']
if not centrifuge_nodes:
raise ValueError("没有找到可用的离心机设备")
# 使用第一个可用的离心机
centrifuge_id = centrifuge_nodes[0]
# 验证容器是否存在
if vessel not in G.nodes():
raise ValueError(f"容器 {vessel} 不存在于图中")
# 执行离心操作
action_sequence.append({
"device_id": centrifuge_id,
"action_name": "centrifuge",
"action_kwargs": {
"vessel": vessel,
"speed": speed,
"time": time,
"temp": temp
}
})
return action_sequence
def generate_multi_step_centrifuge_protocol(
G: nx.DiGraph,
vessel: str,
steps: List[Dict[str, Any]]
) -> List[Dict[str, Any]]:
"""
生成多步骤离心操作的协议序列
Args:
G: 有向图,节点为设备和容器
vessel: 离心容器名称
steps: 离心步骤列表,每个步骤包含 speed, time, temp 参数
Returns:
List[Dict[str, Any]]: 多步骤离心操作的动作序列
Examples:
steps = [
{"speed": 1000, "time": 60, "temp": 4.0}, # 低速预离心
{"speed": 12000, "time": 600, "temp": 4.0} # 高速离心
]
protocol = generate_multi_step_centrifuge_protocol(G, "reactor", steps)
"""
action_sequence = []
# 查找离心机设备
centrifuge_nodes = [node for node in G.nodes()
if G.nodes[node].get('class') == 'virtual_centrifuge']
if not centrifuge_nodes:
raise ValueError("没有找到可用的离心机设备")
centrifuge_id = centrifuge_nodes[0]
# 验证容器是否存在
if vessel not in G.nodes():
raise ValueError(f"容器 {vessel} 不存在于图中")
# 执行每个离心步骤
for i, step in enumerate(steps):
speed = step.get('speed', 5000)
time = step.get('time', 300)
temp = step.get('temp', 25.0)
action_sequence.append({
"device_id": centrifuge_id,
"action_name": "centrifuge",
"action_kwargs": {
"vessel": vessel,
"speed": speed,
"time": time,
"temp": temp
}
})
# 步骤间等待时间(除了最后一步)
if i < len(steps) - 1:
action_sequence.append({
"action_name": "wait",
"action_kwargs": {"time": 3}
})
return action_sequence

View File

@@ -0,0 +1,126 @@
from typing import List, Dict, Any
import networkx as nx
def generate_clean_vessel_protocol(
G: nx.DiGraph,
vessel: str,
solvent: str,
volume: float,
temp: float,
repeats: int = 1
) -> List[Dict[str, Any]]:
"""
生成容器清洗操作的协议序列使用transfer操作实现清洗
Args:
G: 有向图,节点为设备和容器
vessel: 要清洗的容器名称
solvent: 用于清洗容器的溶剂名称
volume: 清洗溶剂的体积
temp: 清洗时的温度
repeats: 清洗操作的重复次数,默认为 1
Returns:
List[Dict[str, Any]]: 容器清洗操作的动作序列
Raises:
ValueError: 当找不到必要的设备时抛出异常
Examples:
clean_vessel_protocol = generate_clean_vessel_protocol(G, "reactor", "water", 50.0, 25.0, 2)
"""
action_sequence = []
# 查找虚拟转移泵设备进行清洗操作
pump_nodes = [node for node in G.nodes()
if G.nodes[node].get('class') == 'virtual_transfer_pump']
if not pump_nodes:
raise ValueError("没有找到可用的转移泵设备进行容器清洗")
pump_id = pump_nodes[0]
# 验证容器是否存在
if vessel not in G.nodes():
raise ValueError(f"容器 {vessel} 不存在于图中")
# 查找溶剂容器
solvent_vessel = f"flask_{solvent}"
if solvent_vessel not in G.nodes():
raise ValueError(f"溶剂容器 {solvent_vessel} 不存在于图中")
# 查找废液容器
waste_vessel = "flask_waste"
if waste_vessel not in G.nodes():
raise ValueError(f"废液容器 {waste_vessel} 不存在于图中")
# 查找加热设备(如果需要加热)
heatchill_nodes = [node for node in G.nodes()
if G.nodes[node].get('class') == 'virtual_heatchill']
heatchill_id = heatchill_nodes[0] if heatchill_nodes else None
# 执行清洗操作序列
for repeat in range(repeats):
# 1. 如果需要加热,先设置温度
if temp > 25.0 and heatchill_id:
action_sequence.append({
"device_id": heatchill_id,
"action_name": "heat_chill_start",
"action_kwargs": {
"vessel": vessel,
"temp": temp,
"purpose": "cleaning"
}
})
# 2. 使用transfer操作从溶剂容器转移清洗溶剂到目标容器
action_sequence.append({
"device_id": pump_id,
"action_name": "transfer",
"action_kwargs": {
"from_vessel": solvent_vessel,
"to_vessel": vessel,
"volume": volume,
"amount": f"cleaning with {solvent} - cycle {repeat + 1}",
"time": 0.0,
"viscous": False,
"rinsing_solvent": "",
"rinsing_volume": 0.0,
"rinsing_repeats": 0,
"solid": False
}
})
# 3. 等待清洗作用时间可选可以添加wait操作
# 这里省略wait操作直接进行下一步
# 4. 将清洗后的溶剂转移到废液容器
action_sequence.append({
"device_id": pump_id,
"action_name": "transfer",
"action_kwargs": {
"from_vessel": vessel,
"to_vessel": waste_vessel,
"volume": volume,
"amount": f"waste from cleaning {vessel} - cycle {repeat + 1}",
"time": 0.0,
"viscous": False,
"rinsing_solvent": "",
"rinsing_volume": 0.0,
"rinsing_repeats": 0,
"solid": False
}
})
# 5. 如果加热了,停止加热
if temp > 25.0 and heatchill_id:
action_sequence.append({
"device_id": heatchill_id,
"action_name": "heat_chill_stop",
"action_kwargs": {
"vessel": vessel
}
})
return action_sequence

View File

@@ -0,0 +1,162 @@
from typing import List, Dict, Any
import networkx as nx
def generate_dissolve_protocol(
G: nx.DiGraph,
vessel: str,
solvent: str,
volume: float,
amount: str = "",
temp: float = 25.0,
time: float = 0.0,
stir_speed: float = 0.0
) -> List[Dict[str, Any]]:
"""
生成溶解操作的协议序列
Args:
G: 有向图,节点为设备和容器
vessel: 装有要溶解物质的容器名称
solvent: 用于溶解物质的溶剂名称
volume: 溶剂的体积,可选参数
amount: 要溶解物质的量,可选参数
temp: 溶解时的温度,可选参数
time: 溶解的时间,可选参数
stir_speed: 搅拌速度,可选参数
Returns:
List[Dict[str, Any]]: 溶解操作的动作序列
Raises:
ValueError: 当找不到必要的设备时抛出异常
Examples:
dissolve_protocol = generate_dissolve_protocol(G, "reactor", "water", 100.0, "NaCl 5g", 60.0, 300.0, 500.0)
"""
action_sequence = []
# 验证容器是否存在
if vessel not in G.nodes():
raise ValueError(f"容器 {vessel} 不存在于图中")
# 查找溶剂容器
solvent_vessel = f"flask_{solvent}"
if solvent_vessel not in G.nodes():
# 如果没有找到特定溶剂容器,查找可用的源容器
available_vessels = [node for node in G.nodes()
if node.startswith('flask_') and
G.nodes[node].get('type') == 'container']
if available_vessels:
solvent_vessel = available_vessels[0]
else:
raise ValueError(f"没有找到溶剂容器 {solvent}")
# 查找转移泵设备
pump_nodes = [node for node in G.nodes()
if G.nodes[node].get('class') == 'virtual_transfer_pump']
if not pump_nodes:
raise ValueError("没有找到可用的转移泵设备")
pump_id = pump_nodes[0]
# 查找加热设备(如果需要加热)
heatchill_nodes = [node for node in G.nodes()
if G.nodes[node].get('class') == 'virtual_heatchill']
heatchill_id = heatchill_nodes[0] if heatchill_nodes else None
# 查找搅拌设备(如果需要搅拌)
stirrer_nodes = [node for node in G.nodes()
if G.nodes[node].get('class') == 'virtual_stirrer']
stirrer_id = stirrer_nodes[0] if stirrer_nodes else None
# 步骤1如果需要加热先设置温度
if temp > 25.0 and heatchill_id:
action_sequence.append({
"device_id": heatchill_id,
"action_name": "heat_chill_start",
"action_kwargs": {
"vessel": vessel,
"temp": temp,
"purpose": "dissolution"
}
})
# 步骤2添加溶剂到容器中
if volume > 0:
action_sequence.append({
"device_id": pump_id,
"action_name": "transfer",
"action_kwargs": {
"from_vessel": solvent_vessel,
"to_vessel": vessel,
"volume": volume,
"amount": f"solvent {solvent} for dissolving {amount}",
"time": 0.0,
"viscous": False,
"rinsing_solvent": "",
"rinsing_volume": 0.0,
"rinsing_repeats": 0,
"solid": False
}
})
# 步骤3如果需要搅拌开始搅拌
if stir_speed > 0 and stirrer_id:
action_sequence.append({
"device_id": stirrer_id,
"action_name": "start_stir",
"action_kwargs": {
"vessel": vessel,
"stir_speed": stir_speed,
"purpose": f"dissolving {amount} in {solvent}"
}
})
# 步骤4如果指定了溶解时间等待溶解完成
if time > 0:
# 这里可以添加等待操作,或者使用搅拌操作来模拟溶解时间
if stirrer_id and stir_speed > 0:
# 停止之前的搅拌,使用定时搅拌
action_sequence.append({
"device_id": stirrer_id,
"action_name": "stop_stir",
"action_kwargs": {
"vessel": vessel
}
})
# 开始定时搅拌
action_sequence.append({
"device_id": stirrer_id,
"action_name": "stir",
"action_kwargs": {
"stir_time": time,
"stir_speed": stir_speed,
"settling_time": 10.0 # 搅拌后静置10秒
}
})
# 步骤5如果加热了停止加热
if temp > 25.0 and heatchill_id:
action_sequence.append({
"device_id": heatchill_id,
"action_name": "heat_chill_stop",
"action_kwargs": {
"vessel": vessel
}
})
# 步骤6如果还在搅拌停止搅拌除非已经用定时搅拌
if stir_speed > 0 and stirrer_id and time == 0:
action_sequence.append({
"device_id": stirrer_id,
"action_name": "stop_stir",
"action_kwargs": {
"vessel": vessel
}
})
return action_sequence

View File

@@ -69,14 +69,14 @@ def generate_evacuateandrefill_protocol(
"device_id": vacuum_backbone["pump"],
"action_name": "set_status",
"action_kwargs": {
"command": "ON"
"string": "ON"
}
},
{
"device_id": vacuum_backbone["gas"],
"action_name": "set_status",
"action_kwargs": {
"command": "OFF"
"string": "OFF"
}
}
])
@@ -106,14 +106,14 @@ def generate_evacuateandrefill_protocol(
"device_id": vacuum_backbone["pump"],
"action_name": "set_status",
"action_kwargs": {
"command": "OFF"
"string": "OFF"
}
},
{
"device_id": vacuum_backbone["gas"],
"action_name": "set_status",
"action_kwargs": {
"command": "ON"
"string": "ON"
}
}
])
@@ -125,7 +125,7 @@ def generate_evacuateandrefill_protocol(
"device_id": vacuum_backbone["gas"],
"action_name": "set_status",
"action_kwargs": {
"command": "OFF"
"string": "OFF"
}
}
)

View File

@@ -0,0 +1,70 @@
from typing import List, Dict, Any
import networkx as nx
def generate_filter_protocol(
G: nx.DiGraph,
vessel: str,
filtrate_vessel: str = "",
stir: bool = False,
stir_speed: float = 300.0,
temp: float = 25.0,
continue_heatchill: bool = False,
volume: float = 0.0
) -> List[Dict[str, Any]]:
"""
生成过滤操作的协议序列
Args:
G: 有向图,节点为设备和容器
vessel: 过滤容器
filtrate_vessel: 滤液容器(可选)
stir: 是否搅拌
stir_speed: 搅拌速度(可选)
temp: 温度(可选,摄氏度)
continue_heatchill: 是否继续加热冷却
volume: 过滤体积(可选)
Returns:
List[Dict[str, Any]]: 过滤操作的动作序列
Raises:
ValueError: 当找不到过滤设备时抛出异常
Examples:
filter_protocol = generate_filter_protocol(G, "reactor", "filtrate_vessel", stir=True, volume=100.0)
"""
action_sequence = []
# 查找过滤设备
filter_nodes = [node for node in G.nodes()
if G.nodes[node].get('class') == 'virtual_filter']
if not filter_nodes:
raise ValueError("没有找到可用的过滤设备")
# 使用第一个可用的过滤器
filter_id = filter_nodes[0]
# 验证容器是否存在
if vessel not in G.nodes():
raise ValueError(f"过滤容器 {vessel} 不存在于图中")
if filtrate_vessel and filtrate_vessel not in G.nodes():
raise ValueError(f"滤液容器 {filtrate_vessel} 不存在于图中")
# 执行过滤操作
action_sequence.append({
"device_id": filter_id,
"action_name": "filter_sample",
"action_kwargs": {
"vessel": vessel,
"filtrate_vessel": filtrate_vessel,
"stir": stir,
"stir_speed": stir_speed,
"temp": temp,
"continue_heatchill": continue_heatchill,
"volume": volume
}
})
return action_sequence

View File

@@ -0,0 +1,150 @@
from typing import List, Dict, Any
import networkx as nx
def generate_filter_through_protocol(
G: nx.DiGraph,
from_vessel: str,
to_vessel: str,
filter_through: str,
eluting_solvent: str = "",
eluting_volume: float = 0.0,
eluting_repeats: int = 0,
residence_time: float = 0.0
) -> List[Dict[str, Any]]:
"""
生成通过过滤介质过滤的协议序列
Args:
G: 有向图,节点为设备和容器
from_vessel: 源容器的名称,即物质起始所在的容器
to_vessel: 目标容器的名称,物质过滤后要到达的容器
filter_through: 过滤时所通过的介质,如滤纸、柱子等
eluting_solvent: 洗脱溶剂的名称,可选参数
eluting_volume: 洗脱溶剂的体积,可选参数
eluting_repeats: 洗脱操作的重复次数,默认为 0
residence_time: 物质在过滤介质中的停留时间,可选参数
Returns:
List[Dict[str, Any]]: 过滤操作的动作序列
Raises:
ValueError: 当找不到必要的设备时抛出异常
Examples:
filter_through_protocol = generate_filter_through_protocol(
G, "reactor", "collection_flask", "celite", "ethanol", 50.0, 2, 60.0
)
"""
action_sequence = []
# 验证容器是否存在
if from_vessel not in G.nodes():
raise ValueError(f"源容器 {from_vessel} 不存在于图中")
if to_vessel not in G.nodes():
raise ValueError(f"目标容器 {to_vessel} 不存在于图中")
# 查找转移泵设备(用于液体转移)
pump_nodes = [node for node in G.nodes()
if G.nodes[node].get('class') == 'virtual_transfer_pump']
if not pump_nodes:
raise ValueError("没有找到可用的转移泵设备")
pump_id = pump_nodes[0]
# 查找过滤设备(可选,如果有专门的过滤设备)
filter_nodes = [node for node in G.nodes()
if G.nodes[node].get('class') == 'virtual_filter']
filter_id = filter_nodes[0] if filter_nodes else None
# 查找洗脱溶剂容器(如果需要洗脱)
eluting_vessel = None
if eluting_solvent and eluting_volume > 0:
eluting_vessel = f"flask_{eluting_solvent}"
if eluting_vessel not in G.nodes():
# 查找可用的溶剂容器
available_vessels = [node for node in G.nodes()
if node.startswith('flask_') and
G.nodes[node].get('type') == 'container']
if available_vessels:
eluting_vessel = available_vessels[0]
else:
raise ValueError(f"没有找到洗脱溶剂容器 {eluting_solvent}")
# 步骤1将样品从源容器转移到过滤装置模拟通过过滤介质
# 这里我们将过滤过程分解为多个转移步骤来模拟通过介质的过程
# 首先转移样品(模拟样品通过过滤介质)
action_sequence.append({
"device_id": pump_id,
"action_name": "transfer",
"action_kwargs": {
"from_vessel": from_vessel,
"to_vessel": to_vessel,
"volume": 0.0, # 转移所有液体,体积由系统确定
"amount": f"通过 {filter_through} 过滤",
"time": residence_time if residence_time > 0 else 0.0,
"viscous": False,
"rinsing_solvent": "",
"rinsing_volume": 0.0,
"rinsing_repeats": 0,
"solid": True # 通过过滤介质可能涉及固体分离
}
})
# 步骤2如果有专门的过滤设备使用过滤设备处理
if filter_id:
action_sequence.append({
"device_id": filter_id,
"action_name": "filter_sample",
"action_kwargs": {
"vessel": to_vessel,
"filtrate_vessel": to_vessel,
"stir": False,
"stir_speed": 0.0,
"temp": 25.0,
"continue_heatchill": False,
"volume": 0.0
}
})
# 步骤3洗脱操作如果指定了洗脱溶剂和重复次数
if eluting_solvent and eluting_volume > 0 and eluting_repeats > 0 and eluting_vessel:
for repeat in range(eluting_repeats):
# 添加洗脱溶剂
action_sequence.append({
"device_id": pump_id,
"action_name": "transfer",
"action_kwargs": {
"from_vessel": eluting_vessel,
"to_vessel": to_vessel,
"volume": eluting_volume,
"amount": f"洗脱溶剂 {eluting_solvent} - 第 {repeat + 1}",
"time": 0.0,
"viscous": False,
"rinsing_solvent": "",
"rinsing_volume": 0.0,
"rinsing_repeats": 0,
"solid": False
}
})
# 如果有过滤设备,再次过滤洗脱液
if filter_id:
action_sequence.append({
"device_id": filter_id,
"action_name": "filter_sample",
"action_kwargs": {
"vessel": to_vessel,
"filtrate_vessel": to_vessel,
"stir": False,
"stir_speed": 0.0,
"temp": 25.0,
"continue_heatchill": False,
"volume": eluting_volume
}
})
return action_sequence

View File

@@ -0,0 +1,117 @@
from typing import List, Dict, Any
import networkx as nx
def generate_heat_chill_protocol(
G: nx.DiGraph,
vessel: str,
temp: float,
time: float,
stir: bool,
stir_speed: float,
purpose: str
) -> List[Dict[str, Any]]:
"""
生成加热/冷却操作的协议序列 - 严格按照 HeatChill.action
"""
action_sequence = []
# 查找加热/冷却设备
heatchill_nodes = [node for node in G.nodes()
if G.nodes[node].get('class') == 'virtual_heatchill']
if not heatchill_nodes:
raise ValueError("没有找到可用的加热/冷却设备")
heatchill_id = heatchill_nodes[0]
if vessel not in G.nodes():
raise ValueError(f"容器 {vessel} 不存在于图中")
action_sequence.append({
"device_id": heatchill_id,
"action_name": "heat_chill",
"action_kwargs": {
"vessel": vessel,
"temp": temp,
"time": time,
"stir": stir,
"stir_speed": stir_speed,
"purpose": purpose
}
})
return action_sequence
def generate_heat_chill_start_protocol(
G: nx.DiGraph,
vessel: str,
temp: float,
purpose: str
) -> List[Dict[str, Any]]:
"""
生成开始加热/冷却操作的协议序列 - 严格按照 HeatChillStart.action
"""
action_sequence = []
heatchill_nodes = [node for node in G.nodes()
if G.nodes[node].get('class') == 'virtual_heatchill']
if not heatchill_nodes:
raise ValueError("没有找到可用的加热/冷却设备")
heatchill_id = heatchill_nodes[0]
if vessel not in G.nodes():
raise ValueError(f"容器 {vessel} 不存在于图中")
action_sequence.append({
"device_id": heatchill_id,
"action_name": "heat_chill_start",
"action_kwargs": {
"vessel": vessel,
"temp": temp,
"purpose": purpose
}
})
return action_sequence
def generate_heat_chill_stop_protocol(
G: nx.DiGraph,
vessel: str
) -> List[Dict[str, Any]]:
"""
生成停止加热/冷却操作的协议序列
Args:
G: 有向图,节点为设备和容器
vessel: 容器名称
Returns:
List[Dict[str, Any]]: 停止加热/冷却操作的动作序列
"""
action_sequence = []
# 查找加热/冷却设备
heatchill_nodes = [node for node in G.nodes()
if G.nodes[node].get('class') == 'virtual_heatchill']
if not heatchill_nodes:
raise ValueError("没有找到可用的加热/冷却设备")
heatchill_id = heatchill_nodes[0]
if vessel not in G.nodes():
raise ValueError(f"容器 {vessel} 不存在于图中")
action_sequence.append({
"device_id": heatchill_id,
"action_name": "heat_chill_stop",
"action_kwargs": {
"vessel": vessel
}
})
return action_sequence

