mirror of
https://github.com/dptech-corp/Uni-Lab-OS.git
synced 2026-02-04 13:25:13 +00:00
Compare commits
73 Commits
dadfdf3d8d
...
v0.10.17
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
176de521b4 | ||
|
|
38c5c267af | ||
|
|
2a5ddd611d | ||
|
|
8580b84167 | ||
|
|
3f80349d7d | ||
|
|
024156848e | ||
|
|
8066c200b9 | ||
|
|
266366cc25 | ||
|
|
121c3985cc | ||
|
|
6ca5c72fc6 | ||
|
|
bc8c49ddda | ||
|
|
28f93737ac | ||
|
|
5dc81ec9be | ||
|
|
13a6795657 | ||
|
|
53219d8b04 | ||
|
|
b1cdef9185 | ||
|
|
9854ed8c9c | ||
|
|
52544a2c69 | ||
|
|
5ce433e235 | ||
|
|
c7c14d2332 | ||
|
|
6fdd482649 | ||
|
|
d390236318 | ||
|
|
ed8ee29732 | ||
|
|
ffc583e9d5 | ||
|
|
f1ad0c9c96 | ||
|
|
8fa3407649 | ||
|
|
d3282822fc | ||
|
|
554bcade24 | ||
|
|
a662c75de1 | ||
|
|
931614fe64 | ||
|
|
d39662f65f | ||
|
|
acf5fdebf8 | ||
|
|
7f7b1c13c0 | ||
|
|
75f09034ff | ||
|
|
549a50220b | ||
|
|
4189a2cfbe | ||
|
|
48895a9bb1 | ||
|
|
891f126ed6 | ||
|
|
4d3475a849 | ||
|
|
b475db66df | ||
|
|
a625a86e3e | ||
|
|
37e0f1037c | ||
|
|
a242253145 | ||
|
|
448e0074b7 | ||
|
|
304827fc8d | ||
|
|
872b3d781f | ||
|
|
813400f2b4 | ||
|
|
b6dfe2b944 | ||
|
|
8807865649 | ||
|
|
5fc7eb7586 | ||
|
|
9bd72b48e1 | ||
|
|
42b78ab4c1 | ||
|
|
9645609a05 | ||
|
|
a2a827d7ac | ||
|
|
bb3ca645a4 | ||
|
|
37ee43d19a | ||
|
|
bc30f23e34 | ||
|
|
166d84afe1 | ||
|
|
1b43c53015 | ||
|
|
d4415f5a35 | ||
|
|
0260cbbedb | ||
|
|
7c440d10ab | ||
|
|
c85c49817d | ||
|
|
c70eafa5f0 | ||
|
|
b64466d443 | ||
|
|
ef3f24ed48 | ||
|
|
2a8e8d014b | ||
|
|
e0da1c7217 | ||
|
|
51d3e61723 | ||
|
|
6b5765bbf3 | ||
|
|
eb1f3fbe1c | ||
|
|
fb93b1cd94 | ||
|
|
9aeffebde1 |
@@ -41,6 +41,7 @@ requirements:
|
|||||||
- networkx
|
- networkx
|
||||||
- typing_extensions
|
- typing_extensions
|
||||||
- websockets
|
- websockets
|
||||||
|
- opentrons_shared_data
|
||||||
- pint
|
- pint
|
||||||
- fastapi
|
- fastapi
|
||||||
- jinja2
|
- jinja2
|
||||||
|
|||||||
@@ -36,4 +36,4 @@ requirements:
|
|||||||
about:
|
about:
|
||||||
repository: https://github.com/deepmodeling/Uni-Lab-OS
|
repository: https://github.com/deepmodeling/Uni-Lab-OS
|
||||||
license: GPL-3.0-only
|
license: GPL-3.0-only
|
||||||
description: "UniLabOS Environment - ROS2 and conda dependencies"
|
description: "UniLabOS Environment - ROS2 and conda dependencies (for developers: pip install -e .)"