View File

@@ -24,10 +24,27 @@ def generate_pump_protocol(
# 生成泵操作的动作序列
pump_action_sequence = []
nodes = G.nodes(data=True)
# 从from_vessel到to_vessel的最短路径
shortest_path = nx.shortest_path(G, source=from_vessel, target=to_vessel)
print(shortest_path)
# 检查节点是否存在
if from_vessel not in G.nodes:
print(f"Warning: Source vessel '{from_vessel}' not found in graph. Skipping.")
return []
if to_vessel not in G.nodes:
print(f"Warning: Target vessel '{to_vessel}' not found in graph. Skipping.")
return []
# 检查是否存在路径
try:
shortest_path = nx.shortest_path(G, source=from_vessel, target=to_vessel)
except nx.NetworkXNoPath:
print(f"Warning: No path from '{from_vessel}' to '{to_vessel}'. Skipping.")
return []
except nx.NodeNotFound as e:
print(f"Warning: Node not found: {e}. Skipping.")
return []
print(f"Shortest path: {shortest_path}")
pump_backbone = shortest_path
if not from_vessel.startswith("pump"):
@@ -35,10 +52,34 @@ def generate_pump_protocol(
if not to_vessel.startswith("pump"):
pump_backbone = pump_backbone[:-1]
print(f"Pump backbone: {pump_backbone}")
# 修复检查pump_backbone是否为空
if not pump_backbone:
print(f"Warning: No pumps found in path from '{from_vessel}' to '{to_vessel}'. Skipping.")
return []
if transfer_flowrate == 0:
transfer_flowrate = flowrate
min_transfer_volume = min([nodes[pump]["max_volume"] for pump in pump_backbone])
# 修复:正确访问节点数据
pump_max_volumes = []
for pump in pump_backbone:
# 直接使用 G.nodes[pump] 来访问节点数据
pump_data = G.nodes[pump] if pump in G.nodes else {}
# 尝试多种可能的键名,并提供默认值
max_vol = pump_data.get('max_volume') or pump_data.get('max_vol') or pump_data.get('volume')
if max_vol is None:
# 如果是设备节点尝试从config中获取
config = pump_data.get('config', {})
max_vol = config.get('max_volume', 25.0)
pump_max_volumes.append(float(max_vol))
if pump_max_volumes:
min_transfer_volume = min(pump_max_volumes)
else:
min_transfer_volume = 25.0 # 默认值
repeats = int(np.ceil(volume / min_transfer_volume))
if repeats > 1 and (from_vessel.startswith("pump") or to_vessel.startswith("pump")):
raise ValueError("Cannot transfer volume larger than min_transfer_volume between two pumps.")
@@ -48,84 +89,102 @@ def generate_pump_protocol(
# 生成泵操作的动作序列
for i in range(repeats):
# 单泵依次执行阀指令、活塞指令,将液体吸入与之相连的第一台泵
if not from_vessel.startswith("pump"):
pump_action_sequence.extend([
{
"device_id": pump_backbone[0],
"action_name": "set_valve_position",
"action_kwargs": {
"command": G.get_edge_data(pump_backbone[0], from_vessel)["port"][pump_backbone[0]]
if not from_vessel.startswith("pump") and pump_backbone:
# 修复:添加边缘数据检查
edge_data = G.get_edge_data(pump_backbone[0], from_vessel)
if edge_data and "port" in edge_data:
pump_action_sequence.extend([
{
"device_id": pump_backbone[0],
"action_name": "set_valve_position",
"action_kwargs": {
"command": edge_data["port"][pump_backbone[0]]
}
},
{
"device_id": pump_backbone[0],
"action_name": "set_position",
"action_kwargs": {
"position": float(min(volume_left, min_transfer_volume)),
"max_velocity": transfer_flowrate
}
}
},
{
"device_id": pump_backbone[0],
"action_name": "set_position",
"action_kwargs": {
"position": float(min(volume_left, min_transfer_volume)),
"max_velocity": transfer_flowrate
}
}
])
pump_action_sequence.append({"action_name": "wait", "action_kwargs": {"time": 5}})
for pumpA, pumpB in zip(pump_backbone[:-1], pump_backbone[1:]):
# 相邻两泵同时切换阀门至连通位置
pump_action_sequence.append([
{
"device_id": pumpA,
"action_name": "set_valve_position",
"action_kwargs": {
"command": G.get_edge_data(pumpA, pumpB)["port"][pumpA]
}
},
{
"device_id": pumpB,
"action_name": "set_valve_position",
"action_kwargs": {
"command": G.get_edge_data(pumpB, pumpA)["port"][pumpB],
}
}
])
# 相邻两泵液体转移泵A排出液体泵B吸入液体
pump_action_sequence.append([
{
"device_id": pumpA,
"action_name": "set_position",
"action_kwargs": {
"position": 0.0,
"max_velocity": transfer_flowrate
}
},
{
"device_id": pumpB,
"action_name": "set_position",
"action_kwargs": {
"position": float(min(volume_left, min_transfer_volume)),
"max_velocity": transfer_flowrate
}
}
])
pump_action_sequence.append({"action_name": "wait", "action_kwargs": {"time": 5}})
])
pump_action_sequence.append({"action_name": "wait", "action_kwargs": {"time": 5}})
else:
print(f"Warning: No edge data found between {pump_backbone[0]} and {from_vessel}")
if not to_vessel.startswith("pump"):
# 修复检查pump_backbone长度避免多泵操作时出错
if len(pump_backbone) > 1:
for pumpA, pumpB in zip(pump_backbone[:-1], pump_backbone[1:]):
# 相邻两泵同时切换阀门至连通位置
edge_AB = G.get_edge_data(pumpA, pumpB)
edge_BA = G.get_edge_data(pumpB, pumpA)
if edge_AB and "port" in edge_AB and edge_BA and "port" in edge_BA:
pump_action_sequence.append([
{
"device_id": pumpA,
"action_name": "set_valve_position",
"action_kwargs": {
"command": edge_AB["port"][pumpA]
}
},
{
"device_id": pumpB,
"action_name": "set_valve_position",
"action_kwargs": {
"command": edge_BA["port"][pumpB],
}
}
])
# 相邻两泵液体转移泵A排出液体泵B吸入液体
pump_action_sequence.append([
{
"device_id": pumpA,
"action_name": "set_position",
"action_kwargs": {
"position": 0.0,
"max_velocity": transfer_flowrate
}
},
{
"device_id": pumpB,
"action_name": "set_position",
"action_kwargs": {
"position": float(min(volume_left, min_transfer_volume)),
"max_velocity": transfer_flowrate
}
}
])
pump_action_sequence.append({"action_name": "wait", "action_kwargs": {"time": 5}})
else:
print(f"Warning: No edge data found between {pumpA} and {pumpB}")
if not to_vessel.startswith("pump") and pump_backbone:
# 单泵依次执行阀指令、活塞指令将最后一台泵液体缓慢加入容器B
pump_action_sequence.extend([
{
"device_id": pump_backbone[-1],
"action_name": "set_valve_position",
"action_kwargs": {
"command": G.get_edge_data(pump_backbone[-1], to_vessel)["port"][pump_backbone[-1]]
edge_data = G.get_edge_data(pump_backbone[-1], to_vessel)
if edge_data and "port" in edge_data:
pump_action_sequence.extend([
{
"device_id": pump_backbone[-1],
"action_name": "set_valve_position",
"action_kwargs": {
"command": edge_data["port"][pump_backbone[-1]]
}
},
{
"device_id": pump_backbone[-1],
"action_name": "set_position",
"action_kwargs": {
"position": 0.0,
"max_velocity": flowrate
}
}
},
{
"device_id": pump_backbone[-1],
"action_name": "set_position",
"action_kwargs": {
"position": 0.0,
"max_velocity": flowrate
}
}
])
pump_action_sequence.append({"action_name": "wait", "action_kwargs": {"time": 5}})
])
pump_action_sequence.append({"action_name": "wait", "action_kwargs": {"time": 5}})
else:
print(f"Warning: No edge data found between {pump_backbone[-1]} and {to_vessel}")
volume_left -= min_transfer_volume
return pump_action_sequence
@@ -174,18 +233,52 @@ def generate_pump_protocol_with_rinsing(
Examples:
pump_protocol = generate_pump_protocol_with_rinsing(G, "vessel_A", "vessel_B", 0.1, rinsing_solvent="water")
"""
air_vessel = "flask_air"
waste_vessel = f"waste_workup"
# 修复:使用实际存在的节点名称
air_vessel = "flask_air" # 这个在你的配置中存在
shortest_path = nx.shortest_path(G, source=from_vessel, target=to_vessel)
pump_backbone = shortest_path[1: -1]
nodes = G.nodes(data=True)
min_transfer_volume = float(min([nodes[pump]["max_volume"] for pump in pump_backbone]))
# 寻找合适的废料容器,如果没有找到则使用空的容器作为替代
waste_vessel = None
available_vessels = [node for node in G.nodes if node.startswith("flask_") and node != air_vessel]
if available_vessels:
# 使用第一个可用的容器作为废料容器
waste_vessel = available_vessels[0]
print(f"Using {waste_vessel} as waste vessel")
else:
waste_vessel = "flask_1" # 备用选择
# 修复:添加路径检查
try:
shortest_path = nx.shortest_path(G, source=from_vessel, target=to_vessel)
pump_backbone = shortest_path[1: -1]
except (nx.NetworkXNoPath, nx.NodeNotFound) as e:
print(f"Warning: Cannot find path from {from_vessel} to {to_vessel}: {e}")
return []
# 修复:正确访问节点数据
pump_max_volumes = []
for pump in pump_backbone:
# 直接使用 G.nodes[pump] 来访问节点数据
pump_data = G.nodes[pump] if pump in G.nodes else {}
# 尝试多种可能的键名,并提供默认值
max_vol = pump_data.get('max_volume') or pump_data.get('max_vol') or pump_data.get('volume')
if max_vol is None:
# 如果是设备节点尝试从config中获取
config = pump_data.get('config', {})
max_vol = config.get('max_volume', 25.0)
pump_max_volumes.append(float(max_vol))
if pump_max_volumes:
min_transfer_volume = float(min(pump_max_volumes))
else:
min_transfer_volume = 25.0 # 默认值
if time != 0:
flowrate = transfer_flowrate = volume / time
pump_action_sequence = generate_pump_protocol(G, from_vessel, to_vessel, float(volume), flowrate, transfer_flowrate)
if rinsing_solvent != "air":
# 修复:只在需要清洗且相关节点存在时才执行清洗步骤
if rinsing_solvent != "air" and pump_backbone:
if "," in rinsing_solvent:
rinsing_solvents = rinsing_solvent.split(",")
assert len(rinsing_solvents) == rinsing_repeats, "Number of rinsing solvents must match number of rinsing repeats."
@@ -194,20 +287,32 @@ def generate_pump_protocol_with_rinsing(
for rinsing_solvent in rinsing_solvents:
solvent_vessel = f"flask_{rinsing_solvent}"
# 清洗泵
pump_action_sequence.extend(
generate_pump_protocol(G, solvent_vessel, pump_backbone[0], min_transfer_volume, flowrate, transfer_flowrate) +
generate_pump_protocol(G, pump_backbone[0], pump_backbone[-1], min_transfer_volume, flowrate, transfer_flowrate) +
generate_pump_protocol(G, pump_backbone[-1], waste_vessel, min_transfer_volume, flowrate, transfer_flowrate)
)
# 如果转移的是溶液,第一种冲洗溶剂请选用溶液的溶剂,稀释泵内、转移管道内的溶液。后续冲洗溶剂不需要此操作。
if rinsing_solvent == rinsing_solvents[0]:
pump_action_sequence.extend(generate_pump_protocol(G, solvent_vessel, from_vessel, rinsing_volume, flowrate, transfer_flowrate))
pump_action_sequence.extend(generate_pump_protocol(G, solvent_vessel, to_vessel, rinsing_volume, flowrate, transfer_flowrate))
pump_action_sequence.extend(generate_pump_protocol(G, air_vessel, solvent_vessel, rinsing_volume, flowrate, transfer_flowrate))
pump_action_sequence.extend(generate_pump_protocol(G, air_vessel, waste_vessel, rinsing_volume, flowrate, transfer_flowrate))
pump_action_sequence.extend(generate_pump_protocol(G, air_vessel, from_vessel, rinsing_volume, flowrate, transfer_flowrate) * 2)
pump_action_sequence.extend(generate_pump_protocol(G, air_vessel, to_vessel, rinsing_volume, flowrate, transfer_flowrate) * 2)
# 检查溶剂容器是否存在
if solvent_vessel not in G.nodes:
print(f"Warning: Solvent vessel '{solvent_vessel}' not found in graph. Skipping rinsing step.")
continue
# 清洗泵 - 只有当所有必需的节点都存在且pump_backbone不为空时才执行
if pump_backbone and len(pump_backbone) > 0 and waste_vessel in G.nodes:
pump_action_sequence.extend(
generate_pump_protocol(G, solvent_vessel, pump_backbone[0], min_transfer_volume, flowrate, transfer_flowrate) +
generate_pump_protocol(G, pump_backbone[0], pump_backbone[-1], min_transfer_volume, flowrate, transfer_flowrate) +
generate_pump_protocol(G, pump_backbone[-1], waste_vessel, min_transfer_volume, flowrate, transfer_flowrate)
)
# 如果转移的是溶液,第一种冲洗溶剂请选用溶液的溶剂,稀释泵内、转移管道内的溶液。后续冲洗溶剂不需要此操作。
if rinsing_solvent == rinsing_solvents[0]:
pump_action_sequence.extend(generate_pump_protocol(G, solvent_vessel, from_vessel, rinsing_volume, flowrate, transfer_flowrate))
pump_action_sequence.extend(generate_pump_protocol(G, solvent_vessel, to_vessel, rinsing_volume, flowrate, transfer_flowrate))
pump_action_sequence.extend(generate_pump_protocol(G, air_vessel, solvent_vessel, rinsing_volume, flowrate, transfer_flowrate))
pump_action_sequence.extend(generate_pump_protocol(G, air_vessel, waste_vessel, rinsing_volume, flowrate, transfer_flowrate))
# 最后的空气清洗 - 只有当节点存在时才执行
if air_vessel in G.nodes:
pump_action_sequence.extend(generate_pump_protocol(G, air_vessel, from_vessel, rinsing_volume, flowrate, transfer_flowrate) * 2)
pump_action_sequence.extend(generate_pump_protocol(G, air_vessel, to_vessel, rinsing_volume, flowrate, transfer_flowrate) * 2)
return pump_action_sequence
# End Protocols

View File

@@ -0,0 +1,102 @@
from typing import List, Dict, Any
import networkx as nx
def generate_run_column_protocol(
G: nx.DiGraph,
from_vessel: str,
to_vessel: str,
column: str
) -> List[Dict[str, Any]]:
"""
生成柱层析分离的协议序列
Args:
G: 有向图,节点为设备和容器
from_vessel: 源容器的名称,即样品起始所在的容器
to_vessel: 目标容器的名称,分离后的样品要到达的容器
column: 所使用的柱子的名称
Returns:
List[Dict[str, Any]]: 柱层析分离操作的动作序列
Raises:
ValueError: 当找不到必要的设备时抛出异常
Examples:
run_column_protocol = generate_run_column_protocol(G, "reactor", "collection_flask", "silica_column")
"""
action_sequence = []
# 验证容器是否存在
if from_vessel not in G.nodes():
raise ValueError(f"源容器 {from_vessel} 不存在于图中")
if to_vessel not in G.nodes():
raise ValueError(f"目标容器 {to_vessel} 不存在于图中")
# 查找转移泵设备(用于样品转移)
pump_nodes = [node for node in G.nodes()
if G.nodes[node].get('class') == 'virtual_transfer_pump']
if not pump_nodes:
raise ValueError("没有找到可用的转移泵设备")
pump_id = pump_nodes[0]
# 查找柱层析设备
column_nodes = [node for node in G.nodes()
if G.nodes[node].get('class') == 'virtual_column']
if not column_nodes:
raise ValueError("没有找到可用的柱层析设备")
column_id = column_nodes[0]
# 步骤1将样品从源容器转移到柱子上
action_sequence.append({
"device_id": pump_id,
"action_name": "transfer",
"action_kwargs": {
"from_vessel": from_vessel,
"to_vessel": column_id, # 将样品转移到柱子设备
"volume": 0.0, # 转移所有液体,体积由系统确定
"amount": f"样品上柱 - 使用 {column}",
"time": 0.0,
"viscous": False,
"rinsing_solvent": "",
"rinsing_volume": 0.0,
"rinsing_repeats": 0,
"solid": False
}
})
# 步骤2运行柱层析分离
action_sequence.append({
"device_id": column_id,
"action_name": "run_column",
"action_kwargs": {
"from_vessel": from_vessel,
"to_vessel": to_vessel,
"column": column
}
})
# 步骤3将分离后的产物从柱子转移到目标容器
action_sequence.append({
"device_id": pump_id,
"action_name": "transfer",
"action_kwargs": {
"from_vessel": column_id, # 从柱子设备转移
"to_vessel": to_vessel,
"volume": 0.0, # 转移所有液体,体积由系统确定
"amount": f"收集分离产物 - 来自 {column}",
"time": 0.0,
"viscous": False,
"rinsing_solvent": "",
"rinsing_volume": 0.0,
"rinsing_repeats": 0,
"solid": False
}
})
return action_sequence

View File

@@ -0,0 +1,137 @@
from typing import List, Dict, Any
import networkx as nx
def generate_stir_protocol(
G: nx.DiGraph,
stir_time: float,
stir_speed: float,
settling_time: float
) -> List[Dict[str, Any]]:
"""
生成搅拌操作的协议序列
Args:
G: 有向图,节点为设备和容器
stir_time: 搅拌时间 (秒)
stir_speed: 搅拌速度 (rpm)
settling_time: 沉降时间 (秒)
Returns:
List[Dict[str, Any]]: 搅拌操作的动作序列
Raises:
ValueError: 当找不到搅拌设备时抛出异常
Examples:
stir_protocol = generate_stir_protocol(G, 300.0, 500.0, 60.0)
"""
action_sequence = []
# 查找搅拌设备
stirrer_nodes = [node for node in G.nodes()
if G.nodes[node].get('class') == 'virtual_stirrer']
if not stirrer_nodes:
raise ValueError("没有找到可用的搅拌设备")
# 使用第一个可用的搅拌器
stirrer_id = stirrer_nodes[0]
# 执行搅拌操作
action_sequence.append({
"device_id": stirrer_id,
"action_name": "stir",
"action_kwargs": {
"stir_time": stir_time,
"stir_speed": stir_speed,
"settling_time": settling_time
}
})
return action_sequence
def generate_start_stir_protocol(
G: nx.DiGraph,
vessel: str,
stir_speed: float,
purpose: str
) -> List[Dict[str, Any]]:
"""
生成开始搅拌操作的协议序列
Args:
G: 有向图,节点为设备和容器
vessel: 搅拌容器
stir_speed: 搅拌速度 (rpm)
purpose: 搅拌目的
Returns:
List[Dict[str, Any]]: 开始搅拌操作的动作序列
"""
action_sequence = []
# 查找搅拌设备
stirrer_nodes = [node for node in G.nodes()
if G.nodes[node].get('class') == 'virtual_stirrer']
if not stirrer_nodes:
raise ValueError("没有找到可用的搅拌设备")
stirrer_id = stirrer_nodes[0]
# 验证容器是否存在
if vessel not in G.nodes():
raise ValueError(f"容器 {vessel} 不存在于图中")
action_sequence.append({
"device_id": stirrer_id,
"action_name": "start_stir",
"action_kwargs": {
"vessel": vessel,
"stir_speed": stir_speed,
"purpose": purpose
}
})
return action_sequence
def generate_stop_stir_protocol(
G: nx.DiGraph,
vessel: str
) -> List[Dict[str, Any]]:
"""
生成停止搅拌操作的协议序列
Args:
G: 有向图,节点为设备和容器
vessel: 搅拌容器
Returns:
List[Dict[str, Any]]: 停止搅拌操作的动作序列
"""
action_sequence = []
# 查找搅拌设备
stirrer_nodes = [node for node in G.nodes()
if G.nodes[node].get('class') == 'virtual_stirrer']
if not stirrer_nodes:
raise ValueError("没有找到可用的搅拌设备")
stirrer_id = stirrer_nodes[0]
# 验证容器是否存在
if vessel not in G.nodes():
raise ValueError(f"容器 {vessel} 不存在于图中")
action_sequence.append({
"device_id": stirrer_id,
"action_name": "stop_stir",
"action_kwargs": {
"vessel": vessel
}
})
return action_sequence

View File

@@ -0,0 +1,79 @@
from typing import List, Dict, Any
import networkx as nx
def generate_transfer_protocol(
G: nx.DiGraph,
from_vessel: str,
to_vessel: str,
volume: float,
amount: str = "",
time: float = 0,
viscous: bool = False,
rinsing_solvent: str = "",
rinsing_volume: float = 0.0,
rinsing_repeats: int = 0,
solid: bool = False
) -> List[Dict[str, Any]]:
"""
生成液体转移操作的协议序列
Args:
G: 有向图,节点为设备和容器
from_vessel: 源容器
to_vessel: 目标容器
volume: 转移体积 (mL)
amount: 数量描述 (可选)
time: 转移时间 (秒,可选)
viscous: 是否为粘性液体
rinsing_solvent: 冲洗溶剂 (可选)
rinsing_volume: 冲洗体积 (mL可选)
rinsing_repeats: 冲洗重复次数
solid: 是否涉及固体
Returns:
List[Dict[str, Any]]: 转移操作的动作序列
Raises:
ValueError: 当找不到合适的转移设备时抛出异常
Examples:
transfer_protocol = generate_transfer_protocol(G, "flask_1", "reactor", 10.0)
"""
action_sequence = []
# 查找虚拟转移泵设备用于液体转移 - 修复:应该查找 virtual_transfer_pump
pump_nodes = [node for node in G.nodes()
if G.nodes[node].get('class') == 'virtual_transfer_pump']
if not pump_nodes:
raise ValueError("没有找到可用的转移泵设备进行液体转移")
# 使用第一个可用的泵
pump_id = pump_nodes[0]
# 验证容器是否存在
if from_vessel not in G.nodes():
raise ValueError(f"源容器 {from_vessel} 不存在于图中")
if to_vessel not in G.nodes():
raise ValueError(f"目标容器 {to_vessel} 不存在于图中")
# 执行液体转移操作 - 参数完全匹配Transfer.action
action_sequence.append({
"device_id": pump_id,
"action_name": "transfer",
"action_kwargs": {
"from_vessel": from_vessel,
"to_vessel": to_vessel,
"volume": volume,
"amount": amount,
"time": time,
"viscous": viscous,
"rinsing_solvent": rinsing_solvent,
"rinsing_volume": rinsing_volume,
"rinsing_repeats": rinsing_repeats,
"solid": solid
}
})
return action_sequence

View File

@@ -0,0 +1,216 @@
from typing import List, Dict, Any
import networkx as nx
def generate_wash_solid_protocol(
G: nx.DiGraph,
vessel: str,
solvent: str,
volume: float,
filtrate_vessel: str = "",
temp: float = 25.0,
stir: bool = False,
stir_speed: float = 0.0,
time: float = 0.0,
repeats: int = 1
) -> List[Dict[str, Any]]:
"""
生成固体清洗的协议序列
Args:
G: 有向图,节点为设备和容器
vessel: 装有固体物质的容器名称
solvent: 用于清洗固体的溶剂名称
volume: 清洗溶剂的体积
filtrate_vessel: 滤液要收集到的容器名称,可选参数
temp: 清洗时的温度,可选参数
stir: 是否在清洗过程中搅拌,默认为 False
stir_speed: 搅拌速度,可选参数
time: 清洗的时间,可选参数
repeats: 清洗操作的重复次数,默认为 1
Returns:
List[Dict[str, Any]]: 固体清洗操作的动作序列
Raises:
ValueError: 当找不到必要的设备时抛出异常
Examples:
wash_solid_protocol = generate_wash_solid_protocol(
G, "reactor", "ethanol", 100.0, "waste_flask", 60.0, True, 300.0, 600.0, 3
)
"""
action_sequence = []
# 验证容器是否存在
if vessel not in G.nodes():
raise ValueError(f"固体容器 {vessel} 不存在于图中")
if filtrate_vessel and filtrate_vessel not in G.nodes():
raise ValueError(f"滤液容器 {filtrate_vessel} 不存在于图中")
# 查找转移泵设备(用于添加溶剂和转移滤液)
pump_nodes = [node for node in G.nodes()
if G.nodes[node].get('class') == 'virtual_transfer_pump']
if not pump_nodes:
raise ValueError("没有找到可用的转移泵设备")
pump_id = pump_nodes[0]
# 查找加热设备(如果需要加热)
heatchill_nodes = [node for node in G.nodes()
if G.nodes[node].get('class') == 'virtual_heatchill']
heatchill_id = heatchill_nodes[0] if heatchill_nodes else None
# 查找搅拌设备(如果需要搅拌)
stirrer_nodes = [node for node in G.nodes()
if G.nodes[node].get('class') == 'virtual_stirrer']
stirrer_id = stirrer_nodes[0] if stirrer_nodes else None
# 查找过滤设备(用于分离固体和滤液)
filter_nodes = [node for node in G.nodes()
if G.nodes[node].get('class') == 'virtual_filter']
filter_id = filter_nodes[0] if filter_nodes else None
# 查找溶剂容器
solvent_vessel = f"flask_{solvent}"
if solvent_vessel not in G.nodes():
# 如果没有找到特定溶剂容器,查找可用的源容器
available_vessels = [node for node in G.nodes()
if node.startswith('flask_') and
G.nodes[node].get('type') == 'container']
if available_vessels:
solvent_vessel = available_vessels[0]
else:
raise ValueError(f"没有找到溶剂容器 {solvent}")
# 如果没有指定滤液容器,使用废液容器
if not filtrate_vessel:
waste_vessels = [node for node in G.nodes()
if 'waste' in node.lower() and
G.nodes[node].get('type') == 'container']
filtrate_vessel = waste_vessels[0] if waste_vessels else "waste_flask"
# 重复清洗操作
for repeat in range(repeats):
repeat_num = repeat + 1
# 步骤1如果需要加热先设置温度
if temp > 25.0 and heatchill_id:
action_sequence.append({
"device_id": heatchill_id,
"action_name": "heat_chill_start",
"action_kwargs": {
"vessel": vessel,
"temp": temp,
"purpose": f"固体清洗 - 第 {repeat_num}"
}
})
# 步骤2添加清洗溶剂到固体容器
action_sequence.append({
"device_id": pump_id,
"action_name": "transfer",
"action_kwargs": {
"from_vessel": solvent_vessel,
"to_vessel": vessel,
"volume": volume,
"amount": f"清洗溶剂 {solvent} - 第 {repeat_num}",
"time": 0.0,
"viscous": False,
"rinsing_solvent": "",
"rinsing_volume": 0.0,
"rinsing_repeats": 0,
"solid": False
}
})
# 步骤3如果需要搅拌开始搅拌
if stir and stir_speed > 0 and stirrer_id:
if time > 0:
# 定时搅拌
action_sequence.append({
"device_id": stirrer_id,
"action_name": "stir",
"action_kwargs": {
"stir_time": time,
"stir_speed": stir_speed,
"settling_time": 30.0 # 搅拌后静置30秒
}
})
else:
# 开始搅拌(需要手动停止)
action_sequence.append({
"device_id": stirrer_id,
"action_name": "start_stir",
"action_kwargs": {
"vessel": vessel,
"stir_speed": stir_speed,
"purpose": f"固体清洗搅拌 - 第 {repeat_num}"
}
})
# 步骤4如果指定了清洗时间但没有搅拌等待清洗时间
if time > 0 and (not stir or stir_speed == 0):
# 这里可以添加等待操作,暂时跳过
pass
# 步骤5如果有搅拌且没有定时停止搅拌
if stir and stir_speed > 0 and time == 0 and stirrer_id:
action_sequence.append({
"device_id": stirrer_id,
"action_name": "stop_stir",
"action_kwargs": {
"vessel": vessel
}
})
# 步骤6过滤分离固体和滤液
if filter_id:
action_sequence.append({
"device_id": filter_id,
"action_name": "filter_sample",
"action_kwargs": {
"vessel": vessel,
"filtrate_vessel": filtrate_vessel,
"stir": False,
"stir_speed": 0.0,
"temp": temp,
"continue_heatchill": temp > 25.0,
"volume": volume
}
})
else:
# 没有专门的过滤设备,使用转移泵模拟过滤过程
# 将滤液转移到滤液容器
action_sequence.append({
"device_id": pump_id,
"action_name": "transfer",
"action_kwargs": {
"from_vessel": vessel,
"to_vessel": filtrate_vessel,
"volume": volume,
"amount": f"转移滤液 - 第 {repeat_num} 次清洗",
"time": 0.0,
"viscous": False,
"rinsing_solvent": "",
"rinsing_volume": 0.0,
"rinsing_repeats": 0,
"solid": False
}
})
# 步骤7如果加热了停止加热在最后一次清洗后
if temp > 25.0 and heatchill_id and repeat_num == repeats:
action_sequence.append({
"device_id": heatchill_id,
"action_name": "heat_chill_stop",
"action_kwargs": {
"vessel": vessel
}
})
return action_sequence

View File

View File

@@ -0,0 +1,177 @@
import time
import threading
class MockChiller:
def __init__(self, port: str = "MOCK"):
self.port = port
self._current_temperature: float = 25.0 # 室温开始
self._target_temperature: float = 25.0
self._status: str = "Idle"
self._is_cooling: bool = False
self._is_heating: bool = False
self._vessel = "Unknown"
self._purpose = "Unknown"
# 模拟温度变化的线程
self._temperature_thread = None
self._running = True
self._temperature_thread = threading.Thread(target=self._temperature_control_loop)
self._temperature_thread.daemon = True
self._temperature_thread.start()
@property
def current_temperature(self) -> float:
"""当前温度 - 会被自动识别的设备属性"""
return self._current_temperature
@property
def target_temperature(self) -> float:
"""目标温度"""
return self._target_temperature
@property
def status(self) -> str:
"""设备状态 - 会被自动识别的设备属性"""
return self._status
@property
def is_cooling(self) -> bool:
"""是否正在冷却"""
return self._is_cooling
@property
def is_heating(self) -> bool:
"""是否正在加热"""
return self._is_heating
@property
def vessel(self) -> str:
"""当前操作的容器名称"""
return self._vessel
@property
def purpose(self) -> str:
"""当前操作目的"""
return self._purpose
def heat_chill_start(self, vessel: str, temp: float, purpose: str):
"""设置目标温度并记录容器和目的"""
self._vessel = str(vessel)
self._purpose = str(purpose)
self._target_temperature = float(temp)
diff = self._target_temperature - self._current_temperature
if abs(diff) < 0.1:
self._status = "At Target Temperature"
self._is_cooling = False
self._is_heating = False
elif diff < 0:
self._status = "Cooling"
self._is_cooling = True
self._is_heating = False
else:
self._status = "Heating"
self._is_heating = True
self._is_cooling = False
self._start_temperature_control()
return True
def heat_chill_stop(self, vessel: str):
"""停止加热/制冷"""
if vessel != self._vessel:
return {"success": False, "status": f"Wrong vessel: expected {self._vessel}, got {vessel}"}
# 停止温度控制线程,锁定当前温度
self._stop_temperature_control()
# 更新状态
self._status = "Stopped"
self._is_cooling = False
self._is_heating = False
# 重新启动线程但保持温度
self._running = True
self._temperature_thread = threading.Thread(target=self._temperature_control_loop)
self._temperature_thread.daemon = True
self._temperature_thread.start()
return {"success": True, "status": self._status}
def _start_temperature_control(self):
"""启动温度控制线程"""
self._running = True
if self._temperature_thread is None or not self._temperature_thread.is_alive():
self._temperature_thread = threading.Thread(target=self._temperature_control_loop)
self._temperature_thread.daemon = True
self._temperature_thread.start()
def _stop_temperature_control(self):
"""停止温度控制"""
self._running = False
if self._temperature_thread:
self._temperature_thread.join(timeout=1.0)
def _temperature_control_loop(self):
"""温度控制循环 - 模拟真实冷却器的温度变化"""
while self._running:
# 如果状态是 Stopped不改变温度
if self._status == "Stopped":
time.sleep(1.0)
continue
temp_diff = self._target_temperature - self._current_temperature
if abs(temp_diff) < 0.1:
self._status = "At Target Temperature"
self._is_cooling = False
self._is_heating = False
elif temp_diff < 0:
self._status = "Cooling"
self._is_cooling = True
self._is_heating = False
self._current_temperature -= 0.5
else:
self._status = "Heating"
self._is_heating = True
self._is_cooling = False
self._current_temperature += 0.3
time.sleep(1.0)
def emergency_stop(self):
"""紧急停止"""
self._status = "Emergency Stop"
self._stop_temperature_control()
self._is_cooling = False
self._is_heating = False
def get_status_info(self) -> dict:
"""获取完整状态信息"""
return {
"current_temperature": self._current_temperature,
"target_temperature": self._target_temperature,
"status": self._status,
"is_cooling": self._is_cooling,
"is_heating": self._is_heating,
"vessel": self._vessel,
"purpose": self._purpose,
}
# 用于测试的主函数
if __name__ == "__main__":
chiller = MockChiller()
# 测试基本功能
print("启动冷却器测试...")
print(f"初始状态: {chiller.get_status_info()}")
# 模拟运行10秒
for i in range(10):
time.sleep(1)
print(f"{i+1}秒: 当前温度={chiller.current_temperature:.1f}°C, 状态={chiller.status}")
chiller.emergency_stop()
print("测试完成")

View File

@@ -0,0 +1,235 @@
import time
import threading
class MockFilter:
def __init__(self, port: str = "MOCK"):
# 基本参数初始化
self.port = port
self._status: str = "Idle"
self._is_filtering: bool = False
# 过滤性能参数
self._flow_rate: float = 1.0 # 流速(L/min)
self._pressure_drop: float = 0.0 # 压降(Pa)
self._filter_life: float = 100.0 # 滤芯寿命(%)
# 过滤操作参数
self._vessel: str = "" # 源容器
self._filtrate_vessel: str = "" # 目标容器
self._stir: bool = False # 是否搅拌
self._stir_speed: float = 0.0 # 搅拌速度
self._temperature: float = 25.0 # 温度(℃)
self._continue_heatchill: bool = False # 是否继续加热/制冷
self._target_volume: float = 0.0 # 目标过滤体积(L)
self._filtered_volume: float = 0.0 # 已过滤体积(L)
self._progress: float = 0.0 # 过滤进度(%)
# 线程控制
self._filter_thread = None
self._running = False
@property
def status(self) -> str:
return self._status
@property
def is_filtering(self) -> bool:
return self._is_filtering
@property
def flow_rate(self) -> float:
return self._flow_rate
@property
def pressure_drop(self) -> float:
return self._pressure_drop
@property
def filter_life(self) -> float:
return self._filter_life
# 新增 property
@property
def vessel(self) -> str:
return self._vessel
@property
def filtrate_vessel(self) -> str:
return self._filtrate_vessel
@property
def filtered_volume(self) -> float:
return self._filtered_volume
@property
def progress(self) -> float:
return self._progress
@property
def stir(self) -> bool:
return self._stir
@property
def stir_speed(self) -> float:
return self._stir_speed
@property
def temperature(self) -> float:
return self._temperature
@property
def continue_heatchill(self) -> bool:
return self._continue_heatchill
@property
def target_volume(self) -> float:
return self._target_volume
def filter(self, vessel: str, filtrate_vessel: str, stir: bool = False, stir_speed: float = 0.0, temp: float = 25.0, continue_heatchill: bool = False, volume: float = 0.0) -> dict:
"""新的过滤操作"""
# 停止任何正在进行的过滤
if self._is_filtering:
self.stop_filtering()
# 验证参数
if volume <= 0:
return {"success": False, "message": "Target volume must be greater than 0"}
# 设置新的过滤参数
self._vessel = vessel
self._filtrate_vessel = filtrate_vessel
self._stir = stir
self._stir_speed = stir_speed
self._temperature = temp
self._continue_heatchill = continue_heatchill
self._target_volume = volume
# 重置过滤状态
self._filtered_volume = 0.0
self._progress = 0.0
self._status = "Starting Filter"
# 启动过滤过程
self._flow_rate = 1.0 # 设置默认流速
self._start_filter_process()
return {"success": True, "message": "Filter started"}
def stop_filtering(self):
"""停止过滤"""
self._status = "Stopping Filter"
self._stop_filter_process()
self._flow_rate = 0.0
self._is_filtering = False
self._status = "Stopped"
return True
def replace_filter(self):
"""更换滤芯"""
self._filter_life = 100.0
self._status = "Filter Replaced"
return True
def _start_filter_process(self):
"""启动过滤过程线程"""
if not self._running:
self._running = True
self._is_filtering = True
self._filter_thread = threading.Thread(target=self._filter_loop)
self._filter_thread.daemon = True
self._filter_thread.start()
def _stop_filter_process(self):
"""停止过滤过程"""
self._running = False
if self._filter_thread:
self._filter_thread.join(timeout=1.0)
def _filter_loop(self):
"""过滤进程主循环"""
update_interval = 1.0 # 更新间隔(秒)
while self._running and self._is_filtering:
try:
self._status = "Filtering"
# 计算这一秒过滤的体积 (L/min -> L/s)
volume_increment = (self._flow_rate / 60.0) * update_interval
# 更新已过滤体积
self._filtered_volume += volume_increment
# 更新进度 (避免除零错误)
if self._target_volume > 0:
self._progress = min(100.0, (self._filtered_volume / self._target_volume) * 100.0)
# 更新滤芯寿命 (每过滤1L减少0.5%寿命)
self._filter_life = max(0.0, self._filter_life - (volume_increment * 0.5))
# 更新压降 (根据滤芯寿命和流速动态计算)
life_factor = self._filter_life / 100.0 # 将寿命转换为0-1的因子
flow_factor = self._flow_rate / 2.0 # 将流速标准化(假设2L/min是标准流速)
base_pressure = 100.0 # 基础压降
# 压降随滤芯寿命降低而增加,随流速增加而增加
self._pressure_drop = base_pressure * (2 - life_factor) * flow_factor
# 检查是否完成目标体积
if self._target_volume > 0 and self._filtered_volume >= self._target_volume:
self._status = "Completed"
self._progress = 100.0
self.stop_filtering()
break
# 检查滤芯寿命
if self._filter_life <= 10.0:
self._status = "Filter Needs Replacement"
time.sleep(update_interval)
except Exception as e:
print(f"Error in filter loop: {e}")
self.emergency_stop()
break
def emergency_stop(self):
"""紧急停止"""
self._status = "Emergency Stop"
self._stop_filter_process()
self._is_filtering = False
self._flow_rate = 0.0
def get_status_info(self) -> dict:
"""扩展的状态信息"""
return {
"status": self._status,
"is_filtering": self._is_filtering,
"flow_rate": self._flow_rate,
"pressure_drop": self._pressure_drop,
"filter_life": self._filter_life,
"vessel": self._vessel,
"filtrate_vessel": self._filtrate_vessel,
"filtered_volume": self._filtered_volume,
"target_volume": self._target_volume,
"progress": self._progress,
"temperature": self._temperature,
"stir": self._stir,
"stir_speed": self._stir_speed
}
# 用于测试的主函数
if __name__ == "__main__":
filter_device = MockFilter()
# 测试基本功能
print("启动过滤器测试...")
print(f"初始状态: {filter_device.get_status_info()}")
# 模拟运行10秒
for i in range(10):
time.sleep(1)
print(
f"{i+1}秒: "
f"寿命={filter_device.filter_life:.1f}%, 状态={filter_device.status}"
)
filter_device.emergency_stop()
print("测试完成")

View File

@@ -0,0 +1,247 @@
import time
import threading
class MockHeater:
def __init__(self, port: str = "MOCK"):
self.port = port
self._current_temperature: float = 25.0 # 室温开始
self._target_temperature: float = 25.0
self._status: str = "Idle"
self._is_heating: bool = False
self._heating_power: float = 0.0 # 加热功率百分比 0-100
self._max_temperature: float = 300.0 # 最大加热温度
# 新增加的属性
self._vessel: str = "Unknown"
self._purpose: str = "Unknown"
self._stir: bool = False
self._stir_speed: float = 0.0
# 模拟加热过程的线程
self._heating_thread = None
self._running = True
self._heating_thread = threading.Thread(target=self._heating_control_loop)
self._heating_thread.daemon = True
self._heating_thread.start()
@property
def current_temperature(self) -> float:
"""当前温度 - 会被自动识别的设备属性"""
return self._current_temperature
@property
def target_temperature(self) -> float:
"""目标温度"""
return self._target_temperature
@property
def status(self) -> str:
"""设备状态 - 会被自动识别的设备属性"""
return self._status
@property
def is_heating(self) -> bool:
"""是否正在加热"""
return self._is_heating
@property
def heating_power(self) -> float:
"""加热功率百分比"""
return self._heating_power
@property
def max_temperature(self) -> float:
"""最大加热温度"""
return self._max_temperature
@property
def vessel(self) -> str:
"""当前操作的容器名称"""
return self._vessel
@property
def purpose(self) -> str:
"""操作目的"""
return self._purpose
@property
def stir(self) -> bool:
"""是否搅拌"""
return self._stir
@property
def stir_speed(self) -> float:
"""搅拌速度"""
return self._stir_speed
def heat_chill_start(self, vessel: str, temp: float, purpose: str) -> dict:
"""开始加热/制冷过程"""
self._vessel = str(vessel)
self._purpose = str(purpose)
self._target_temperature = float(temp)
diff = self._target_temperature - self._current_temperature
if abs(diff) < 0.1:
self._status = "At Target Temperature"
self._is_heating = False
elif diff > 0:
self._status = "Heating"
self._is_heating = True
else:
self._status = "Cooling Down"
self._is_heating = False
return {"success": True, "status": self._status}
def heat_chill_stop(self, vessel: str) -> dict:
"""停止加热/制冷"""
if vessel != self._vessel:
return {"success": False, "status": f"Wrong vessel: expected {self._vessel}, got {vessel}"}
self._status = "Stopped"
self._is_heating = False
self._heating_power = 0.0
return {"success": True, "status": self._status}
def heat_chill(self, vessel: str, temp: float, time: float,
stir: bool = False, stir_speed: float = 0.0,
purpose: str = "Unknown") -> dict:
"""完整的加热/制冷控制"""
self._vessel = str(vessel)
self._target_temperature = float(temp)
self._purpose = str(purpose)
self._stir = stir
self._stir_speed = stir_speed
diff = self._target_temperature - self._current_temperature
if abs(diff) < 0.1:
self._status = "At Target Temperature"
self._is_heating = False
elif diff > 0:
self._status = "Heating"
self._is_heating = True
else:
self._status = "Cooling Down"
self._is_heating = False
return {"success": True, "status": self._status}
def set_temperature(self, temperature: float):
"""设置目标温度 - 需要在注册表添加的设备动作"""
try:
temperature = float(temperature)
except ValueError:
self._status = "Error: Invalid temperature value"
return False
if temperature > self._max_temperature:
self._status = f"Error: Temperature exceeds maximum ({self._max_temperature}°C)"
return False
self._target_temperature = temperature
self._status = "Setting Temperature"
# 启动加热控制
self._start_heating_control()
return True
def set_heating_power(self, power: float):
"""设置加热功率"""
try:
power = float(power)
except ValueError:
self._status = "Error: Invalid power value"
return False
self._heating_power = max(0.0, min(100.0, power)) # 限制在0-100%
return True
def _start_heating_control(self):
"""启动加热控制线程"""
if not self._running:
self._running = True
self._heating_thread = threading.Thread(target=self._heating_control_loop)
self._heating_thread.daemon = True
self._heating_thread.start()
def _stop_heating_control(self):
"""停止加热控制"""
self._running = False
if self._heating_thread:
self._heating_thread.join(timeout=1.0)
def _heating_control_loop(self):
"""加热控制循环"""
while self._running:
# 如果状态是 Stopped不改变温度
if self._status == "Stopped":
time.sleep(1.0)
continue
temp_diff = self._target_temperature - self._current_temperature
if abs(temp_diff) < 0.1:
self._status = "At Target Temperature"
self._is_heating = False
self._heating_power = 10.0
elif temp_diff > 0:
self._status = "Heating"
self._is_heating = True
self._heating_power = min(100.0, abs(temp_diff) * 2)
self._current_temperature += 0.5
else:
self._status = "Cooling Down"
self._is_heating = False
self._heating_power = 0.0
self._current_temperature -= 0.2
time.sleep(1.0)
def emergency_stop(self):
"""紧急停止"""
self._status = "Emergency Stop"
self._stop_heating_control()
self._is_heating = False
self._heating_power = 0.0
def get_status_info(self) -> dict:
"""获取完整状态信息"""
return {
"current_temperature": self._current_temperature,
"target_temperature": self._target_temperature,
"status": self._status,
"is_heating": self._is_heating,
"heating_power": self._heating_power,
"max_temperature": self._max_temperature,
"vessel": self._vessel,
"purpose": self._purpose,
"stir": self._stir,
"stir_speed": self._stir_speed
}
# 用于测试的主函数
if __name__ == "__main__":
heater = MockHeater()
print("启动加热器测试...")
print(f"初始状态: {heater.get_status_info()}")
# 设置目标温度为80度
heater.set_temperature(80.0)
# 模拟运行15秒
try:
for i in range(15):
time.sleep(1)
status = heater.get_status_info()
print(
f"\r温度: {status['current_temperature']:.1f}°C / {status['target_temperature']:.1f}°C | "
f"功率: {status['heating_power']:.1f}% | 状态: {status['status']}",
end=""
)
except KeyboardInterrupt:
heater.emergency_stop()
print("\n测试被手动停止")
print("\n测试完成")

View File

@@ -0,0 +1,360 @@
import time
import threading
from datetime import datetime, timedelta
class MockPump:
def __init__(self, port: str = "MOCK"):
self.port = port
# 设备基本状态属性
self._current_device = "MockPump1" # 设备标识符
self._status: str = "Idle" # 设备状态Idle, Running, Error, Stopped
self._pump_state: str = "Stopped" # 泵运行状态Running, Stopped, Paused
# 流量相关属性
self._flow_rate: float = 0.0 # 当前流速 (mL/min)
self._target_flow_rate: float = 0.0 # 目标流速 (mL/min)
self._max_flow_rate: float = 100.0 # 最大流速 (mL/min)
self._total_volume: float = 0.0 # 累计流量 (mL)
# 压力相关属性
self._pressure: float = 0.0 # 当前压力 (bar)
self._max_pressure: float = 10.0 # 最大压力 (bar)
# 运行控制线程
self._pump_thread = None
self._running = False
self._thread_lock = threading.Lock()
# 新增 PumpTransfer 相关属性
self._from_vessel: str = ""
self._to_vessel: str = ""
self._transfer_volume: float = 0.0
self._amount: str = ""
self._transfer_time: float = 0.0
self._is_viscous: bool = False
self._rinsing_solvent: str = ""
self._rinsing_volume: float = 0.0
self._rinsing_repeats: int = 0
self._is_solid: bool = False
# 时间追踪
self._start_time: datetime = None
self._time_spent: timedelta = timedelta()
self._time_remaining: timedelta = timedelta()
# ==================== 状态属性 ====================
# 这些属性会被Uni-Lab系统自动识别并定时对外广播
@property
def status(self) -> str:
return self._status
@property
def current_device(self) -> str:
"""当前设备标识符"""
return self._current_device
@property
def pump_state(self) -> str:
return self._pump_state
@property
def flow_rate(self) -> float:
return self._flow_rate
@property
def target_flow_rate(self) -> float:
return self._target_flow_rate
@property
def pressure(self) -> float:
return self._pressure
@property
def total_volume(self) -> float:
return self._total_volume
@property
def max_flow_rate(self) -> float:
return self._max_flow_rate
@property
def max_pressure(self) -> float:
return self._max_pressure
# 添加新的属性访问器
@property
def from_vessel(self) -> str:
return self._from_vessel
@property
def to_vessel(self) -> str:
return self._to_vessel
@property
def transfer_volume(self) -> float:
return self._transfer_volume
@property
def amount(self) -> str:
return self._amount
@property
def transfer_time(self) -> float:
return self._transfer_time
@property
def is_viscous(self) -> bool:
return self._is_viscous
@property
def rinsing_solvent(self) -> str:
return self._rinsing_solvent
@property
def rinsing_volume(self) -> float:
return self._rinsing_volume
@property
def rinsing_repeats(self) -> int:
return self._rinsing_repeats
@property
def is_solid(self) -> bool:
return self._is_solid
# 修改这两个属性装饰器
@property
def time_spent(self) -> float:
"""已用时间(秒)"""
if isinstance(self._time_spent, timedelta):
return self._time_spent.total_seconds()
return float(self._time_spent)
@property
def time_remaining(self) -> float:
"""剩余时间(秒)"""
if isinstance(self._time_remaining, timedelta):
return self._time_remaining.total_seconds()
return float(self._time_remaining)
# ==================== 设备控制方法 ====================
# 这些方法需要在注册表中添加会作为ActionServer接受控制指令
def pump_transfer(self, from_vessel: str, to_vessel: str, volume: float,
amount: str = "", time: float = 0.0, viscous: bool = False,
rinsing_solvent: str = "", rinsing_volume: float = 0.0,
rinsing_repeats: int = 0, solid: bool = False) -> dict:
"""Execute pump transfer operation"""
# Stop any existing operation first
self._stop_pump_operation()
# Set transfer parameters
self._from_vessel = from_vessel
self._to_vessel = to_vessel
self._transfer_volume = float(volume)
self._amount = amount
self._transfer_time = float(time)
self._is_viscous = viscous
self._rinsing_solvent = rinsing_solvent
self._rinsing_volume = float(rinsing_volume)
self._rinsing_repeats = int(rinsing_repeats)
self._is_solid = solid
# Calculate flow rate
if self._transfer_time > 0 and self._transfer_volume > 0:
self._target_flow_rate = (self._transfer_volume / self._transfer_time) * 60.0
else:
self._target_flow_rate = 10.0 if not self._is_viscous else 5.0
# Reset timers and counters
self._start_time = datetime.now()
self._time_spent = timedelta()
self._time_remaining = timedelta(seconds=self._transfer_time)
self._total_volume = 0.0
self._flow_rate = 0.0
# Start pump operation
self._pump_state = "Running"
self._status = "Starting Transfer"
self._running = True
# Start pump operation thread
self._pump_thread = threading.Thread(target=self._pump_operation_loop)
self._pump_thread.daemon = True
self._pump_thread.start()
# Wait briefly to ensure thread starts
time.sleep(0.1)
return {
"success": True,
"status": self._status,
"current_device": self._current_device,
"time_spent": 0.0,
"time_remaining": float(self._transfer_time)
}
def pause_pump(self) -> str:
if self._pump_state != "Running":
self._status = "Error: Pump not running"
return "Error"
self._pump_state = "Paused"
self._status = "Pump Paused"
self._stop_pump_operation()
return "Success"
def resume_pump(self) -> str:
if self._pump_state != "Paused":
self._status = "Error: Pump not paused"
return "Error"
self._pump_state = "Running"
self._status = "Resuming Pump"
self._start_pump_operation()
return "Success"
def reset_volume_counter(self) -> str:
self._total_volume = 0.0
self._status = "Volume counter reset"
return "Success"
def emergency_stop(self) -> str:
self._status = "Emergency Stop"
self._pump_state = "Stopped"
self._stop_pump_operation()
self._flow_rate = 0.0
self._pressure = 0.0
self._target_flow_rate = 0.0
return "Success"
# ==================== 内部控制方法 ====================
def _start_pump_operation(self):
with self._thread_lock:
if not self._running:
self._running = True
self._pump_thread = threading.Thread(target=self._pump_operation_loop)
self._pump_thread.daemon = True
self._pump_thread.start()
def _stop_pump_operation(self):
with self._thread_lock:
self._running = False
if self._pump_thread and self._pump_thread.is_alive():
self._pump_thread.join(timeout=2.0)
def _pump_operation_loop(self):
"""泵运行主循环"""
print("Pump operation loop started") # Debug print
while self._running and self._pump_state == "Running":
try:
# Calculate flow rate adjustment
flow_diff = self._target_flow_rate - self._flow_rate
# Adjust flow rate more aggressively (50% of difference)
adjustment = flow_diff * 0.5
self._flow_rate += adjustment
# Ensure flow rate is within bounds
self._flow_rate = max(0.1, min(self._max_flow_rate, self._flow_rate))
# Update status based on flow rate
if abs(flow_diff) < 0.1:
self._status = "Running at Target Flow Rate"
else:
self._status = "Adjusting Flow Rate"
# Calculate volume increment
volume_increment = (self._flow_rate / 60.0) # mL/s
self._total_volume += volume_increment
# Update time tracking
self._time_spent = datetime.now() - self._start_time
if self._transfer_time > 0:
remaining = self._transfer_time - self._time_spent.total_seconds()
self._time_remaining = timedelta(seconds=max(0, remaining))
# Check completion
if self._total_volume >= self._transfer_volume:
self._status = "Transfer Completed"
self._pump_state = "Stopped"
self._running = False
break
# Update pressure
self._pressure = (self._flow_rate / self._max_flow_rate) * self._max_pressure
print(f"Debug - Flow: {self._flow_rate:.1f}, Volume: {self._total_volume:.1f}") # Debug print
time.sleep(1.0)
except Exception as e:
print(f"Error in pump operation: {str(e)}")
self._status = "Error in pump operation"
self._pump_state = "Stopped"
self._running = False
break
def get_status_info(self) -> dict:
"""
获取完整的设备状态信息
Returns:
dict: 包含所有设备状态的字典
"""
return {
"status": self._status,
"pump_state": self._pump_state,
"flow_rate": self._flow_rate,
"target_flow_rate": self._target_flow_rate,
"pressure": self._pressure,
"total_volume": self._total_volume,
"max_flow_rate": self._max_flow_rate,
"max_pressure": self._max_pressure,
"current_device": self._current_device,
"from_vessel": self._from_vessel,
"to_vessel": self._to_vessel,
"transfer_volume": self._transfer_volume,
"amount": self._amount,
"transfer_time": self._transfer_time,
"is_viscous": self._is_viscous,
"rinsing_solvent": self._rinsing_solvent,
"rinsing_volume": self._rinsing_volume,
"rinsing_repeats": self._rinsing_repeats,
"is_solid": self._is_solid,
"time_spent": self._time_spent.total_seconds(),
"time_remaining": self._time_remaining.total_seconds()
}
# 用于测试的主函数
if __name__ == "__main__":
pump = MockPump()
# 测试基本功能
print("启动泵设备测试...")
print(f"初始状态: {pump.get_status_info()}")
# 设置流速并启动
pump.set_flow_rate(50.0)
pump.start_pump()
# 模拟运行10秒
for i in range(10):
time.sleep(1)
print(f"{i+1}秒: 流速={pump.flow_rate:.1f}mL/min, 压力={pump.pressure:.2f}bar, 状态={pump.status}")
# 测试方向切换
print("切换泵方向...")
pump.emergency_stop()
print("测试完成")

View File

@@ -0,0 +1,390 @@
import time
import threading
import json
class MockRotavap:
"""
模拟旋转蒸发器设备类
这个类模拟了一个实验室旋转蒸发器的行为,包括旋转控制、
真空泵控制、温度控制等功能。参考了现有的 RotavapOne 实现。
"""
def __init__(self, port: str = "MOCK"):
"""
初始化MockRotavap实例
Args:
port (str): 设备端口,默认为"MOCK"表示模拟设备
"""
self.port = port
# 设备基本状态属性
self._status: str = "Idle" # 设备状态Idle, Running, Error, Stopped
# 旋转相关属性
self._rotate_state: str = "Stopped" # 旋转状态Running, Stopped
self._rotate_time: float = 0.0 # 旋转剩余时间 (秒)
self._rotate_speed: float = 0.0 # 旋转速度 (rpm)
self._max_rotate_speed: float = 300.0 # 最大旋转速度 (rpm)
# 真空泵相关属性
self._pump_state: str = "Stopped" # 泵状态Running, Stopped
self._pump_time: float = 0.0 # 泵剩余时间 (秒)
self._vacuum_level: float = 0.0 # 真空度 (mbar)
self._target_vacuum: float = 50.0 # 目标真空度 (mbar)
# 温度相关属性
self._temperature: float = 25.0 # 水浴温度 (°C)
self._target_temperature: float = 25.0 # 目标温度 (°C)
self._max_temperature: float = 180.0 # 最大温度 (°C)
# 运行控制线程
self._operation_thread = None
self._running = False
self._thread_lock = threading.Lock()
# 操作成功标志
self.success: str = "True" # 使用字符串而不是布尔值
# ==================== 状态属性 ====================
# 这些属性会被Uni-Lab系统自动识别并定时对外广播
@property
def status(self) -> str:
return self._status
@property
def rotate_state(self) -> str:
return self._rotate_state
@property
def rotate_time(self) -> float:
return self._rotate_time
@property
def rotate_speed(self) -> float:
return self._rotate_speed
@property
def pump_state(self) -> str:
return self._pump_state
@property
def pump_time(self) -> float:
return self._pump_time
@property
def vacuum_level(self) -> float:
return self._vacuum_level
@property
def temperature(self) -> float:
return self._temperature
@property
def target_temperature(self) -> float:
return self._target_temperature
# ==================== 设备控制方法 ====================
# 这些方法需要在注册表中添加会作为ActionServer接受控制指令
def set_timer(self, command: str) -> str:
"""
设置定时器 - 兼容现有RotavapOne接口
Args:
command (str): JSON格式的命令字符串包含rotate_time和pump_time
Returns:
str: 操作结果状态 ("Success", "Error")
"""
try:
timer = json.loads(command)
rotate_time = timer.get("rotate_time", 0)
pump_time = timer.get("pump_time", 0)
self.success = "False"
self._rotate_time = float(rotate_time)
self._pump_time = float(pump_time)
self.success = "True"
self._status = "Timer Set"
return "Success"
except (json.JSONDecodeError, ValueError, KeyError) as e:
self._status = f"Error: Invalid command format - {str(e)}"
self.success = "False"
return "Error"
def set_rotate_time(self, time_seconds: float) -> str:
"""
设置旋转时间
Args:
time_seconds (float): 旋转时间 (秒)
Returns:
str: 操作结果状态 ("Success", "Error")
"""
self.success = "False"
self._rotate_time = max(0.0, float(time_seconds))
self.success = "True"
self._status = "Rotate time set"
return "Success"
def set_pump_time(self, time_seconds: float) -> str:
"""
设置泵时间
Args:
time_seconds (float): 泵时间 (秒)
Returns:
str: 操作结果状态 ("Success", "Error")
"""
self.success = "False"
self._pump_time = max(0.0, float(time_seconds))
self.success = "True"
self._status = "Pump time set"
return "Success"
def set_rotate_speed(self, speed: float) -> str:
"""
设置旋转速度
Args:
speed (float): 旋转速度 (rpm)
Returns:
str: 操作结果状态 ("Success", "Error")
"""
if speed < 0 or speed > self._max_rotate_speed:
self._status = f"Error: Speed out of range (0-{self._max_rotate_speed})"
return "Error"
self._rotate_speed = speed
self._status = "Rotate speed set"
return "Success"
def set_temperature(self, temperature: float) -> str:
"""
设置水浴温度
Args:
temperature (float): 目标温度 (°C)
Returns:
str: 操作结果状态 ("Success", "Error")
"""
if temperature < 0 or temperature > self._max_temperature:
self._status = f"Error: Temperature out of range (0-{self._max_temperature})"
return "Error"
self._target_temperature = temperature
self._status = "Temperature set"
# 启动操作线程以开始温度控制
self._start_operation()
return "Success"
def start_rotation(self) -> str:
"""
启动旋转
Returns:
str: 操作结果状态 ("Success", "Error")
"""
if self._rotate_time <= 0:
self._status = "Error: No rotate time set"
return "Error"
self._rotate_state = "Running"
self._status = "Rotation started"
return "Success"
def start_pump(self) -> str:
"""
启动真空泵
Returns:
str: 操作结果状态 ("Success", "Error")
"""
if self._pump_time <= 0:
self._status = "Error: No pump time set"
return "Error"
self._pump_state = "Running"
self._status = "Pump started"
return "Success"
def stop_all_operations(self) -> str:
"""
停止所有操作
Returns:
str: 操作结果状态 ("Success", "Error")
"""
self._rotate_state = "Stopped"
self._pump_state = "Stopped"
self._stop_operation()
self._rotate_time = 0.0
self._pump_time = 0.0
self._vacuum_level = 0.0
self._status = "All operations stopped"
return "Success"
def emergency_stop(self) -> str:
"""
紧急停止
Returns:
str: 操作结果状态 ("Success", "Error")
"""
self._status = "Emergency Stop"
self.stop_all_operations()
return "Success"
# ==================== 内部控制方法 ====================
def _start_operation(self):
"""
启动操作线程
这个方法启动一个后台线程来模拟旋蒸的实际运行过程。
"""
with self._thread_lock:
if not self._running:
self._running = True
self._operation_thread = threading.Thread(target=self._operation_loop)
self._operation_thread.daemon = True
self._operation_thread.start()
def _stop_operation(self):
"""
停止操作线程
安全地停止后台运行线程并等待其完成。
"""
with self._thread_lock:
self._running = False
if self._operation_thread and self._operation_thread.is_alive():
self._operation_thread.join(timeout=2.0)
def _operation_loop(self):
"""
操作主循环
这个方法在后台线程中运行,模拟真实旋蒸的工作过程:
1. 时间倒计时
2. 温度控制
3. 真空度控制
4. 状态更新
"""
while self._running:
try:
# 处理旋转时间倒计时
if self._rotate_time > 0:
self._rotate_state = "Running"
self._rotate_time = max(0.0, self._rotate_time - 1.0)
else:
self._rotate_state = "Stopped"
# 处理泵时间倒计时
if self._pump_time > 0:
self._pump_state = "Running"
self._pump_time = max(0.0, self._pump_time - 1.0)
# 模拟真空度变化
if self._vacuum_level > self._target_vacuum:
self._vacuum_level = max(self._target_vacuum, self._vacuum_level - 5.0)
else:
self._pump_state = "Stopped"
# 真空度逐渐回升
self._vacuum_level = min(1013.25, self._vacuum_level + 2.0)
# 模拟温度控制
temp_diff = self._target_temperature - self._temperature
if abs(temp_diff) > 0.5:
if temp_diff > 0:
self._temperature += min(1.0, temp_diff * 0.1)
else:
self._temperature += max(-1.0, temp_diff * 0.1)
# 更新整体状态
if self._rotate_state == "Running" or self._pump_state == "Running":
self._status = "Operating"
elif self._rotate_time > 0 or self._pump_time > 0:
self._status = "Ready"
else:
self._status = "Idle"
# 等待1秒后继续下一次循环
time.sleep(1.0)
except Exception as e:
self._status = f"Error in operation: {str(e)}"
break
# 循环结束时的清理工作
self._status = "Idle"
def get_status_info(self) -> dict:
"""
获取完整的设备状态信息
Returns:
dict: 包含所有设备状态的字典
"""
return {
"status": self._status,
"rotate_state": self._rotate_state,
"rotate_time": self._rotate_time,
"rotate_speed": self._rotate_speed,
"pump_state": self._pump_state,
"pump_time": self._pump_time,
"vacuum_level": self._vacuum_level,
"temperature": self._temperature,
"target_temperature": self._target_temperature,
"success": self.success,
}
# 用于测试的主函数
if __name__ == "__main__":
rotavap = MockRotavap()
# 测试基本功能
print("启动旋转蒸发器测试...")
print(f"初始状态: {rotavap.get_status_info()}")
# 设置定时器
timer_command = '{"rotate_time": 300, "pump_time": 600}'
rotavap.set_timer(timer_command)
# 设置温度和转速
rotavap.set_temperature(60.0)
rotavap.set_rotate_speed(120.0)
# 启动操作
rotavap.start_rotation()
rotavap.start_pump()
# 模拟运行10秒
for i in range(10):
time.sleep(1)
print(
f"{i+1}秒: 旋转={rotavap.rotate_time:.0f}s, 泵={rotavap.pump_time:.0f}s, "
f"温度={rotavap.temperature:.1f}°C, 真空={rotavap.vacuum_level:.1f}mbar"
)
rotavap.emergency_stop()
print("测试完成")

View File

@@ -0,0 +1,399 @@
import time
import threading
from datetime import datetime, timedelta
class MockSeparator:
def __init__(self, port: str = "MOCK"):
self.port = port
# 基本状态属性
self._status: str = "Idle" # 当前总体状态
self._valve_state: str = "Closed" # 阀门状态Open 或 Closed
self._settling_time: float = 0.0 # 静置时间(秒)
# 搅拌相关属性
self._shake_time: float = 0.0 # 剩余摇摆时间(秒)
self._shake_status: str = "Not Shaking" # 摇摆状态
# 用于后台模拟 shake 动作
self._operation_thread = None
self._thread_lock = threading.Lock()
self._running = False
# Separate action 相关属性
self._current_device: str = "MockSeparator1"
self._purpose: str = "" # wash or extract
self._product_phase: str = "" # top or bottom
self._from_vessel: str = ""
self._separation_vessel: str = ""
self._to_vessel: str = ""
self._waste_phase_to_vessel: str = ""
self._solvent: str = ""
self._solvent_volume: float = 0.0
self._through: str = ""
self._repeats: int = 1
self._stir_time: float = 0.0
self._stir_speed: float = 0.0
self._time_spent = timedelta()
self._time_remaining = timedelta()
self._start_time = datetime.now() # 添加这一行
@property
def current_device(self) -> str:
return self._current_device
@property
def purpose(self) -> str:
return self._purpose
@property
def valve_state(self) -> str:
return self._valve_state
@property
def settling_time(self) -> float:
return self._settling_time
@property
def status(self) -> str:
return self._status
@property
def shake_time(self) -> float:
with self._thread_lock:
return self._shake_time
@property
def shake_status(self) -> str:
with self._thread_lock:
return self._shake_status
@property
def product_phase(self) -> str:
return self._product_phase
@property
def from_vessel(self) -> str:
return self._from_vessel
@property
def separation_vessel(self) -> str:
return self._separation_vessel
@property
def to_vessel(self) -> str:
return self._to_vessel
@property
def waste_phase_to_vessel(self) -> str:
return self._waste_phase_to_vessel
@property
def solvent(self) -> str:
return self._solvent
@property
def solvent_volume(self) -> float:
return self._solvent_volume
@property
def through(self) -> str:
return self._through
@property
def repeats(self) -> int:
return self._repeats
@property
def stir_time(self) -> float:
return self._stir_time
@property
def stir_speed(self) -> float:
return self._stir_speed
@property
def time_spent(self) -> float:
if self._running:
self._time_spent = datetime.now() - self._start_time
return self._time_spent.total_seconds()
@property
def time_remaining(self) -> float:
if self._running:
elapsed = (datetime.now() - self._start_time).total_seconds()
total_time = (self._stir_time + self._settling_time + 10) * self._repeats
remain = max(0, total_time - elapsed)
self._time_remaining = timedelta(seconds=remain)
return self._time_remaining.total_seconds()
def separate(self, purpose: str, product_phase: str, from_vessel: str,
separation_vessel: str, to_vessel: str, waste_phase_to_vessel: str = "",
solvent: str = "", solvent_volume: float = 0.0, through: str = "",
repeats: int = 1, stir_time: float = 0.0, stir_speed: float = 0.0,
settling_time: float = 60.0) -> dict:
"""
执行分离操作
"""
with self._thread_lock:
# 检查是否已经在运行
if self._running:
return {
"success": False,
"status": "Error: Operation already in progress"
}
# 必填参数验证
if not all([from_vessel, separation_vessel, to_vessel]):
self._status = "Error: Missing required vessel parameters"
return {"success": False}
# 验证参数
if purpose not in ["wash", "extract"]:
self._status = "Error: Invalid purpose"
return {"success": False}
if product_phase not in ["top", "bottom"]:
self._status = "Error: Invalid product phase"
return {"success": False}
# 数值参数验证
try:
solvent_volume = float(solvent_volume)
repeats = int(repeats)
stir_time = float(stir_time)
stir_speed = float(stir_speed)
settling_time = float(settling_time)
except ValueError:
self._status = "Error: Invalid numeric parameters"
return {"success": False}
# 设置参数
self._purpose = purpose
self._product_phase = product_phase
self._from_vessel = from_vessel
self._separation_vessel = separation_vessel
self._to_vessel = to_vessel
self._waste_phase_to_vessel = waste_phase_to_vessel
self._solvent = solvent
self._solvent_volume = float(solvent_volume)
self._through = through
self._repeats = int(repeats)
self._stir_time = float(stir_time)
self._stir_speed = float(stir_speed)
self._settling_time = float(settling_time)
# 重置计时器
self._start_time = datetime.now()
self._time_spent = timedelta()
total_time = (self._stir_time + self._settling_time + 10) * self._repeats
self._time_remaining = timedelta(seconds=total_time)
# 启动分离操作
self._status = "Starting Separation"
self._running = True
# 在锁内创建和启动线程
self._operation_thread = threading.Thread(target=self._operation_loop)
self._operation_thread.daemon = True
self._operation_thread.start()
# 等待确认操作已经开始
time.sleep(0.1) # 短暂等待确保操作线程已启动
return {
"success": True,
"status": self._status,
"current_device": self._current_device,
"time_spent": self._time_spent.total_seconds(),
"time_remaining": self._time_remaining.total_seconds()
}
def shake(self, shake_time: float) -> str:
"""
模拟 shake搅拌操作
- 进入 "Shaking" 状态,倒计时 shake_time 秒
- shake 结束后,进入 "Settling" 状态,静置时间固定为 5 秒
- 最后恢复为 Idle
"""
try:
shake_time = float(shake_time)
except ValueError:
self._status = "Error: Invalid shake time"
return "Error"
with self._thread_lock:
self._status = "Shaking"
self._settling_time = 0.0
self._shake_time = shake_time
self._shake_status = "Shaking"
def _run_shake():
remaining = shake_time
while remaining > 0:
time.sleep(1)
remaining -= 1
with self._thread_lock:
self._shake_time = remaining
with self._thread_lock:
self._status = "Settling"
self._settling_time = 60.0 # 固定静置时间为60秒
self._shake_status = "Settling"
while True:
with self._thread_lock:
if self._settling_time <= 0:
self._status = "Idle"
self._shake_status = "Idle"
break
time.sleep(1)
with self._thread_lock:
self._settling_time = max(0.0, self._settling_time - 1)
self._operation_thread = threading.Thread(target=_run_shake)
self._operation_thread.daemon = True
self._operation_thread.start()
return "Success"
def set_valve(self, command: str) -> str:
"""
阀门控制命令:传入 "open""close"
"""
command = command.lower()
if command == "open":
self._valve_state = "Open"
self._status = "Valve Opened"
elif command == "close":
self._valve_state = "Closed"
self._status = "Valve Closed"
else:
self._status = "Error: Invalid valve command"
return "Error"
return "Success"
def _operation_loop(self):
"""分离操作主循环"""
try:
current_repeat = 1
# 立即更新状态确保不会停留在Starting Separation
with self._thread_lock:
self._status = f"Separation Cycle {current_repeat}/{self._repeats}"
while self._running and current_repeat <= self._repeats:
# 第一步:搅拌
if self._stir_time > 0:
with self._thread_lock:
self._status = f"Stirring (Repeat {current_repeat}/{self._repeats})"
remaining_stir = self._stir_time
while remaining_stir > 0 and self._running:
time.sleep(1)
remaining_stir -= 1
# 第二步:静置
if self._settling_time > 0:
with self._thread_lock:
self._status = f"Settling (Repeat {current_repeat}/{self._repeats})"
remaining_settle = self._settling_time
while remaining_settle > 0 and self._running:
time.sleep(1)
remaining_settle -= 1
# 第三步:打开阀门排出
with self._thread_lock:
self._valve_state = "Open"
self._status = f"Draining (Repeat {current_repeat}/{self._repeats})"
# 模拟排出时间5秒
time.sleep(10)
# 关闭阀门
with self._thread_lock:
self._valve_state = "Closed"
# 检查是否继续下一次重复
if current_repeat < self._repeats:
current_repeat += 1
else:
with self._thread_lock:
self._status = "Separation Complete"
break
except Exception as e:
with self._thread_lock:
self._status = f"Error in separation: {str(e)}"
finally:
with self._thread_lock:
self._running = False
self._valve_state = "Closed"
if self._status == "Starting Separation":
self._status = "Error: Operation failed to start"
elif self._status != "Separation Complete":
self._status = "Stopped"
def stop_operations(self) -> str:
"""停止任何正在执行的操作"""
with self._thread_lock:
self._running = False
if self._operation_thread and self._operation_thread.is_alive():
self._operation_thread.join(timeout=1.0)
self._operation_thread = None
self._settling_time = 0.0
self._status = "Idle"
self._shake_status = "Idle"
self._shake_time = 0.0
self._time_remaining = timedelta()
return "Success"
def get_status_info(self) -> dict:
"""获取当前设备状态信息"""
with self._thread_lock:
current_time = datetime.now()
if self._start_time:
self._time_spent = current_time - self._start_time
return {
"status": self._status,
"valve_state": self._valve_state,
"settling_time": self._settling_time,
"shake_time": self._shake_time,
"shake_status": self._shake_status,
"current_device": self._current_device,
"purpose": self._purpose,
"product_phase": self._product_phase,
"from_vessel": self._from_vessel,
"separation_vessel": self._separation_vessel,
"to_vessel": self._to_vessel,
"waste_phase_to_vessel": self._waste_phase_to_vessel,
"solvent": self._solvent,
"solvent_volume": self._solvent_volume,
"through": self._through,
"repeats": self._repeats,
"stir_time": self._stir_time,
"stir_speed": self._stir_speed,
"time_spent": self._time_spent.total_seconds(),
"time_remaining": self._time_remaining.total_seconds()
}
# 主函数用于测试
if __name__ == "__main__":
separator = MockSeparator()
print("启动简单版分离器测试...")
print("初始状态:", separator.get_status_info())
# 触发 shake 操作,模拟 10 秒的搅拌
print("执行 shake 操作...")
print(separator.shake(10.0))
# 循环显示状态变化
for i in range(20):
time.sleep(1)
info = separator.get_status_info()
print(
f"{i+1}秒: 状态={info['status']}, 静置时间={info['settling_time']:.1f}秒, "
f"阀门状态={info['valve_state']}, shake_time={info['shake_time']:.1f}, "
f"shake_status={info['shake_status']}"
)
# 模拟打开阀门
print("打开阀门...", separator.set_valve("open"))
print("最终状态:", separator.get_status_info())

View File

@@ -0,0 +1,89 @@
import time
class MockSolenoidValve:
"""
模拟电磁阀设备类 - 简化版本
这个类提供了电磁阀的基本功能:开启、关闭和状态查询
"""
def __init__(self, port: str = "MOCK"):
"""
初始化MockSolenoidValve实例
Args:
port (str): 设备端口,默认为"MOCK"表示模拟设备
"""
self.port = port
self._status: str = "Idle"
self._valve_status: str = "Closed" # 阀门位置Open, Closed
@property
def status(self) -> str:
"""设备状态 - 会被自动识别的设备属性"""
return self._status
@property
def valve_status(self) -> str:
"""阀门状态"""
return self._valve_status
def set_valve_status(self, status: str) -> str:
"""
设置阀门位置
Args:
position (str): 阀门位置,可选值:"Open", "Closed"
Returns:
str: 操作结果状态 ("Success", "Error")
"""
if status not in ["Open", "Closed"]:
self._status = "Error: Invalid position"
return "Error"
self._status = "Moving"
time.sleep(1) # 模拟阀门动作时间
self._valve_status = status
self._status = "Idle"
return "Success"
def open_valve(self) -> str:
"""打开阀门"""
return self.set_valve_status("Open")
def close_valve(self) -> str:
"""关闭阀门"""
return self.set_valve_status("Closed")
def get_valve_status(self) -> str:
"""获取阀门位置"""
return self._valve_status
def is_open(self) -> bool:
"""检查阀门是否打开"""
return self._valve_status == "Open"
def is_closed(self) -> bool:
"""检查阀门是否关闭"""
return self._valve_status == "Closed"
# 用于测试的主函数
if __name__ == "__main__":
valve = MockSolenoidValve()
print("启动电磁阀测试...")
print(f"初始状态: 位置={valve.valve_status}, 状态={valve.status}")
# 测试开启阀门
valve.open_valve()
print(f"开启后: 位置={valve.valve_status}, 状态={valve.status}")
# 测试关闭阀门
valve.close_valve()
print(f"关闭后: 位置={valve.valve_status}, 状态={valve.status}")
print("测试完成")

View File

@@ -0,0 +1,307 @@
import time
import threading
class MockStirrer:
def __init__(self, port: str = "MOCK"):
self.port = port
# 设备基本状态属性
self._status: str = "Idle" # 设备状态Idle, Running, Error, Stopped
# 搅拌相关属性
self._stir_speed: float = 0.0 # 当前搅拌速度 (rpm)
self._target_stir_speed: float = 0.0 # 目标搅拌速度 (rpm)
self._max_stir_speed: float = 2000.0 # 最大搅拌速度 (rpm)
self._stir_state: str = "Stopped" # 搅拌状态Running, Stopped
# 温度相关属性
self._temperature: float = 25.0 # 当前温度 (°C)
self._target_temperature: float = 25.0 # 目标温度 (°C)
self._max_temperature: float = 300.0 # 最大温度 (°C)
self._heating_state: str = "Off" # 加热状态On, Off
self._heating_power: float = 0.0 # 加热功率百分比 0-100
# 运行控制线程
self._operation_thread = None
self._running = False
self._thread_lock = threading.Lock()
# ==================== 状态属性 ====================
# 这些属性会被Uni-Lab系统自动识别并定时对外广播
@property
def status(self) -> str:
return self._status
@property
def stir_speed(self) -> float:
return self._stir_speed
@property
def target_stir_speed(self) -> float:
return self._target_stir_speed
@property
def stir_state(self) -> str:
return self._stir_state
@property
def temperature(self) -> float:
"""
当前温度
Returns:
float: 当前温度 (°C)
"""
return self._temperature
@property
def target_temperature(self) -> float:
"""
目标温度
Returns:
float: 目标温度 (°C)
"""
return self._target_temperature
@property
def heating_state(self) -> str:
return self._heating_state
@property
def heating_power(self) -> float:
return self._heating_power
@property
def max_stir_speed(self) -> float:
return self._max_stir_speed
@property
def max_temperature(self) -> float:
return self._max_temperature
# ==================== 设备控制方法 ====================
# 这些方法需要在注册表中添加会作为ActionServer接受控制指令
def set_stir_speed(self, speed: float) -> str:
speed = float(speed) # 确保传入的速度是浮点数
if speed < 0 or speed > self._max_stir_speed:
self._status = f"Error: Speed out of range (0-{self._max_stir_speed})"
return "Error"
self._target_stir_speed = speed
self._status = "Setting Stir Speed"
# 如果设置了非零速度,启动搅拌
if speed > 0:
self._stir_state = "Running"
else:
self._stir_state = "Stopped"
return "Success"
def set_temperature(self, temperature: float) -> str:
temperature = float(temperature) # 确保传入的温度是浮点数
if temperature < 0 or temperature > self._max_temperature:
self._status = f"Error: Temperature out of range (0-{self._max_temperature})"
return "Error"
self._target_temperature = temperature
self._status = "Setting Temperature"
return "Success"
def start_stirring(self) -> str:
if self._target_stir_speed <= 0:
self._status = "Error: No target speed set"
return "Error"
self._stir_state = "Running"
self._status = "Stirring Started"
return "Success"
def stop_stirring(self) -> str:
self._stir_state = "Stopped"
self._target_stir_speed = 0.0
self._status = "Stirring Stopped"
return "Success"
def heating_control(self, heating_state: str = "On") -> str:
if heating_state not in ["On", "Off"]:
self._status = "Error: Invalid heating state"
return "Error"
self._heating_state = heating_state
if heating_state == "On":
self._status = "Heating On"
else:
self._status = "Heating Off"
self._heating_power = 0.0
return "Success"
def stop_all_operations(self) -> str:
self._stir_state = "Stopped"
self._heating_state = "Off"
self._stop_operation()
self._stir_speed = 0.0
self._target_stir_speed = 0.0
self._heating_power = 0.0
self._status = "All operations stopped"
return "Success"
def emergency_stop(self) -> str:
"""
紧急停止
Returns:
str: 操作结果状态 ("Success", "Error")
"""
self._status = "Emergency Stop"
self.stop_all_operations()
return "Success"
# ==================== 内部控制方法 ====================
def _start_operation(self):
with self._thread_lock:
if not self._running:
self._running = True
self._operation_thread = threading.Thread(target=self._operation_loop)
self._operation_thread.daemon = True
self._operation_thread.start()
def _stop_operation(self):
"""
停止操作线程
安全地停止后台运行线程并等待其完成。
"""
with self._thread_lock:
self._running = False
if self._operation_thread and self._operation_thread.is_alive():
self._operation_thread.join(timeout=2.0)
def _operation_loop(self):
while self._running:
try:
# 处理搅拌速度控制
if self._stir_state == "Running":
speed_diff = self._target_stir_speed - self._stir_speed
if abs(speed_diff) < 1.0: # 速度接近目标值
self._stir_speed = self._target_stir_speed
if self._stir_speed > 0:
self._status = "Stirring at Target Speed"
else:
# 模拟速度调节每秒调整10%的差值
adjustment = speed_diff * 0.1
self._stir_speed += adjustment
self._status = "Adjusting Stir Speed"
# 确保速度在合理范围内
self._stir_speed = max(0.0, min(self._max_stir_speed, self._stir_speed))
else:
# 搅拌停止时速度逐渐降为0
if self._stir_speed > 0:
self._stir_speed = max(0.0, self._stir_speed - 50.0) # 每秒减少50rpm
# 处理温度控制
if self._heating_state == "On":
temp_diff = self._target_temperature - self._temperature
if abs(temp_diff) < 0.5: # 温度接近目标值
self._heating_power = 20.0 # 维持温度的最小功率
elif temp_diff > 0: # 需要加热
# 根据温差调整加热功率
if temp_diff > 50:
self._heating_power = 100.0
elif temp_diff > 20:
self._heating_power = 80.0
elif temp_diff > 10:
self._heating_power = 60.0
else:
self._heating_power = 40.0
# 模拟加热过程
heating_rate = self._heating_power / 100.0 * 1.5 # 最大每秒升温1.5度
self._temperature += heating_rate
else: # 目标温度低于当前温度
self._heating_power = 0.0
# 自然冷却
self._temperature -= 0.1
else:
self._heating_power = 0.0
# 自然冷却到室温
if self._temperature > 25.0:
self._temperature -= 0.2
# 限制温度范围
self._temperature = max(20.0, min(self._max_temperature, self._temperature))
# 更新整体状态
if self._stir_state == "Running" and self._heating_state == "On":
self._status = "Stirring and Heating"
elif self._stir_state == "Running":
self._status = "Stirring Only"
elif self._heating_state == "On":
self._status = "Heating Only"
else:
self._status = "Idle"
# 等待1秒后继续下一次循环
time.sleep(1.0)
except Exception as e:
self._status = f"Error in operation: {str(e)}"
break
# 循环结束时的清理工作
self._status = "Idle"
def get_status_info(self) -> dict:
return {
"status": self._status,
"stir_speed": self._stir_speed,
"target_stir_speed": self._target_stir_speed,
"stir_state": self._stir_state,
"temperature": self._temperature,
"target_temperature": self._target_temperature,
"heating_state": self._heating_state,
"heating_power": self._heating_power,
"max_stir_speed": self._max_stir_speed,
"max_temperature": self._max_temperature,
}
# 用于测试的主函数
if __name__ == "__main__":
stirrer = MockStirrer()
# 测试基本功能
print("启动搅拌器测试...")
print(f"初始状态: {stirrer.get_status_info()}")
# 设置搅拌速度和温度
stirrer.set_stir_speed(800.0)
stirrer.set_temperature(60.0)
stirrer.heating_control("On")
# 模拟运行15秒
for i in range(15):
time.sleep(1)
print(
f"{i+1}秒: 速度={stirrer.stir_speed:.0f}rpm, 温度={stirrer.temperature:.1f}°C, "
f"功率={stirrer.heating_power:.1f}%, 状态={stirrer.status}"
)
stirrer.emergency_stop()
print("测试完成")

View File

@@ -0,0 +1,229 @@
import time
import threading
from datetime import datetime, timedelta
class MockStirrer_new:
def __init__(self, port: str = "MOCK"):
self.port = port
# 基本状态属性
self._status: str = "Idle"
self._vessel: str = ""
self._purpose: str = ""
# 搅拌相关属性
self._stir_speed: float = 0.0
self._target_stir_speed: float = 0.0
self._max_stir_speed: float = 2000.0
self._stir_state: str = "Stopped"
# 计时相关
self._stir_time: float = 0.0
self._settling_time: float = 0.0
self._start_time = datetime.now()
self._time_remaining = timedelta()
# 运行控制
self._operation_thread = None
self._running = False
self._thread_lock = threading.Lock()
# 创建操作线程
self._operation_thread = threading.Thread(target=self._operation_loop)
self._operation_thread.daemon = True
self._operation_thread.start()
# ==================== 状态属性 ====================
@property
def status(self) -> str:
return self._status
@property
def stir_speed(self) -> float:
return self._stir_speed
@property
def target_stir_speed(self) -> float:
return self._target_stir_speed
@property
def stir_state(self) -> str:
return self._stir_state
@property
def vessel(self) -> str:
return self._vessel
@property
def purpose(self) -> str:
return self._purpose
@property
def stir_time(self) -> float:
return self._stir_time
@property
def settling_time(self) -> float:
return self._settling_time
@property
def max_stir_speed(self) -> float:
return self._max_stir_speed
@property
def progress(self) -> float:
"""返回当前操作的进度0-100"""
if not self._running:
return 0.0
elapsed = (datetime.now() - self._start_time).total_seconds()
total_time = self._stir_time + self._settling_time
if total_time <= 0:
return 100.0
return min(100.0, (elapsed / total_time) * 100)
# ==================== Action Server 方法 ====================
def start_stir(self, vessel: str, stir_speed: float = 0.0, purpose: str = "") -> dict:
"""
StartStir.action 对应的方法
"""
with self._thread_lock:
if self._running:
return {
"success": False,
"message": "Operation already in progress"
}
try:
# 重置所有参数
self._vessel = vessel
self._purpose = purpose
self._stir_time = 0.0 # 连续搅拌模式下不设置搅拌时间
self._settling_time = 0.0
self._start_time = datetime.now() # 重置开始时间
if stir_speed > 0:
self._target_stir_speed = min(stir_speed, self._max_stir_speed)
self._stir_state = "Running"
self._status = "Stirring Started"
self._running = True
return {
"success": True,
"message": "Stirring started successfully"
}
except Exception as e:
return {
"success": False,
"message": f"Error: {str(e)}"
}
def stir(self, stir_time: float, stir_speed: float, settling_time: float) -> dict:
"""
Stir.action 对应的方法
"""
with self._thread_lock:
try:
# 如果已经在运行,先停止当前操作
if self._running:
self._running = False
self._stir_state = "Stopped"
self._target_stir_speed = 0.0
time.sleep(0.1) # 给一个短暂的停止时间
# 重置所有参数
self._stir_time = float(stir_time)
self._settling_time = float(settling_time)
self._target_stir_speed = min(float(stir_speed), self._max_stir_speed)
self._start_time = datetime.now() # 重置开始时间
self._stir_state = "Running"
self._status = "Stirring"
self._running = True
return {"success": True}
except ValueError:
self._status = "Error: Invalid parameters"
return {"success": False}
def stop_stir(self, vessel: str) -> dict:
"""
StopStir.action 对应的方法
"""
with self._thread_lock:
if vessel != self._vessel:
return {
"success": False,
"message": "Vessel mismatch"
}
self._running = False
self._stir_state = "Stopped"
self._target_stir_speed = 0.0
self._status = "Stirring Stopped"
return {
"success": True,
"message": "Stirring stopped successfully"
}
# ==================== 内部控制方法 ====================
def _operation_loop(self):
"""操作主循环"""
while True:
try:
current_time = datetime.now()
with self._thread_lock: # 添加锁保护
if self._stir_state == "Running":
# 实际搅拌逻辑
speed_diff = self._target_stir_speed - self._stir_speed
if abs(speed_diff) > 0.1:
adjustment = speed_diff * 0.1
self._stir_speed += adjustment
else:
self._stir_speed = self._target_stir_speed
# 更新进度
if self._running:
if self._stir_time > 0: # 定时搅拌模式
elapsed = (current_time - self._start_time).total_seconds()
if elapsed >= self._stir_time + self._settling_time:
self._running = False
self._stir_state = "Stopped"
self._target_stir_speed = 0.0
self._stir_speed = 0.0
self._status = "Stirring Complete"
elif elapsed >= self._stir_time:
self._status = "Settling"
else: # 连续搅拌模式
self._status = "Stirring"
else:
# 停止状态下慢慢降低速度
if self._stir_speed > 0:
self._stir_speed = max(0, self._stir_speed - 20.0)
time.sleep(0.1)
except Exception as e:
print(f"Error in operation loop: {str(e)}") # 添加错误输出
self._status = f"Error: {str(e)}"
time.sleep(1.0) # 错误发生时等待较长时间
def get_status_info(self) -> dict:
"""获取设备状态信息"""
return {
"status": self._status,
"vessel": self._vessel,
"purpose": self._purpose,
"stir_speed": self._stir_speed,
"target_stir_speed": self._target_stir_speed,
"stir_state": self._stir_state,
"stir_time": self._stir_time, # 添加
"settling_time": self._settling_time, # 添加
"progress": self.progress,
"max_stir_speed": self._max_stir_speed
}

View File

@@ -0,0 +1,410 @@
import time
import threading
class MockVacuum:
"""
模拟真空泵设备类
这个类模拟了一个实验室真空泵的行为,包括真空度控制、
压力监测、运行状态管理等功能。参考了现有的 VacuumPumpMock 实现。
"""
def __init__(self, port: str = "MOCK"):
"""
初始化MockVacuum实例
Args:
port (str): 设备端口,默认为"MOCK"表示模拟设备
"""
self.port = port
# 设备基本状态属性
self._status: str = "Idle" # 设备状态Idle, Running, Error, Stopped
self._power_state: str = "Off" # 电源状态On, Off
self._pump_state: str = "Stopped" # 泵运行状态Running, Stopped, Paused
# 真空相关属性
self._vacuum_level: float = 1013.25 # 当前真空度 (mbar) - 大气压开始
self._target_vacuum: float = 50.0 # 目标真空度 (mbar)
self._min_vacuum: float = 1.0 # 最小真空度 (mbar)
self._max_vacuum: float = 1013.25 # 最大真空度 (mbar) - 大气压
# 泵性能相关属性
self._pump_speed: float = 0.0 # 泵速 (L/s)
self._max_pump_speed: float = 100.0 # 最大泵速 (L/s)
self._pump_efficiency: float = 95.0 # 泵效率百分比
# 运行控制线程
self._vacuum_thread = None
self._running = False
self._thread_lock = threading.Lock()
# ==================== 状态属性 ====================
# 这些属性会被Uni-Lab系统自动识别并定时对外广播
@property
def status(self) -> str:
"""
设备状态 - 会被自动识别的设备属性
Returns:
str: 当前设备状态 (Idle, Running, Error, Stopped)
"""
return self._status
@property
def power_state(self) -> str:
"""
电源状态
Returns:
str: 电源状态 (On, Off)
"""
return self._power_state
@property
def pump_state(self) -> str:
"""
泵运行状态
Returns:
str: 泵状态 (Running, Stopped, Paused)
"""
return self._pump_state
@property
def vacuum_level(self) -> float:
"""
当前真空度
Returns:
float: 当前真空度 (mbar)
"""
return self._vacuum_level
@property
def target_vacuum(self) -> float:
"""
目标真空度
Returns:
float: 目标真空度 (mbar)
"""
return self._target_vacuum
@property
def pump_speed(self) -> float:
"""
泵速
Returns:
float: 泵速 (L/s)
"""
return self._pump_speed
@property
def pump_efficiency(self) -> float:
"""
泵效率
Returns:
float: 泵效率百分比
"""
return self._pump_efficiency
@property
def max_pump_speed(self) -> float:
"""
最大泵速
Returns:
float: 最大泵速 (L/s)
"""
return self._max_pump_speed
# ==================== 设备控制方法 ====================
# 这些方法需要在注册表中添加会作为ActionServer接受控制指令
def power_control(self, power_state: str = "On") -> str:
"""
电源控制方法
Args:
power_state (str): 电源状态,可选值:"On", "Off"
Returns:
str: 操作结果状态 ("Success", "Error")
"""
if power_state not in ["On", "Off"]:
self._status = "Error: Invalid power state"
return "Error"
self._power_state = power_state
if power_state == "On":
self._status = "Power On"
self._start_vacuum_operation()
else:
self._status = "Power Off"
self.stop_vacuum()
return "Success"
def set_vacuum_level(self, vacuum_level: float) -> str:
"""
设置目标真空度
Args:
vacuum_level (float): 目标真空度 (mbar)
Returns:
str: 操作结果状态 ("Success", "Error")
"""
try:
vacuum_level = float(vacuum_level)
except ValueError:
self._status = "Error: Invalid vacuum level"
return "Error"
if self._power_state != "On":
self._status = "Error: Power Off"
return "Error"
if vacuum_level < self._min_vacuum or vacuum_level > self._max_vacuum:
self._status = f"Error: Vacuum level out of range ({self._min_vacuum}-{self._max_vacuum})"
return "Error"
self._target_vacuum = vacuum_level
self._status = "Setting Vacuum Level"
return "Success"
def start_vacuum(self) -> str:
"""
启动真空泵
Returns:
str: 操作结果状态 ("Success", "Error")
"""
if self._power_state != "On":
self._status = "Error: Power Off"
return "Error"
self._pump_state = "Running"
self._status = "Starting Vacuum Pump"
self._start_vacuum_operation()
return "Success"
def stop_vacuum(self) -> str:
"""
停止真空泵
Returns:
str: 操作结果状态 ("Success", "Error")
"""
self._pump_state = "Stopped"
self._status = "Stopping Vacuum Pump"
self._stop_vacuum_operation()
self._pump_speed = 0.0
return "Success"
def pause_vacuum(self) -> str:
"""
暂停真空泵
Returns:
str: 操作结果状态 ("Success", "Error")
"""
if self._pump_state != "Running":
self._status = "Error: Pump not running"
return "Error"
self._pump_state = "Paused"
self._status = "Vacuum Pump Paused"
self._stop_vacuum_operation()
return "Success"
def resume_vacuum(self) -> str:
"""
恢复真空泵运行
Returns:
str: 操作结果状态 ("Success", "Error")
"""
if self._pump_state != "Paused":
self._status = "Error: Pump not paused"
return "Error"
if self._power_state != "On":
self._status = "Error: Power Off"
return "Error"
self._pump_state = "Running"
self._status = "Resuming Vacuum Pump"
self._start_vacuum_operation()
return "Success"
def vent_to_atmosphere(self) -> str:
"""
通大气 - 将真空度恢复到大气压
Returns:
str: 操作结果状态 ("Success", "Error")
"""
self._target_vacuum = self._max_vacuum # 设置为大气压
self._status = "Venting to Atmosphere"
return "Success"
def emergency_stop(self) -> str:
"""
紧急停止
Returns:
str: 操作结果状态 ("Success", "Error")
"""
self._status = "Emergency Stop"
self._pump_state = "Stopped"
self._stop_vacuum_operation()
self._pump_speed = 0.0
return "Success"
# ==================== 内部控制方法 ====================
def _start_vacuum_operation(self):
"""
启动真空操作线程
这个方法启动一个后台线程来模拟真空泵的实际运行过程。
"""
with self._thread_lock:
if not self._running and self._power_state == "On":
self._running = True
self._vacuum_thread = threading.Thread(target=self._vacuum_operation_loop)
self._vacuum_thread.daemon = True
self._vacuum_thread.start()
def _stop_vacuum_operation(self):
"""
停止真空操作线程
安全地停止后台运行线程并等待其完成。
"""
with self._thread_lock:
self._running = False
if self._vacuum_thread and self._vacuum_thread.is_alive():
self._vacuum_thread.join(timeout=2.0)
def _vacuum_operation_loop(self):
"""
真空操作主循环
这个方法在后台线程中运行,模拟真空泵的工作过程:
1. 检查电源状态和运行状态
2. 如果泵状态为 "Running",根据目标真空调整泵速和真空度
3. 否则等待
"""
while self._running and self._power_state == "On":
try:
with self._thread_lock:
# 只有泵状态为 Running 时才进行更新
if self._pump_state == "Running":
vacuum_diff = self._vacuum_level - self._target_vacuum
if abs(vacuum_diff) < 1.0: # 真空度接近目标值
self._status = "At Target Vacuum"
self._pump_speed = self._max_pump_speed * 0.2 # 维持真空的最小泵速
elif vacuum_diff > 0: # 需要抽真空(降低压力)
self._status = "Pumping Down"
if vacuum_diff > 500:
self._pump_speed = self._max_pump_speed
elif vacuum_diff > 100:
self._pump_speed = self._max_pump_speed * 0.8
elif vacuum_diff > 50:
self._pump_speed = self._max_pump_speed * 0.6
else:
self._pump_speed = self._max_pump_speed * 0.4
# 根据泵速和效率计算真空降幅
pump_rate = (self._pump_speed / self._max_pump_speed) * self._pump_efficiency / 100.0
vacuum_reduction = pump_rate * 10.0 # 每秒最大降低10 mbar
self._vacuum_level = max(self._target_vacuum, self._vacuum_level - vacuum_reduction)
else: # 目标真空度高于当前值,需要通气
self._status = "Venting"
self._pump_speed = 0.0
self._vacuum_level = min(self._target_vacuum, self._vacuum_level + 5.0)
# 限制真空度范围
self._vacuum_level = max(self._min_vacuum, min(self._max_vacuum, self._vacuum_level))
else:
# 当泵状态不是 Running 时,可保持原状态
self._status = "Vacuum Pump Not Running"
# 释放锁后等待1秒钟
time.sleep(1.0)
except Exception as e:
with self._thread_lock:
self._status = f"Error in vacuum operation: {str(e)}"
break
# 循环结束后的清理工作
if self._pump_state == "Running":
self._status = "Idle"
# 停止泵后,真空度逐渐回升到大气压
while self._vacuum_level < self._max_vacuum * 0.9:
with self._thread_lock:
self._vacuum_level += 2.0
time.sleep(0.1)
def get_status_info(self) -> dict:
"""
获取完整的设备状态信息
Returns:
dict: 包含所有设备状态的字典
"""
return {
"status": self._status,
"power_state": self._power_state,
"pump_state": self._pump_state,
"vacuum_level": self._vacuum_level,
"target_vacuum": self._target_vacuum,
"pump_speed": self._pump_speed,
"pump_efficiency": self._pump_efficiency,
"max_pump_speed": self._max_pump_speed,
}
# 用于测试的主函数
if __name__ == "__main__":
vacuum = MockVacuum()
# 测试基本功能
print("启动真空泵测试...")
vacuum.power_control("On")
print(f"初始状态: {vacuum.get_status_info()}")
# 设置目标真空度并启动
vacuum.set_vacuum_level(10.0) # 设置为10mbar
vacuum.start_vacuum()
# 模拟运行15秒
for i in range(15):
time.sleep(1)
print(
f"{i+1}秒: 真空度={vacuum.vacuum_level:.1f}mbar, 泵速={vacuum.pump_speed:.1f}L/s, 状态={vacuum.status}"
)
# 测试通大气
print("测试通大气...")
vacuum.vent_to_atmosphere()
# 继续运行5秒观察通大气过程
for i in range(5):
time.sleep(1)
print(f"通大气第{i+1}秒: 真空度={vacuum.vacuum_level:.1f}mbar, 状态={vacuum.status}")
vacuum.emergency_stop()
print("测试完成")

View File

@@ -12,10 +12,8 @@ class VacuumPumpMock:
def get_status(self) -> str:
return self._status
def set_status(self, position):
time.sleep(5)
self._status = position
def set_status(self, string):
self._status = string
time.sleep(5)
def open(self):

View File

View File

@@ -0,0 +1,158 @@
import asyncio
import logging
from typing import Dict, Any
class VirtualCentrifuge:
"""Virtual centrifuge device for CentrifugeProtocol testing"""
def __init__(self, device_id: str = None, config: Dict[str, Any] = None, **kwargs):
# 处理可能的不同调用方式
if device_id is None and 'id' in kwargs:
device_id = kwargs.pop('id')
if config is None and 'config' in kwargs:
config = kwargs.pop('config')
# 设置默认值
self.device_id = device_id or "unknown_centrifuge"
self.config = config or {}
self.logger = logging.getLogger(f"VirtualCentrifuge.{self.device_id}")
self.data = {}
# 添加调试信息
print(f"=== VirtualCentrifuge {self.device_id} is being created! ===")
print(f"=== Config: {self.config} ===")
print(f"=== Kwargs: {kwargs} ===")
# 从config或kwargs中获取配置参数
self.port = self.config.get('port') or kwargs.get('port', 'VIRTUAL')
self._max_speed = self.config.get('max_speed') or kwargs.get('max_speed', 15000.0)
self._max_temp = self.config.get('max_temp') or kwargs.get('max_temp', 40.0)
self._min_temp = self.config.get('min_temp') or kwargs.get('min_temp', 4.0)
# 处理其他kwargs参数但跳过已知的配置参数
skip_keys = {'port', 'max_speed', 'max_temp', 'min_temp'}
for key, value in kwargs.items():
if key not in skip_keys and not hasattr(self, key):
setattr(self, key, value)
async def initialize(self) -> bool:
"""Initialize virtual centrifuge"""
print(f"=== VirtualCentrifuge {self.device_id} initialize() called! ===")
self.logger.info(f"Initializing virtual centrifuge {self.device_id}")
self.data.update({
"status": "Idle",
"current_speed": 0.0,
"target_speed": 0.0,
"current_temp": 25.0,
"target_temp": 25.0,
"max_speed": self._max_speed,
"max_temp": self._max_temp,
"min_temp": self._min_temp,
"centrifuge_state": "Stopped",
"time_remaining": 0.0,
"progress": 0.0,
"message": ""
})
return True
async def cleanup(self) -> bool:
"""Cleanup virtual centrifuge"""
self.logger.info(f"Cleaning up virtual centrifuge {self.device_id}")
return True
async def centrifuge(self, vessel: str, speed: float, time: float, temp: float = 25.0) -> bool:
"""Execute centrifuge action - matches Centrifuge action"""
self.logger.info(f"Centrifuge: vessel={vessel}, speed={speed} RPM, time={time}s, temp={temp}°C")
# 验证参数
if speed > self._max_speed:
self.logger.error(f"Speed {speed} exceeds maximum {self._max_speed}")
self.data["message"] = f"速度 {speed} 超过最大值 {self._max_speed}"
return False
if temp > self._max_temp or temp < self._min_temp:
self.logger.error(f"Temperature {temp} outside range {self._min_temp}-{self._max_temp}")
self.data["message"] = f"温度 {temp} 超出范围 {self._min_temp}-{self._max_temp}"
return False
# 开始离心
self.data.update({
"status": "Running",
"centrifuge_state": "Centrifuging",
"target_speed": speed,
"current_speed": speed,
"target_temp": temp,
"current_temp": temp,
"time_remaining": time,
"vessel": vessel,
"progress": 0.0,
"message": f"离心中: {vessel} at {speed} RPM"
})
# 模拟离心过程
simulation_time = min(time, 5.0) # 最多等待5秒用于测试
await asyncio.sleep(simulation_time)
# 离心完成
self.data.update({
"status": "Idle",
"centrifuge_state": "Stopped",
"current_speed": 0.0,
"target_speed": 0.0,
"time_remaining": 0.0,
"progress": 100.0,
"message": f"离心完成: {vessel}"
})
self.logger.info(f"Centrifuge completed for vessel {vessel}")
return True
# 状态属性
@property
def status(self) -> str:
return self.data.get("status", "Unknown")
@property
def current_speed(self) -> float:
return self.data.get("current_speed", 0.0)
@property
def target_speed(self) -> float:
return self.data.get("target_speed", 0.0)
@property
def current_temp(self) -> float:
return self.data.get("current_temp", 25.0)
@property
def target_temp(self) -> float:
return self.data.get("target_temp", 25.0)
@property
def max_speed(self) -> float:
return self.data.get("max_speed", self._max_speed)
@property
def max_temp(self) -> float:
return self.data.get("max_temp", self._max_temp)
@property
def min_temp(self) -> float:
return self.data.get("min_temp", self._min_temp)
@property
def centrifuge_state(self) -> str:
return self.data.get("centrifuge_state", "Unknown")
@property
def time_remaining(self) -> float:
return self.data.get("time_remaining", 0.0)
@property
def progress(self) -> float:
return self.data.get("progress", 0.0)
@property
def message(self) -> str:
return self.data.get("message", "")

View File

@@ -0,0 +1,132 @@
import asyncio
import logging
from typing import Dict, Any, Optional
class VirtualColumn:
"""Virtual column device for RunColumn protocol"""
def __init__(self, device_id: str = None, config: Dict[str, Any] = None, **kwargs):
# 处理可能的不同调用方式
if device_id is None and 'id' in kwargs:
device_id = kwargs.pop('id')
if config is None and 'config' in kwargs:
config = kwargs.pop('config')
# 设置默认值
self.device_id = device_id or "unknown_column"
self.config = config or {}
self.logger = logging.getLogger(f"VirtualColumn.{self.device_id}")
self.data = {}
# 从config或kwargs中获取配置参数
self.port = self.config.get('port') or kwargs.get('port', 'VIRTUAL')
self._max_flow_rate = self.config.get('max_flow_rate') or kwargs.get('max_flow_rate', 10.0)
self._column_length = self.config.get('column_length') or kwargs.get('column_length', 25.0)
self._column_diameter = self.config.get('column_diameter') or kwargs.get('column_diameter', 2.0)
print(f"=== VirtualColumn {self.device_id} created with max_flow_rate={self._max_flow_rate}, length={self._column_length}cm ===")
async def initialize(self) -> bool:
"""Initialize virtual column"""
self.logger.info(f"Initializing virtual column {self.device_id}")
self.data.update({
"status": "Idle",
"column_state": "Ready",
"current_flow_rate": 0.0,
"max_flow_rate": self._max_flow_rate,
"column_length": self._column_length,
"column_diameter": self._column_diameter,
"processed_volume": 0.0,
"progress": 0.0,
"current_status": "Ready"
})
return True
async def cleanup(self) -> bool:
"""Cleanup virtual column"""
self.logger.info(f"Cleaning up virtual column {self.device_id}")
return True
async def run_column(self, from_vessel: str, to_vessel: str, column: str) -> bool:
"""Execute column chromatography run - matches RunColumn action"""
self.logger.info(f"Running column separation: {from_vessel} -> {to_vessel} using {column}")
# 更新设备状态
self.data.update({
"status": "Running",
"column_state": "Separating",
"current_status": "Column separation in progress",
"progress": 0.0,
"processed_volume": 0.0
})
# 模拟柱层析分离过程
# 假设处理时间基于流速和柱子长度
separation_time = (self._column_length * 2) / self._max_flow_rate # 简化计算
steps = 20 # 分20个步骤模拟分离过程
step_time = separation_time / steps
for i in range(steps):
await asyncio.sleep(step_time)
progress = (i + 1) / steps * 100
volume_processed = (i + 1) * 5.0 # 假设每步处理5mL
# 更新状态
self.data.update({
"progress": progress,
"processed_volume": volume_processed,
"current_status": f"Column separation: {progress:.1f}% - Processing {volume_processed:.1f}mL"
})
self.logger.info(f"Column separation progress: {progress:.1f}%")
# 分离完成
self.data.update({
"status": "Idle",
"column_state": "Ready",
"current_status": "Column separation completed",
"progress": 100.0
})
self.logger.info(f"Column separation completed: {from_vessel} -> {to_vessel}")
return True
# 状态属性
@property
def status(self) -> str:
return self.data.get("status", "Unknown")
@property
def column_state(self) -> str:
return self.data.get("column_state", "Unknown")
@property
def current_flow_rate(self) -> float:
return self.data.get("current_flow_rate", 0.0)
@property
def max_flow_rate(self) -> float:
return self.data.get("max_flow_rate", 0.0)
@property
def column_length(self) -> float:
return self.data.get("column_length", 0.0)
@property
def column_diameter(self) -> float:
return self.data.get("column_diameter", 0.0)
@property
def processed_volume(self) -> float:
return self.data.get("processed_volume", 0.0)
@property
def progress(self) -> float:
return self.data.get("progress", 0.0)
@property
def current_status(self) -> str:
return self.data.get("current_status", "Ready")

View File

@@ -0,0 +1,151 @@
import asyncio
import logging
from typing import Dict, Any
class VirtualFilter:
"""Virtual filter device for FilterProtocol testing"""
def __init__(self, device_id: str = None, config: Dict[str, Any] = None, **kwargs):
# 处理可能的不同调用方式
if device_id is None and 'id' in kwargs:
device_id = kwargs.pop('id')
if config is None and 'config' in kwargs:
config = kwargs.pop('config')
# 设置默认值
self.device_id = device_id or "unknown_filter"
self.config = config or {}
self.logger = logging.getLogger(f"VirtualFilter.{self.device_id}")
self.data = {}
# 添加调试信息
print(f"=== VirtualFilter {self.device_id} is being created! ===")
print(f"=== Config: {self.config} ===")
print(f"=== Kwargs: {kwargs} ===")
# 从config或kwargs中获取配置参数
self.port = self.config.get('port') or kwargs.get('port', 'VIRTUAL')
self._max_temp = self.config.get('max_temp') or kwargs.get('max_temp', 100.0)
self._max_stir_speed = self.config.get('max_stir_speed') or kwargs.get('max_stir_speed', 1000.0)
# 处理其他kwargs参数但跳过已知的配置参数
skip_keys = {'port', 'max_temp', 'max_stir_speed'}
for key, value in kwargs.items():
if key not in skip_keys and not hasattr(self, key):
setattr(self, key, value)
async def initialize(self) -> bool:
"""Initialize virtual filter"""
print(f"=== VirtualFilter {self.device_id} initialize() called! ===")
self.logger.info(f"Initializing virtual filter {self.device_id}")
self.data.update({
"status": "Idle",
"filter_state": "Ready",
"current_temp": 25.0,
"target_temp": 25.0,
"max_temp": self._max_temp,
"stir_speed": 0.0,
"max_stir_speed": self._max_stir_speed,
"filtered_volume": 0.0,
"progress": 0.0,
"message": ""
})
return True
async def cleanup(self) -> bool:
"""Cleanup virtual filter"""
self.logger.info(f"Cleaning up virtual filter {self.device_id}")
return True
async def filter_sample(self, vessel: str, filtrate_vessel: str = "", stir: bool = False,
stir_speed: float = 300.0, temp: float = 25.0,
continue_heatchill: bool = False, volume: float = 0.0) -> bool:
"""Execute filter action - matches Filter action"""
self.logger.info(f"Filter: vessel={vessel}, filtrate_vessel={filtrate_vessel}, stir={stir}, volume={volume}")
# 验证参数
if temp > self._max_temp:
self.logger.error(f"Temperature {temp} exceeds maximum {self._max_temp}")
self.data["message"] = f"温度 {temp} 超过最大值 {self._max_temp}"
return False
if stir and stir_speed > self._max_stir_speed:
self.logger.error(f"Stir speed {stir_speed} exceeds maximum {self._max_stir_speed}")
self.data["message"] = f"搅拌速度 {stir_speed} 超过最大值 {self._max_stir_speed}"
return False
# 开始过滤
self.data.update({
"status": "Running",
"filter_state": "Filtering",
"target_temp": temp,
"current_temp": temp,
"stir_speed": stir_speed if stir else 0.0,
"vessel": vessel,
"filtrate_vessel": filtrate_vessel,
"target_volume": volume,
"progress": 0.0,
"message": f"过滤中: {vessel}"
})
# 模拟过滤过程
simulation_time = min(volume / 10.0 if volume > 0 else 5.0, 10.0)
await asyncio.sleep(simulation_time)
# 过滤完成
filtered_vol = volume if volume > 0 else 50.0 # 默认过滤量
self.data.update({
"status": "Idle",
"filter_state": "Ready",
"current_temp": 25.0 if not continue_heatchill else temp,
"target_temp": 25.0 if not continue_heatchill else temp,
"stir_speed": 0.0 if not stir else stir_speed,
"filtered_volume": filtered_vol,
"progress": 100.0,
"message": f"过滤完成: {filtered_vol}mL"
})
self.logger.info(f"Filter completed: {filtered_vol}mL from {vessel}")
return True
# 状态属性
@property
def status(self) -> str:
return self.data.get("status", "Unknown")
@property
def filter_state(self) -> str:
return self.data.get("filter_state", "Unknown")
@property
def current_temp(self) -> float:
return self.data.get("current_temp", 25.0)
@property
def target_temp(self) -> float:
return self.data.get("target_temp", 25.0)
@property
def max_temp(self) -> float:
return self.data.get("max_temp", self._max_temp)
@property
def stir_speed(self) -> float:
return self.data.get("stir_speed", 0.0)
@property
def max_stir_speed(self) -> float:
return self.data.get("max_stir_speed", self._max_stir_speed)
@property
def filtered_volume(self) -> float:
return self.data.get("filtered_volume", 0.0)
@property
def progress(self) -> float:
return self.data.get("progress", 0.0)
@property
def message(self) -> str:
return self.data.get("message", "")

View File

@@ -0,0 +1,107 @@
import asyncio
import logging
from typing import Dict, Any
class VirtualHeatChill:
"""Virtual heat chill device for HeatChillProtocol testing"""
def __init__(self, device_id: str = None, config: Dict[str, Any] = None, **kwargs):
# 处理可能的不同调用方式
if device_id is None and 'id' in kwargs:
device_id = kwargs.pop('id')
if config is None and 'config' in kwargs:
config = kwargs.pop('config')
# 设置默认值
self.device_id = device_id or "unknown_heatchill"
self.config = config or {}
self.logger = logging.getLogger(f"VirtualHeatChill.{self.device_id}")
self.data = {}
# 添加调试信息
print(f"=== VirtualHeatChill {self.device_id} is being created! ===")
print(f"=== Config: {self.config} ===")
print(f"=== Kwargs: {kwargs} ===")
# 从config或kwargs中获取配置参数
self.port = self.config.get('port') or kwargs.get('port', 'VIRTUAL')
self._max_temp = self.config.get('max_temp') or kwargs.get('max_temp', 200.0)
self._min_temp = self.config.get('min_temp') or kwargs.get('min_temp', -80.0)
self._max_stir_speed = self.config.get('max_stir_speed') or kwargs.get('max_stir_speed', 1000.0)
# 处理其他kwargs参数但跳过已知的配置参数
skip_keys = {'port', 'max_temp', 'min_temp', 'max_stir_speed'}
for key, value in kwargs.items():
if key not in skip_keys and not hasattr(self, key):
setattr(self, key, value)
async def initialize(self) -> bool:
"""Initialize virtual heat chill"""
print(f"=== VirtualHeatChill {self.device_id} initialize() called! ===")
self.logger.info(f"Initializing virtual heat chill {self.device_id}")
self.data.update({
"status": "Idle"
})
return True
async def cleanup(self) -> bool:
"""Cleanup virtual heat chill"""
self.logger.info(f"Cleaning up virtual heat chill {self.device_id}")
return True
async def heat_chill(self, vessel: str, temp: float, time: float, stir: bool,
stir_speed: float, purpose: str) -> bool:
"""Execute heat chill action - matches HeatChill action exactly"""
self.logger.info(f"HeatChill: vessel={vessel}, temp={temp}°C, time={time}s, stir={stir}, stir_speed={stir_speed}, purpose={purpose}")
# 验证参数
if temp > self._max_temp or temp < self._min_temp:
self.logger.error(f"Temperature {temp} outside range {self._min_temp}-{self._max_temp}")
self.data["status"] = f"温度 {temp} 超出范围"
return False
if stir and stir_speed > self._max_stir_speed:
self.logger.error(f"Stir speed {stir_speed} exceeds maximum {self._max_stir_speed}")
self.data["status"] = f"搅拌速度 {stir_speed} 超出范围"
return False
# 开始加热/冷却
self.data.update({
"status": f"加热/冷却中: {vessel}{temp}°C"
})
# 模拟加热/冷却时间
simulation_time = min(time, 10.0) # 最多等待10秒用于测试
await asyncio.sleep(simulation_time)
# 加热/冷却完成
self.data["status"] = f"完成: {vessel} 已达到 {temp}°C"
self.logger.info(f"HeatChill completed for vessel {vessel} at {temp}°C")
return True
async def heat_chill_start(self, vessel: str, temp: float, purpose: str) -> bool:
"""Start heat chill - matches HeatChillStart action exactly"""
self.logger.info(f"HeatChillStart: vessel={vessel}, temp={temp}°C, purpose={purpose}")
# 验证参数
if temp > self._max_temp or temp < self._min_temp:
self.logger.error(f"Temperature {temp} outside range {self._min_temp}-{self._max_temp}")
self.data["status"] = f"温度 {temp} 超出范围"
return False
self.data["status"] = f"开始加热/冷却: {vessel}{temp}°C"
return True
async def heat_chill_stop(self, vessel: str) -> bool:
"""Stop heat chill - matches HeatChillStop action exactly"""
self.logger.info(f"HeatChillStop: vessel={vessel}")
self.data["status"] = f"停止加热/冷却: {vessel}"
return True
# 状态属性 - 只保留 action 中定义的 feedback
@property
def status(self) -> str:
return self.data.get("status", "Idle")

View File

@@ -0,0 +1,197 @@
import asyncio
import logging
from typing import Dict, Any, Optional
class VirtualPump:
"""Virtual pump device for transfer and cleaning operations"""
def __init__(self, device_id: str = None, config: Dict[str, Any] = None, **kwargs):
# 处理可能的不同调用方式
if device_id is None and 'id' in kwargs:
device_id = kwargs.pop('id')
if config is None and 'config' in kwargs:
config = kwargs.pop('config')
# 设置默认值
self.device_id = device_id or "unknown_pump"
self.config = config or {}
self.logger = logging.getLogger(f"VirtualPump.{self.device_id}")
self.data = {}
# 从config或kwargs中获取配置参数
self.port = self.config.get('port') or kwargs.get('port', 'VIRTUAL')
self._max_volume = self.config.get('max_volume') or kwargs.get('max_volume', 50.0)
self._transfer_rate = self.config.get('transfer_rate') or kwargs.get('transfer_rate', 10.0)
print(f"=== VirtualPump {self.device_id} created with max_volume={self._max_volume}, transfer_rate={self._transfer_rate} ===")
async def initialize(self) -> bool:
"""Initialize virtual pump"""
self.logger.info(f"Initializing virtual pump {self.device_id}")
self.data.update({
"status": "Idle",
"valve_position": 0,
"current_volume": 0.0,
"max_volume": self._max_volume,
"transfer_rate": self._transfer_rate,
"from_vessel": "",
"to_vessel": "",
"progress": 0.0,
"transferred_volume": 0.0,
"current_status": "Ready"
})
return True
async def cleanup(self) -> bool:
"""Cleanup virtual pump"""
self.logger.info(f"Cleaning up virtual pump {self.device_id}")
return True
async def transfer(self, from_vessel: str, to_vessel: str, volume: float,
amount: str = "", time: float = 0.0, viscous: bool = False,
rinsing_solvent: str = "", rinsing_volume: float = 0.0,
rinsing_repeats: int = 0, solid: bool = False) -> bool:
"""Execute transfer operation"""
self.logger.info(f"Transferring {volume}mL from {from_vessel} to {to_vessel}")
# 计算转移时间
transfer_time = volume / self._transfer_rate if time == 0 else time
self.data.update({
"status": "Running",
"from_vessel": from_vessel,
"to_vessel": to_vessel,
"current_status": "Transferring",
"progress": 0.0,
"transferred_volume": 0.0
})
# 模拟转移过程
steps = 10
step_time = transfer_time / steps
step_volume = volume / steps
for i in range(steps):
await asyncio.sleep(step_time)
progress = (i + 1) / steps * 100
current_volume = step_volume * (i + 1)
self.data.update({
"progress": progress,
"transferred_volume": current_volume,
"current_status": f"Transferring: {progress:.1f}%"
})
self.logger.info(f"Transfer progress: {progress:.1f}%")
self.data.update({
"status": "Idle",
"current_status": "Transfer completed",
"progress": 100.0,
"transferred_volume": volume
})
return True
async def clean_vessel(self, vessel: str, solvent: str, volume: float,
temp: float, repeats: int = 1) -> bool:
"""Execute vessel cleaning operation - matches CleanVessel action"""
self.logger.info(f"Starting vessel cleaning: {vessel} with {solvent} ({volume}mL at {temp}°C, {repeats} repeats)")
# 更新设备状态
self.data.update({
"status": "Running",
"from_vessel": f"flask_{solvent}",
"to_vessel": vessel,
"current_status": "Cleaning in progress",
"progress": 0.0,
"transferred_volume": 0.0
})
# 计算清洗时间(基于体积和重复次数)
# 假设清洗速度为 transfer_rate 的一半(因为需要加载和排放)
cleaning_rate = self._transfer_rate / 2
cleaning_time_per_cycle = volume / cleaning_rate
total_cleaning_time = cleaning_time_per_cycle * repeats
# 模拟清洗过程
steps_per_repeat = 10 # 每次重复清洗分10个步骤
total_steps = steps_per_repeat * repeats
step_time = total_cleaning_time / total_steps
for repeat in range(repeats):
self.logger.info(f"Starting cleaning cycle {repeat + 1}/{repeats}")
for step in range(steps_per_repeat):
await asyncio.sleep(step_time)
# 计算当前进度
current_step = repeat * steps_per_repeat + step + 1
progress = (current_step / total_steps) * 100
# 计算已处理的体积
volume_processed = (current_step / total_steps) * volume * repeats
# 更新状态
self.data.update({
"progress": progress,
"transferred_volume": volume_processed,
"current_status": f"Cleaning cycle {repeat + 1}/{repeats} - Step {step + 1}/{steps_per_repeat} ({progress:.1f}%)"
})
self.logger.info(f"Cleaning progress: {progress:.1f}% (Cycle {repeat + 1}/{repeats})")
# 清洗完成
self.data.update({
"status": "Idle",
"current_status": "Cleaning completed successfully",
"progress": 100.0,
"transferred_volume": volume * repeats,
"from_vessel": "",
"to_vessel": ""
})
self.logger.info(f"Vessel cleaning completed: {vessel}")
return True
# 状态属性
@property
def status(self) -> str:
return self.data.get("status", "Unknown")
@property
def valve_position(self) -> int:
return self.data.get("valve_position", 0)
@property
def current_volume(self) -> float:
return self.data.get("current_volume", 0.0)
@property
def max_volume(self) -> float:
return self.data.get("max_volume", 0.0)
@property
def transfer_rate(self) -> float:
return self.data.get("transfer_rate", 0.0)
@property
def from_vessel(self) -> str:
return self.data.get("from_vessel", "")
@property
def to_vessel(self) -> str:
return self.data.get("to_vessel", "")
@property
def progress(self) -> float:
return self.data.get("progress", 0.0)
@property
def transferred_volume(self) -> float:
return self.data.get("transferred_volume", 0.0)
@property
def current_status(self) -> str:
return self.data.get("current_status", "Ready")

View File

@@ -0,0 +1,104 @@
import asyncio
import logging
from typing import Dict, Any
class VirtualStirrer:
"""Virtual stirrer device for StirProtocol testing"""
def __init__(self, device_id: str = None, config: Dict[str, Any] = None, **kwargs):
# 处理可能的不同调用方式
if device_id is None and 'id' in kwargs:
device_id = kwargs.pop('id')
if config is None and 'config' in kwargs:
config = kwargs.pop('config')
# 设置默认值
self.device_id = device_id or "unknown_stirrer"
self.config = config or {}
self.logger = logging.getLogger(f"VirtualStirrer.{self.device_id}")
self.data = {}
# 添加调试信息
print(f"=== VirtualStirrer {self.device_id} is being created! ===")
print(f"=== Config: {self.config} ===")
print(f"=== Kwargs: {kwargs} ===")
# 从config或kwargs中获取配置参数
self.port = self.config.get('port') or kwargs.get('port', 'VIRTUAL')
self._max_temp = self.config.get('max_temp') or kwargs.get('max_temp', 100.0)
self._max_speed = self.config.get('max_speed') or kwargs.get('max_speed', 1000.0)
# 处理其他kwargs参数但跳过已知的配置参数
skip_keys = {'port', 'max_temp', 'max_speed'}
for key, value in kwargs.items():
if key not in skip_keys and not hasattr(self, key):
setattr(self, key, value)
async def initialize(self) -> bool:
"""Initialize virtual stirrer"""
print(f"=== VirtualStirrer {self.device_id} initialize() called! ===")
self.logger.info(f"Initializing virtual stirrer {self.device_id}")
self.data.update({
"status": "Idle"
})
return True
async def cleanup(self) -> bool:
"""Cleanup virtual stirrer"""
self.logger.info(f"Cleaning up virtual stirrer {self.device_id}")
return True
async def stir(self, stir_time: float, stir_speed: float, settling_time: float) -> bool:
"""Execute stir action - matches Stir action exactly"""
self.logger.info(f"Stir: speed={stir_speed} RPM, time={stir_time}s, settling={settling_time}s")
# 验证参数
if stir_speed > self._max_speed:
self.logger.error(f"Stir speed {stir_speed} exceeds maximum {self._max_speed}")
self.data["status"] = f"搅拌速度 {stir_speed} 超出范围"
return False
# 开始搅拌
self.data["status"] = f"搅拌中: {stir_speed} RPM, {stir_time}s"
# 模拟搅拌时间
simulation_time = min(stir_time, 10.0) # 最多等待10秒用于测试
await asyncio.sleep(simulation_time)
# 搅拌完成,开始沉降
if settling_time > 0:
self.data["status"] = f"沉降中: {settling_time}s"
settling_simulation = min(settling_time, 5.0) # 最多等待5秒
await asyncio.sleep(settling_simulation)
# 操作完成
self.data["status"] = "搅拌完成"
self.logger.info(f"Stir completed: {stir_speed} RPM for {stir_time}s")
return True
async def start_stir(self, vessel: str, stir_speed: float, purpose: str) -> bool:
"""Start stir action - matches StartStir action exactly"""
self.logger.info(f"StartStir: vessel={vessel}, speed={stir_speed} RPM, purpose={purpose}")
# 验证参数
if stir_speed > self._max_speed:
self.logger.error(f"Stir speed {stir_speed} exceeds maximum {self._max_speed}")
self.data["status"] = f"搅拌速度 {stir_speed} 超出范围"
return False
self.data["status"] = f"开始搅拌: {vessel} at {stir_speed} RPM"
return True
async def stop_stir(self, vessel: str) -> bool:
"""Stop stir action - matches StopStir action exactly"""
self.logger.info(f"StopStir: vessel={vessel}")
self.data["status"] = f"停止搅拌: {vessel}"
return True
# 状态属性 - 只保留 action 中定义的 feedback
@property
def status(self) -> str:
return self.data.get("status", "Idle")

View File

@@ -0,0 +1,149 @@
import asyncio
import logging
from typing import Dict, Any, Optional
class VirtualTransferPump:
"""Virtual pump device specifically for Transfer protocol"""
def __init__(self, device_id: str = None, config: Dict[str, Any] = None, **kwargs):
# 处理可能的不同调用方式
if device_id is None and 'id' in kwargs:
device_id = kwargs.pop('id')
if config is None and 'config' in kwargs:
config = kwargs.pop('config')
# 设置默认值
self.device_id = device_id or "unknown_transfer_pump"
self.config = config or {}
self.logger = logging.getLogger(f"VirtualTransferPump.{self.device_id}")
self.data = {}
# 添加调试信息
print(f"=== VirtualTransferPump {self.device_id} is being created! ===")
print(f"=== Config: {self.config} ===")
print(f"=== Kwargs: {kwargs} ===")
# 从config或kwargs中获取配置参数
self.port = self.config.get('port') or kwargs.get('port', 'VIRTUAL')
self._max_volume = self.config.get('max_volume') or kwargs.get('max_volume', 50.0)
self._transfer_rate = self.config.get('transfer_rate') or kwargs.get('transfer_rate', 5.0)
self._current_volume = 0.0
self.is_running = False
async def initialize(self) -> bool:
"""Initialize virtual transfer pump"""
print(f"=== VirtualTransferPump {self.device_id} initialize() called! ===")
self.logger.info(f"Initializing virtual transfer pump {self.device_id}")
self.data.update({
"status": "Idle",
"current_volume": 0.0,
"max_volume": self._max_volume,
"transfer_rate": self._transfer_rate,
"from_vessel": "",
"to_vessel": "",
"progress": 0.0,
"transferred_volume": 0.0,
"current_status": "Ready"
})
return True
async def cleanup(self) -> bool:
"""Cleanup virtual transfer pump"""
self.logger.info(f"Cleaning up virtual transfer pump {self.device_id}")
return True
async def transfer(self, from_vessel: str, to_vessel: str, volume: float,
amount: str = "", time: float = 0, viscous: bool = False,
rinsing_solvent: str = "", rinsing_volume: float = 0.0,
rinsing_repeats: int = 0, solid: bool = False) -> bool:
"""Execute liquid transfer - matches Transfer action"""
self.logger.info(f"Transfer: {volume}mL from {from_vessel} to {to_vessel}")
# 计算转移时间
if time > 0:
transfer_time = time
else:
# 如果是粘性液体,降低转移速率
rate = self._transfer_rate * 0.5 if viscous else self._transfer_rate
transfer_time = volume / rate
self.data.update({
"status": "Running",
"from_vessel": from_vessel,
"to_vessel": to_vessel,
"current_status": "Transferring",
"progress": 0.0,
"transferred_volume": 0.0
})
# 模拟转移过程
steps = 10
step_time = transfer_time / steps
step_volume = volume / steps
for i in range(steps):
await asyncio.sleep(step_time)
progress = (i + 1) / steps * 100
transferred = (i + 1) * step_volume
self.data.update({
"progress": progress,
"transferred_volume": transferred,
"current_status": f"Transferring {progress:.1f}%"
})
self.logger.info(f"Transfer progress: {progress:.1f}% ({transferred:.1f}/{volume}mL)")
# 如果需要冲洗
if rinsing_solvent and rinsing_volume > 0 and rinsing_repeats > 0:
self.data["current_status"] = "Rinsing"
for repeat in range(rinsing_repeats):
self.logger.info(f"Rinsing cycle {repeat + 1}/{rinsing_repeats} with {rinsing_solvent}")
await asyncio.sleep(1) # 模拟冲洗时间
self.data.update({
"status": "Idle",
"current_status": "Transfer completed",
"progress": 100.0,
"transferred_volume": volume
})
return True
# 添加所有在virtual_device.yaml中定义的状态属性
@property
def status(self) -> str:
return self.data.get("status", "Unknown")
@property
def current_volume(self) -> float:
return self.data.get("current_volume", 0.0)
@property
def max_volume(self) -> float:
return self.data.get("max_volume", self._max_volume)
@property
def transfer_rate(self) -> float:
return self.data.get("transfer_rate", self._transfer_rate)
@property
def from_vessel(self) -> str:
return self.data.get("from_vessel", "")
@property
def to_vessel(self) -> str:
return self.data.get("to_vessel", "")
@property
def progress(self) -> float:
return self.data.get("progress", 0.0)
@property
def transferred_volume(self) -> float:
return self.data.get("transferred_volume", 0.0)
@property
def current_status(self) -> str:
return self.data.get("current_status", "Ready")

View File

@@ -0,0 +1,105 @@
import asyncio
import logging
from typing import Dict, Any
class VirtualValve:
"""Virtual valve device for AddProtocol testing"""
def __init__(self, device_id: str = None, config: Dict[str, Any] = None, **kwargs):
# 处理可能的不同调用方式
if device_id is None and 'id' in kwargs:
device_id = kwargs.pop('id')
if config is None and 'config' in kwargs:
config = kwargs.pop('config')
# 设置默认值
self.device_id = device_id or "unknown_valve"
self.config = config or {}
self.logger = logging.getLogger(f"VirtualValve.{self.device_id}")
self.data = {}
print(f"=== VirtualValve {self.device_id} is being created! ===")
print(f"=== Config: {self.config} ===")
print(f"=== Kwargs: {kwargs} ===")
# 处理所有配置参数包括port
self.port = self.config.get('port', 'VIRTUAL')
self.positions = self.config.get('positions', 6)
self.current_position = 0
# 忽略其他可能的kwargs参数
for key, value in kwargs.items():
if not hasattr(self, key):
setattr(self, key, value)
async def initialize(self) -> bool:
"""Initialize virtual valve"""
print(f"=== VirtualValve {self.device_id} initialize() called! ===")
self.logger.info(f"Initializing virtual valve {self.device_id}")
self.data.update({
"status": "Idle",
"valve_state": "Closed",
"current_position": 0,
"target_position": 0,
"max_positions": self.positions
})
return True
async def cleanup(self) -> bool:
"""Cleanup virtual valve"""
self.logger.info(f"Cleaning up virtual valve {self.device_id}")
return True
async def set_position(self, position: int) -> bool:
"""Set valve position - matches SendCmd action"""
if 0 <= position <= self.positions:
self.logger.info(f"Setting valve position to {position}")
self.data.update({
"target_position": position,
"current_position": position,
"valve_state": "Open" if position > 0 else "Closed"
})
return True
else:
self.logger.error(f"Invalid position {position}. Must be 0-{self.positions}")
return False
async def open(self) -> bool:
"""Open valve - matches EmptyIn action"""
self.logger.info("Opening valve")
self.data.update({
"valve_state": "Open",
"current_position": 1
})
return True
async def close(self) -> bool:
"""Close valve - matches EmptyIn action"""
self.logger.info("Closing valve")
self.data.update({
"valve_state": "Closed",
"current_position": 0
})
return True
# 状态属性
@property
def status(self) -> str:
return self.data.get("status", "Unknown")
@property
def valve_state(self) -> str:
return self.data.get("valve_state", "Unknown")
@property
def current_position(self) -> int:
return self.data.get("current_position", 0)
@property
def target_position(self) -> int:
return self.data.get("target_position", 0)
@property
def max_positions(self) -> int:
return self.data.get("max_positions", 6)

View File

@@ -67,7 +67,115 @@ class AGVTransferProtocol(BaseModel):
to_repo: dict
from_repo_position: str
to_repo_position: str
#=============新添加的新的协议================
class AddProtocol(BaseModel):
vessel: str
reagent: str
volume: float
mass: float
amount: str
time: float
stir: bool
stir_speed: float
viscous: bool
purpose: str
class CentrifugeProtocol(BaseModel):
vessel: str
speed: float
time: float
temp: float # 移除默认值
__all__ = ["Point3D", "PumpTransferProtocol", "CleanProtocol", "SeparateProtocol", "EvaporateProtocol", "EvacuateAndRefillProtocol", "AGVTransferProtocol"]
class FilterProtocol(BaseModel):
vessel: str
filtrate_vessel: str # 移除默认值
stir: bool # 移除默认值
stir_speed: float # 移除默认值
temp: float # 移除默认值
continue_heatchill: bool # 移除默认值
volume: float # 移除默认值
class HeatChillProtocol(BaseModel):
vessel: str
temp: float
time: float
stir: bool
stir_speed: float
purpose: str
class HeatChillStartProtocol(BaseModel):
vessel: str
temp: float
purpose: str
class HeatChillStopProtocol(BaseModel):
vessel: str
class StirProtocol(BaseModel):
stir_time: float
stir_speed: float
settling_time: float
class StartStirProtocol(BaseModel):
vessel: str
stir_speed: float
purpose: str
class StopStirProtocol(BaseModel):
vessel: str
class TransferProtocol(BaseModel):
from_vessel: str
to_vessel: str
volume: float
amount: str = ""
time: float = 0
viscous: bool = False
rinsing_solvent: str = ""
rinsing_volume: float = 0.0
rinsing_repeats: int = 0
solid: bool = False
class CleanVesselProtocol(BaseModel):
vessel: str # 要清洗的容器名称
solvent: str # 用于清洗容器的溶剂名称
volume: float # 清洗溶剂的体积,可选参数
temp: float # 清洗时的温度,可选参数
repeats: int = 1 # 清洗操作的重复次数,默认为 1
class DissolveProtocol(BaseModel):
vessel: str # 装有要溶解物质的容器名称
solvent: str # 用于溶解物质的溶剂名称
volume: float # 溶剂的体积,可选参数
amount: str = "" # 要溶解物质的量,可选参数
temp: float = 25.0 # 溶解时的温度,可选参数
time: float = 0.0 # 溶解的时间,可选参数
stir_speed: float = 0.0 # 搅拌速度,可选参数
class FilterThroughProtocol(BaseModel):
from_vessel: str # 源容器的名称,即物质起始所在的容器
to_vessel: str # 目标容器的名称,物质过滤后要到达的容器
filter_through: str # 过滤时所通过的介质,如滤纸、柱子等
eluting_solvent: str = "" # 洗脱溶剂的名称,可选参数
eluting_volume: float = 0.0 # 洗脱溶剂的体积,可选参数
eluting_repeats: int = 0 # 洗脱操作的重复次数,默认为 0
residence_time: float = 0.0 # 物质在过滤介质中的停留时间,可选参数
class RunColumnProtocol(BaseModel):
from_vessel: str # 源容器的名称,即样品起始所在的容器
to_vessel: str # 目标容器的名称,分离后的样品要到达的容器
column: str # 所使用的柱子的名称
class WashSolidProtocol(BaseModel):
vessel: str # 装有固体物质的容器名称
solvent: str # 用于清洗固体的溶剂名称
volume: float # 清洗溶剂的体积
filtrate_vessel: str = "" # 滤液要收集到的容器名称,可选参数
temp: float = 25.0 # 清洗时的温度,可选参数
stir: bool = False # 是否在清洗过程中搅拌,默认为 False
stir_speed: float = 0.0 # 搅拌速度,可选参数
time: float = 0.0 # 清洗的时间,可选参数
repeats: int = 1 # 清洗操作的重复次数,默认为 1
__all__ = ["Point3D", "PumpTransferProtocol", "CleanProtocol", "SeparateProtocol", "EvaporateProtocol", "EvacuateAndRefillProtocol", "AGVTransferProtocol", "CentrifugeProtocol", "AddProtocol", "FilterProtocol", "HeatChillProtocol", "HeatChillStartProtocol", "HeatChillStopProtocol", "StirProtocol", "StartStirProtocol", "StopStirProtocol", "TransferProtocol", "CleanVesselProtocol", "DissolveProtocol", "FilterThroughProtocol", "RunColumnProtocol", "WashSolidProtocol"]
# End Protocols

View File

@@ -0,0 +1,892 @@
mock_chiller:
description: Mock Chiller Device
class:
module: unilabos.devices.mock.mock_chiller:MockChiller
type: python
status_types:
current_temperature: Float64
target_temperature: Float64
status: String
is_cooling: Bool
is_heating: Bool
vessel: String # 新增
purpose: String # 新增
action_value_mappings:
emergency_stop:
type: EmptyIn
goal: {}
feedback: {}
result:
success: success
heat_chill_start:
type: HeatChillStart
goal:
vessel: vessel
temp: temp
purpose: purpose
feedback: {}
result:
success: success
status: status
heat_chill_stop:
type: HeatChillStop
goal:
vessel: vessel
feedback: {}
result:
success: success
status: status
schema:
type: object
properties:
current_temperature:
type: number
description: Current temperature of the chiller in °C
target_temperature:
type: number
description: Target temperature setting in °C
status:
type: string
description: Current status of the device
is_cooling:
type: boolean
description: Whether the device is actively cooling
is_heating:
type: boolean
description: Whether the device is actively heating
vessel: # 新增
type: string
description: Current vessel being processed
purpose: # 新增
type: string
description: Purpose of the current operation
required:
- current_temperature
- target_temperature
- status
- vessel
- purpose
additionalProperties: false
mock_filter:
description: Mock Filter Device
class:
module: unilabos.devices.mock.mock_filter:MockFilter
type: python
status_types:
status: String
is_filtering: Bool
flow_rate: Float64
pressure_drop: Float64
filter_life: Float64
vessel: String
filtrate_vessel: String
filtered_volume: Float64
progress: Float64
stir: Bool
stir_speed: Float64
temperature: Float64
continue_heatchill: Bool
target_volume: Float64
action_value_mappings:
filter:
type: ProtocolFilter
goal:
vessel: vessel
filtrate_vessel: filtrate_vessel
stir: stir
stir_speed: stir_speed
temp: temp
continue_heatchill: continue_heatchill
volume: volume
feedback:
progress: progress
current_temp: current_temp
filtered_volume: filtered_volume
current_status: current_status
result:
success: success
message: message
stop_filtering:
type: EmptyIn
goal: {}
feedback: {}
result:
success: success
replace_filter:
type: EmptyIn
goal: {}
feedback: {}
result:
success: success
schema:
type: object
properties:
status:
type: string
description: Current status of the filter
is_filtering:
type: boolean
description: Whether the filter is actively filtering
flow_rate:
type: number
description: Current flow rate in L/min
pressure_drop:
type: number
description: Pressure drop across the filter in Pa
filter_life:
type: number
description: Remaining filter life percentage
power_on:
type: boolean
description: Power state of the device
required:
- status
- is_filtering
- flow_rate
- filter_life
- vessel
- filtrate_vessel
- filtered_volume
- progress
additionalProperties: false
mock_heater:
description: Mock Heater Device
class:
module: unilabos.devices.mock.mock_heater:MockHeater
type: python
status_types:
current_temperature: Float64
target_temperature: Float64
status: String
is_heating: Bool
heating_power: Float64
max_temperature: Float64
vessel: String
purpose: String
stir: Bool
stir_speed: Float64
action_value_mappings:
heat_chill_start:
type: HeatChillStart
goal:
vessel: vessel
temp: temp
purpose: purpose
feedback:
status: status
result:
success: success
heat_chill_stop:
type: HeatChillStop
goal:
vessel: vessel
feedback:
status: status
result:
success: success
heat_chill:
type: HeatChill
goal:
vessel: vessel
temp: temp
time: time
stir: stir
stir_speed: stir_speed
purpose: purpose
feedback:
status: status
result:
success: success
emergency_stop:
type: EmptyIn
goal: {}
feedback: {}
result:
success: success
schema:
type: object
properties:
current_temperature:
type: number
description: Current temperature of the heater in °C
target_temperature:
type: number
description: Target temperature setting in °C
status:
type: string
description: Current status of the device
is_heating:
type: boolean
description: Whether the device is actively heating
heating_power:
type: number
description: Current heating power percentage
max_temperature:
type: number
description: Maximum temperature limit
vessel:
type: string
description: Current vessel being heated
purpose:
type: string
description: Purpose of the heating operation
stir:
type: boolean
description: Whether stirring is enabled
stir_speed:
type: number
description: Current stirring speed
required:
- current_temperature
- target_temperature
- status
- vessel
- purpose
additionalProperties: false
mock_pump:
description: Mock Pump Device
class:
module: unilabos.devices.mock.mock_pump:MockPump
type: python
status_types:
status: String
pump_state: String
flow_rate: Float64
target_flow_rate: Float64
pressure: Float64
total_volume: Float64
max_flow_rate: Float64
max_pressure: Float64
from_vessel: String
to_vessel: String
transfer_volume: Float64
amount: String
transfer_time: Float64
is_viscous: Bool
rinsing_solvent: String
rinsing_volume: Float64
rinsing_repeats: Int32
is_solid: Bool
time_spent: Float64
time_remaining: Float64
current_device: String
action_value_mappings:
pump_transfer:
type: PumpTransfer
goal:
from_vessel: from_vessel
to_vessel: to_vessel
volume: volume
amount: amount
time: time
viscous: viscous
rinsing_solvent: rinsing_solvent
rinsing_volume: rinsing_volume
rinsing_repeats: rinsing_repeats
solid: solid
feedback:
status: status
current_device: current_device
time_spent: time_spent
time_remaining: time_remaining
result:
success: success
pause_pump:
type: EmptyIn
goal: {}
feedback: {}
result:
success: success
resume_pump:
type: EmptyIn
goal: {}
feedback: {}
result:
success: success
reset_volume_counter:
type: EmptyIn
goal: {}
feedback: {}
result:
success: success
schema:
type: object
properties:
status:
type: string
description: Current status of the pump
pump_state:
type: string
description: Pump operation state (Running/Stopped/Paused)
flow_rate:
type: number
description: Current flow rate in mL/min
target_flow_rate:
type: number
description: Target flow rate in mL/min
pressure:
type: number
description: Current pressure in bar
total_volume:
type: number
description: Total accumulated volume in mL
max_flow_rate:
type: number
description: Maximum flow rate in mL/min
max_pressure:
type: number
description: Maximum pressure in bar
from_vessel:
type: string
description: Source vessel for transfer
to_vessel:
type: string
description: Target vessel for transfer
transfer_volume:
type: number
description: Volume to transfer in mL
amount:
type: string
description: Amount description
transfer_time:
type: number
description: Transfer time in seconds
is_viscous:
type: boolean
description: Whether the liquid is viscous
rinsing_solvent:
type: string
description: Solvent used for rinsing
rinsing_volume:
type: number
description: Volume used for rinsing
rinsing_repeats:
type: integer
description: Number of rinsing cycles
is_solid:
type: boolean
description: Whether transferring solid material
current_device:
type: string
description: Current device identifier
required:
- status
- pump_state
- flow_rate
- from_vessel
- to_vessel
additionalProperties: false
mock_rotavap:
description: Mock Rotavap Device
class:
module: unilabos.devices.mock.mock_rotavap:MockRotavap
type: python
status_types:
status: String
rotate_state: String
rotate_time: Float64
rotate_speed: Float64
pump_state: String
pump_time: Float64
vacuum_level: Float64
temperature: Float64
target_temperature: Float64
success: String
action_value_mappings:
set_timer:
type: StrSingleInput
goal:
string: command
feedback: {}
result:
success: success
set_rotate_time:
type: FloatSingleInput
goal:
float_in: time_seconds
feedback: {}
result:
success: success
set_pump_time:
type: FloatSingleInput
goal:
float_in: time_seconds
feedback: {}
result:
success: success
set_rotate_speed:
type: FloatSingleInput
goal:
float_in: speed
feedback: {}
result:
success: success
set_temperature:
type: FloatSingleInput
goal:
float_in: temperature
feedback: {}
result:
success: success
start_rotation:
type: EmptyIn
goal: {}
feedback: {}
result:
success: success
start_pump:
type: EmptyIn
goal: {}
feedback: {}
result:
success: success
schema:
type: object
properties:
status:
type: string
description: Current status of the rotavap
rotate_state:
type: string
description: Rotation state (Running/Stopped)
rotate_time:
type: number
description: Remaining rotation time in seconds
rotate_speed:
type: number
description: Rotation speed in rpm
pump_state:
type: string
description: Pump state (Running/Stopped)
pump_time:
type: number
description: Remaining pump time in seconds
vacuum_level:
type: number
description: Current vacuum level in mbar
temperature:
type: number
description: Current water bath temperature
target_temperature:
type: number
description: Target water bath temperature
success:
type: string
description: Operation success status
required:
- status
- rotate_time
- pump_time
- temperature
additionalProperties: false
mock_separator:
description: Simplified Mock Separator Device
class:
module: unilabos.devices.mock.mock_separator:MockSeparator
type: python
status_types:
status: String
settling_time: Float64
valve_state: String
shake_time: Float64
shake_status: String
current_device: String
purpose: String
product_phase: String
from_vessel: String
separation_vessel: String
to_vessel: String
waste_phase_to_vessel: String
solvent: String
solvent_volume: Float64
through: String
repeats: Int32
stir_time: Float64
stir_speed: Float64
time_spent: Float64
time_remaining: Float64
action_value_mappings:
separate:
type: Separate
goal:
purpose: purpose
product_phase: product_phase
from_vessel: from_vessel
separation_vessel: separation_vessel
to_vessel: to_vessel
waste_phase_to_vessel: waste_phase_to_vessel
solvent: solvent
solvent_volume: solvent_volume
through: through
repeats: repeats
stir_time: stir_time
stir_speed: stir_speed
settling_time: settling_time
feedback:
status: status
current_device: current_device
time_spent: time_spent
time_remaining: time_remaining
result:
success: success
shake:
type: FloatSingleInput
goal:
float_in: shake_time
feedback:
status: status
result:
success: success
stop_operations:
type: EmptyIn
goal: {}
feedback: {}
result:
success: success
set_valve:
type: StrSingleInput
goal:
string: command
feedback: {}
result:
success: success
schema:
type: object
properties:
status:
type: string
description: Current status of the separator
settling_time:
type: number
description: Settling time in seconds
valve_state:
type: string
description: Valve state (Open/Closed)
shake_time:
type: number
description: Remaining shake time in seconds
shake_status:
type: string
description: Current shake state
purpose:
type: string
description: Separation purpose (wash/extract)
product_phase:
type: string
description: Product phase (top/bottom)
from_vessel:
type: string
description: Source vessel
separation_vessel:
type: string
description: Vessel for separation
to_vessel:
type: string
description: Target vessel
required:
- status
- valve_state
- shake_status
- current_device
additionalProperties: false
mock_solenoid_valve:
description: Mock Solenoid Valve Device
class:
module: unilabos.devices.mock.mock_solenoid_valve:MockSolenoidValve
type: python
status_types:
status: String
valve_status: String
action_value_mappings:
set_valve_status:
type: StrSingleInput
goal:
string: status
feedback: {}
result:
success: success
open_valve:
type: EmptyIn
goal: {}
feedback: {}
result:
success: success
close_valve:
type: EmptyIn
goal: {}
feedback: {}
result:
success: success
schema:
type: object
properties:
status:
type: string
description: Current status of the valve
valve_status:
type: string
description: Valve status (Open/Closed)
required:
- status
- valve_status
additionalProperties: false
mock_stirrer:
description: Mock Stirrer Device
class:
module: unilabos.devices.mock.mock_stirrer:MockStirrer
type: python
status_types:
status: String
stir_speed: Float64
target_stir_speed: Float64
stir_state: String
temperature: Float64
target_temperature: Float64
heating_state: String
heating_power: Float64
max_stir_speed: Float64
max_temperature: Float64
action_value_mappings:
set_stir_speed:
type: FloatSingleInput
goal:
float_in: speed
feedback: {}
result:
success: success
set_temperature:
type: FloatSingleInput
goal:
float_in: temperature
feedback: {}
result:
success: success
start_stirring:
type: EmptyIn
goal: {}
feedback: {}
result:
success: success
stop_stirring:
type: EmptyIn
goal: {}
feedback: {}
result:
success: success
heating_control:
type: StrSingleInput
goal:
string: heating_state
feedback: {}
result:
success: success
schema:
type: object
properties:
status:
type: string
description: Current status of the stirrer
stir_speed:
type: number
description: Current stirring speed in rpm
target_stir_speed:
type: number
description: Target stirring speed in rpm
stir_state:
type: string
description: Stirring state (Running/Stopped)
temperature:
type: number
description: Current temperature in °C
target_temperature:
type: number
description: Target temperature in °C
heating_state:
type: string
description: Heating state (On/Off)
heating_power:
type: number
description: Current heating power percentage
max_stir_speed:
type: number
description: Maximum stirring speed in rpm
max_temperature:
type: number
description: Maximum temperature in °C
required:
- status
- stir_speed
- temperature
- power_state
additionalProperties: false
mock_stirrer_new:
description: Mock Stirrer Device (Copy Version)
class:
module: unilabos.devices.mock.mock_stirrer_new:MockStirrer_new
type: python
status_types:
status: String
vessel: String
purpose: String
stir_speed: Float64
target_stir_speed: Float64
stir_state: String
stir_time: Float64
settling_time: Float64
progress: Float64
max_stir_speed: Float64
action_value_mappings:
start_stir:
type: ProtocolStartStir
goal:
vessel: vessel
stir_speed: stir_speed
purpose: purpose
feedback:
progress: progress
current_speed: stir_speed
current_status: status
result:
success: success
message: message
stir:
type: Stir
goal:
stir_time: stir_time
stir_speed: stir_speed
settling_time: settling_time
feedback:
status: status
result:
success: success
stop_stir:
type: ProtocolStopStir
goal:
vessel: vessel
feedback:
progress: progress
current_status: status
result:
success: success
message: message
schema:
type: object
properties:
status:
type: string
vessel:
type: string
purpose:
type: string
stir_speed:
type: number
target_stir_speed:
type: number
stir_state:
type: string
stir_time:
type: number
settling_time:
type: number
progress:
type: number
max_stir_speed:
type: number
required:
- status
- stir_speed
- stir_state
- vessel
additionalProperties: false
mock_vacuum:
description: Mock Vacuum Pump Device
class:
module: unilabos.devices.mock.mock_vacuum:MockVacuum
type: python
status_types:
status: String
power_state: String
pump_state: String
vacuum_level: Float64
target_vacuum: Float64
pump_speed: Float64
pump_efficiency: Float64
max_pump_speed: Float64
action_value_mappings:
power_control:
type: StrSingleInput
goal:
string: power_state
feedback: {}
result:
success: success
set_vacuum_level:
type: FloatSingleInput
goal:
float_in: vacuum_level
feedback: {}
result:
success: success
start_vacuum:
type: EmptyIn
goal: {}
feedback: {}
result:
success: success
stop_vacuum:
type: EmptyIn
goal: {}
feedback: {}
result:
success: success
pause_vacuum:
type: EmptyIn
goal: {}
feedback: {}
result:
success: success
resume_vacuum:
type: EmptyIn
goal: {}
feedback: {}
result:
success: success
vent_to_atmosphere:
type: EmptyIn
goal: {}
feedback: {}
result:
success: success
schema:
type: object
properties:
status:
type: string
description: Current status of the vacuum pump
power_state:
type: string
description: Power state (On/Off)
pump_state:
type: string
description: Pump operation state (Running/Stopped/Paused)
vacuum_level:
type: number
description: Current vacuum level in mbar
target_vacuum:
type: number
description: Target vacuum level in mbar
pump_speed:
type: number
description: Current pump speed in L/s
pump_efficiency:
type: number
description: Pump efficiency percentage
max_pump_speed:
type: number
description: Maximum pump speed in L/s
required:
- status
- power_state
- pump_state
- vacuum_level
additionalProperties: false

View File

@@ -62,4 +62,4 @@ tempsensor:
command: command
feedback: {}
result:
success: success
success: success

View File

@@ -94,4 +94,4 @@ gas_source.mock:
description: "通信端口"
default: "COM6"
required:
- port
- port

View File

@@ -0,0 +1,388 @@
virtual_pump:
description: Virtual Pump for PumpTransferProtocol Testing
class:
module: unilabos.devices.virtual.virtual_pump:VirtualPump
type: python
status_types:
status: String
position: Float64
valve_position: Int32 # 修复:使用 Int32 而不是 String
max_volume: Float64
current_volume: Float64
action_value_mappings:
transfer:
type: PumpTransfer
goal:
from_vessel: from_vessel
to_vessel: to_vessel
volume: volume
amount: amount
time: time
viscous: viscous
rinsing_solvent: rinsing_solvent
rinsing_volume: rinsing_volume
rinsing_repeats: rinsing_repeats
solid: solid
feedback:
status: status
result:
success: success
set_valve_position:
type: FloatSingleInput
goal:
Int32: Int32
feedback:
status: status
result:
success: success
schema:
type: object
properties:
port:
type: string
default: "VIRTUAL"
max_volume:
type: number
default: 25.0
additionalProperties: false
virtual_stirrer:
description: Virtual Stirrer for StirProtocol Testing
class:
module: unilabos.devices.virtual.virtual_stirrer:VirtualStirrer
type: python
status_types:
status: String
action_value_mappings:
stir:
type: Stir
goal:
stir_time: stir_time
stir_speed: stir_speed
settling_time: settling_time
feedback:
status: status
result:
success: success
start_stir:
type: ProtocolStartStir
goal:
vessel: vessel
stir_speed: stir_speed
purpose: purpose
feedback:
status: status
result:
success: success
stop_stir:
type: ProtocolStopStir
goal:
vessel: vessel
feedback:
status: status
result:
success: success
schema:
type: object
properties:
port:
type: string
default: "VIRTUAL"
max_temp:
type: number
default: 100.0
max_speed:
type: number
default: 1000.0
additionalProperties: false
virtual_valve:
description: Virtual Valve for AddProtocol Testing
class:
module: unilabos.devices.virtual.virtual_valve:VirtualValve
type: python
status_types:
status: String
valve_state: String
current_position: Int32
target_position: Int32
max_positions: Int32
action_value_mappings:
set_position:
type: SendCmd
goal:
command: position
feedback: {}
result:
success: success
open:
type: EmptyIn
goal: {}
feedback: {}
result:
success: success
close:
type: EmptyIn
goal: {}
feedback: {}
result:
success: success
schema:
type: object
properties:
port:
type: string
default: "VIRTUAL"
positions:
type: integer
default: 6
additionalProperties: false
virtual_centrifuge:
description: Virtual Centrifuge for CentrifugeProtocol Testing
class:
module: unilabos.devices.virtual.virtual_centrifuge:VirtualCentrifuge
type: python
status_types:
status: String
current_speed: Float64
target_speed: Float64
current_temp: Float64
target_temp: Float64
max_speed: Float64
max_temp: Float64
min_temp: Float64
centrifuge_state: String
time_remaining: Float64
action_value_mappings:
centrifuge:
type: ProtocolCentrifuge
goal:
vessel: vessel
speed: speed
time: time
temp: temp
feedback:
progress: progress
current_speed: current_speed
current_temp: current_temp
current_status: status
result:
success: success
message: message
schema:
type: object
properties:
port:
type: string
default: "VIRTUAL"
max_speed:
type: number
default: 15000.0
max_temp:
type: number
default: 40.0
min_temp:
type: number
default: 4.0
additionalProperties: false
virtual_filter:
description: Virtual Filter for FilterProtocol Testing
class:
module: unilabos.devices.virtual.virtual_filter:VirtualFilter
type: python
status_types:
status: String
filter_state: String
current_temp: Float64
target_temp: Float64
max_temp: Float64
stir_speed: Float64
max_stir_speed: Float64
filtered_volume: Float64
progress: Float64
message: String
action_value_mappings:
filter_sample:
type: ProtocolFilter
goal:
vessel: vessel
filtrate_vessel: filtrate_vessel
stir: stir
stir_speed: stir_speed
temp: temp
continue_heatchill: continue_heatchill
volume: volume
feedback:
progress: progress
current_temp: current_temp
filtered_volume: filtered_volume
current_status: status
result:
success: success
message: message
schema:
type: object
properties:
port:
type: string
default: "VIRTUAL"
max_temp:
type: number
default: 100.0
max_stir_speed:
type: number
default: 1000.0
additionalProperties: false
virtual_heatchill:
description: Virtual HeatChill for HeatChillProtocol Testing
class:
module: unilabos.devices.virtual.virtual_heatchill:VirtualHeatChill
type: python
status_types:
status: String
action_value_mappings:
heat_chill:
type: HeatChill
goal:
vessel: vessel
temp: temp
time: time
stir: stir
stir_speed: stir_speed
purpose: purpose
feedback:
status: status
result:
success: success
heat_chill_start:
type: HeatChillStart
goal:
vessel: vessel
temp: temp
purpose: purpose
feedback:
status: status
result:
success: success
heat_chill_stop:
type: HeatChillStop
goal:
vessel: vessel
feedback:
status: status
result:
success: success
schema:
type: object
properties:
port:
type: string
default: "VIRTUAL"
max_temp:
type: number
default: 200.0
min_temp:
type: number
default: -80.0
max_stir_speed:
type: number
default: 1000.0
additionalProperties: false
virtual_transfer_pump:
description: Virtual Transfer Pump for TransferProtocol Testing
class:
module: unilabos.devices.virtual.virtual_transferpump:VirtualTransferPump
type: python
status_types:
status: String
current_volume: Float64
max_volume: Float64
transfer_rate: Float64
from_vessel: String
to_vessel: String
progress: Float64
transferred_volume: Float64
current_status: String
action_value_mappings:
transfer:
type: ProtocolTransfer
goal:
from_vessel: from_vessel
to_vessel: to_vessel
volume: volume
amount: amount
time: time
viscous: viscous
rinsing_solvent: rinsing_solvent
rinsing_volume: rinsing_volume
rinsing_repeats: rinsing_repeats
solid: solid
feedback:
progress: progress
transferred_volume: transferred_volume
current_status: current_status
result:
success: success
message: message
schema:
type: object
properties:
port:
type: string
default: "VIRTUAL"
max_volume:
type: number
default: 50.0
transfer_rate:
type: number
default: 5.0
additionalProperties: false
virtual_column:
description: Virtual Column for RunColumn Protocol Testing
class:
module: unilabos.devices.virtual.virtual_column:VirtualColumn
type: python
status_types:
status: String
column_state: String
current_flow_rate: Float64
max_flow_rate: Float64
column_length: Float64
column_diameter: Float64
processed_volume: Float64
progress: Float64
current_status: String
action_value_mappings:
run_column:
type: ProtocolRunColumn
goal:
from_vessel: from_vessel
to_vessel: to_vessel
column: column
feedback:
status: current_status
progress: progress
result:
success: success
message: message
schema:
type: object
properties:
port:
type: string
default: "VIRTUAL"
max_flow_rate:
type: number
default: 10.0
column_length:
type: number
default: 25.0
column_diameter:
type: number
default: 2.0
additionalProperties: false

View File

@@ -29,8 +29,25 @@ set(action_files
"action/HeatChillStart.action"
"action/HeatChillStop.action"
"action/LiquidHandlerProtocolCreation.action"
"action/ProtocolCleanVessel.action"
"action/ProtocolDissolve.action"
"action/ProtocolFilterThrough.action"
"action/ProtocolRunColumn.action"
"action/ProtocolWait.action"
"action/ProtocolWashSolid.action"
"action/ProtocolFilter.action"
"action/ProtocolCentrifuge.action"
"action/ProtocolCrystallize.action"
"action/ProtocolDry.action"
"action/ProtocolPurge.action"
"action/ProtocolStartPurge.action"
"action/ProtocolStartStir.action"
"action/ProtocolStopPurge.action"
"action/ProtocolStopStir.action"
"action/ProtocolTransfer.action"
"action/LiquidHandlerProtocolCreation.action"
"action/LiquidHandlerAspirate.action"
"action/LiquidHandlerDiscardTips.action"
"action/LiquidHandlerDispense.action"

View File

@@ -0,0 +1,20 @@
# Goal - 添加试剂的目标参数
string vessel # 目标容器
string reagent # 试剂名称
float64 volume # 体积 (可选)
float64 mass # 质量 (可选)
string amount # 数量描述 (可选)
float64 time # 添加时间 (可选)
bool stir # 是否搅拌
float64 stir_speed # 搅拌速度 (可选)
bool viscous # 是否为粘性液体
string purpose # 添加目的 (可选)
---
# Result - 操作结果
bool success # 操作是否成功
string message # 结果消息
string return_info
---
# Feedback - 实时反馈
float64 progress # 进度百分比 (0-100)
string current_status # 当前状态描述

View File

@@ -0,0 +1,16 @@
# Goal - 离心操作的目标参数
string vessel # 离心容器
float64 speed # 离心速度 (rpm)
float64 time # 离心时间 (秒)
float64 temp # 温度 (可选,摄氏度)
---
# Result - 操作结果
bool success # 操作是否成功
string message # 结果消息
string return_info
---
# Feedback - 实时反馈
float64 progress # 进度百分比 (0-100)
float64 current_speed # 当前转速
float64 current_temp # 当前温度
string current_status # 当前状态描述

View File

@@ -0,0 +1,12 @@
string vessel # 要清洗的容器名称
string solvent # 用于清洗容器的溶剂名称
float64 volume # 清洗溶剂的体积,可选参数
float64 temp # 清洗时的温度,可选参数
int32 repeats # 清洗操作的重复次数,默认为 1
---
bool success # 操作是否成功
string message # 结果消息
string return_info
---
string status # 当前状态描述
float64 progress # 进度百分比 (0-100)

View File

@@ -0,0 +1,14 @@
# Goal - 结晶操作的目标参数
string vessel # 结晶容器
float64 ramp_time # 升温/降温时间 (可选,秒)
float64 ramp_temp # 目标温度 (可选,摄氏度)
---
# Result - 操作结果
bool success # 操作是否成功
string message # 结果消息
string return_info
---
# Feedback - 实时反馈
float64 progress # 进度百分比 (0-100)
float64 current_temp # 当前温度
string current_status # 当前状态描述

View File

@@ -0,0 +1,14 @@
string vessel # 装有要溶解物质的容器名称
string solvent # 用于溶解物质的溶剂名称
float64 volume # 溶剂的体积,可选参数
string amount # 要溶解物质的量,可选参数
float64 temp # 溶解时的温度,可选参数
float64 time # 溶解的时间,可选参数
float64 stir_speed # 搅拌速度,可选参数
---
bool success # 操作是否成功
string message # 结果消息
string return_info
---
string status # 当前状态描述
float64 progress # 进度百分比 (0-100)

View File

@@ -0,0 +1,17 @@
# Goal - 干燥操作的目标参数
string vessel # 干燥容器
float64 time # 干燥时间 (可选,秒)
float64 pressure # 压力 (可选Pa)
float64 temp # 温度 (可选,摄氏度)
bool continue_heatchill # 是否继续加热冷却
---
# Result - 操作结果
bool success # 操作是否成功
string message # 结果消息
string return_info
---
# Feedback - 实时反馈
float64 progress # 进度百分比 (0-100)
float64 current_temp # 当前温度
float64 current_pressure # 当前压力
string current_status # 当前状态描述

View File

@@ -0,0 +1,19 @@
# Goal - 过滤操作的目标参数
string vessel # 过滤容器
string filtrate_vessel # 滤液容器 (可选)
bool stir # 是否搅拌
float64 stir_speed # 搅拌速度 (可选)
float64 temp # 温度 (可选,摄氏度)
bool continue_heatchill # 是否继续加热冷却
float64 volume # 过滤体积 (可选)
---
# Result - 操作结果
bool success # 操作是否成功
string message # 结果消息
string return_info
---
# Feedback - 实时反馈
float64 progress # 进度百分比 (0-100)
float64 current_temp # 当前温度
float64 filtered_volume # 已过滤体积
string current_status # 当前状态描述

View File

@@ -0,0 +1,14 @@
string from_vessel # 源容器的名称,即物质起始所在的容器
string to_vessel # 目标容器的名称,物质过滤后要到达的容器
string filter_through # 过滤时所通过的介质,如滤纸、柱子等
string eluting_solvent # 洗脱溶剂的名称,可选参数
float64 eluting_volume # 洗脱溶剂的体积,可选参数
int32 eluting_repeats # 洗脱操作的重复次数,默认为 0
float64 residence_time # 物质在过滤介质中的停留时间,可选参数
---
bool success # 操作是否成功
string message # 结果消息
string return_info
---
string status # 当前状态描述
float64 progress # 进度百分比 (0-100)

View File

@@ -0,0 +1,17 @@
# Goal - 清洗/吹扫操作的目标参数
string vessel # 清洗容器
string gas # 清洗气体 (可选)
float64 time # 清洗时间 (可选,秒)
float64 pressure # 压力 (可选Pa)
float64 flow_rate # 流速 (可选mL/min)
---
# Result - 操作结果
bool success # 操作是否成功
string message # 结果消息
string return_info
---
# Feedback - 实时反馈
float64 progress # 进度百分比 (0-100)
float64 current_pressure # 当前压力
float64 current_flow_rate # 当前流速
string current_status # 当前状态描述

View File

@@ -0,0 +1,10 @@
string from_vessel # 源容器的名称,即样品起始所在的容器
string to_vessel # 目标容器的名称,分离后的样品要到达的容器
string column # 所使用的柱子的名称
---
bool success # 操作是否成功
string message # 结果消息
string return_info
---
string status # 当前状态描述
float64 progress # 进度百分比 (0-100)

View File

@@ -0,0 +1,16 @@
# Goal - 启动清洗/吹扫操作的目标参数
string vessel # 清洗容器
string gas # 清洗气体 (可选)
float64 pressure # 压力 (可选Pa)
float64 flow_rate # 流速 (可选mL/min)
---
# Result - 操作结果
bool success # 操作是否成功
string message # 结果消息
string return_info
---
# Feedback - 实时反馈
float64 progress # 进度百分比 (0-100)
float64 current_pressure # 当前压力
float64 current_flow_rate # 当前流速
string current_status # 当前状态描述

View File

@@ -0,0 +1,14 @@
# Goal - 启动搅拌操作的目标参数
string vessel # 搅拌容器
float64 stir_speed # 搅拌速度 (可选rpm)
string purpose # 搅拌目的 (可选)
---
# Result - 操作结果
bool success # 操作是否成功
string message # 结果消息
string return_info
---
# Feedback - 实时反馈
float64 progress # 进度百分比 (0-100)
float64 current_speed # 当前搅拌速度
string current_status # 当前状态描述

View File

@@ -0,0 +1,11 @@
# Goal - 停止清洗/吹扫操作的目标参数
string vessel # 清洗容器
---
# Result - 操作结果
bool success # 操作是否成功
string message # 结果消息
string return_info
---
# Feedback - 实时反馈
float64 progress # 进度百分比 (0-100)
string current_status # 当前状态描述

View File

@@ -0,0 +1,11 @@
# Goal - 停止搅拌操作的目标参数
string vessel # 搅拌容器
---
# Result - 操作结果
bool success # 操作是否成功
string message # 结果消息
string return_info
---
# Feedback - 实时反馈
float64 progress # 进度百分比 (0-100)
string current_status # 当前状态描述

View File

@@ -0,0 +1,20 @@
string from_vessel # 源容器
string to_vessel # 目标容器
float64 volume # 转移体积 (可选)
string amount # 数量描述 (可选)
float64 time # 转移时间 (可选,秒)
bool viscous # 是否为粘性液体
string rinsing_solvent # 冲洗溶剂 (可选)
float64 rinsing_volume # 冲洗体积 (可选)
int32 rinsing_repeats # 冲洗重复次数
bool solid # 是否涉及固体
---
# Result - 操作结果
bool success # 操作是否成功
string message # 结果消息
string return_info
---
# Feedback - 实时反馈
float64 progress # 进度百分比 (0-100)
float64 transferred_volume # 已转移体积
string current_status # 当前状态描述

View File

@@ -0,0 +1,9 @@
int32 time # 等待时间(秒)
---
bool success # 操作是否成功
string message # 结果消息
string return_info
---
string status # 当前状态描述
float64 progress # 进度百分比 (0-100)
int32 remaining_time # 剩余等待时间(秒)

View File

@@ -0,0 +1,16 @@
string vessel # 装有固体物质的容器名称
string solvent # 用于清洗固体的溶剂名称
float64 volume # 清洗溶剂的体积
string filtrate_vessel # 滤液要收集到的容器名称,可选参数
float64 temp # 清洗时的温度,可选参数
bool stir # 是否在清洗过程中搅拌,默认为 False
float64 stir_speed # 搅拌速度,可选参数
float64 time # 清洗的时间,可选参数
int32 repeats # 清洗操作的重复次数,默认为 1
---
bool success # 操作是否成功
string message # 结果消息
string return_info
---
string status # 当前状态描述
float64 progress # 进度百分比 (0-100)