|
||||||
|
|||||||
2
.github/workflows/ci-check.yml
vendored
2
.github/workflows/ci-check.yml
vendored
@@ -47,7 +47,7 @@ jobs:
|
|||||||
uv pip install -r unilabos/utils/requirements.txt
|
uv pip install -r unilabos/utils/requirements.txt
|
||||||
uv pip install pywinauto git+https://github.com/Xuwznln/pylabrobot.git
|
uv pip install pywinauto git+https://github.com/Xuwznln/pylabrobot.git
|
||||||
uv pip uninstall enum34 || echo enum34 not installed, skipping
|
uv pip uninstall enum34 || echo enum34 not installed, skipping
|
||||||
uv pip install .
|
uv pip install -e .
|
||||||
|
|
||||||
- name: Run check mode (complete_registry)
|
- name: Run check mode (complete_registry)
|
||||||
run: |
|
run: |
|
||||||
|
|||||||
@@ -2,6 +2,7 @@ import json
|
|||||||
import logging
|
import logging
|
||||||
import traceback
|
import traceback
|
||||||
import uuid
|
import uuid
|
||||||
|
import xml.etree.ElementTree as ET
|
||||||
from typing import Any, Dict, List
|
from typing import Any, Dict, List
|
||||||
|
|
||||||
import networkx as nx
|
import networkx as nx
|
||||||
@@ -24,15 +25,7 @@ class SimpleGraph:
|
|||||||
|
|
||||||
def add_edge(self, source, target, **attrs):
|
def add_edge(self, source, target, **attrs):
|
||||||
"""添加边"""
|
"""添加边"""
|
||||||
# edge = {"source": source, "target": target, **attrs}
|
edge = {"source": source, "target": target, **attrs}
|
||||||
edge = {
|
|
||||||
"source": source, "target": target,
|
|
||||||
"source_node_uuid": source,
|
|
||||||
"target_node_uuid": target,
|
|
||||||
"source_handle_io": "source",
|
|
||||||
"target_handle_io": "target",
|
|
||||||
**attrs
|
|
||||||
}
|
|
||||||
self.edges.append(edge)
|
self.edges.append(edge)
|
||||||
|
|
||||||
def to_dict(self):
|
def to_dict(self):
|
||||||
@@ -49,7 +42,6 @@ class SimpleGraph:
|
|||||||
"multigraph": False,
|
"multigraph": False,
|
||||||
"graph": {},
|
"graph": {},
|
||||||
"nodes": nodes_list,
|
"nodes": nodes_list,
|
||||||
"edges": self.edges,
|
|
||||||
"links": self.edges,
|
"links": self.edges,
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -66,8 +58,495 @@ def extract_json_from_markdown(text: str) -> str:
|
|||||||
return text
|
return text
|
||||||
|
|
||||||
|
|
||||||
|
def convert_to_type(val: str) -> Any:
|
||||||
|
"""将字符串值转换为适当的数据类型"""
|
||||||
|
if val == "True":
|
||||||
|
return True
|
||||||
|
if val == "False":
|
||||||
|
return False
|
||||||
|
if val == "?":
|
||||||
|
return None
|
||||||
|
if val.endswith(" g"):
|
||||||
|
return float(val.split(" ")[0])
|
||||||
|
if val.endswith("mg"):
|
||||||
|
return float(val.split("mg")[0])
|
||||||
|
elif val.endswith("mmol"):
|
||||||
|
return float(val.split("mmol")[0]) / 1000
|
||||||
|
elif val.endswith("mol"):
|
||||||
|
return float(val.split("mol")[0])
|
||||||
|
elif val.endswith("ml"):
|
||||||
|
return float(val.split("ml")[0])
|
||||||
|
elif val.endswith("RPM"):
|
||||||
|
return float(val.split("RPM")[0])
|
||||||
|
elif val.endswith(" °C"):
|
||||||
|
return float(val.split(" ")[0])
|
||||||
|
elif val.endswith(" %"):
|
||||||
|
return float(val.split(" ")[0])
|
||||||
|
return val
|
||||||
|
|
||||||
|
|
||||||
|
def refactor_data(data: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
|
||||||
|
"""统一的数据重构函数,根据操作类型自动选择模板"""
|
||||||
|
refactored_data = []
|
||||||
|
|
||||||
|
# 定义操作映射,包含生物实验和有机化学的所有操作
|
||||||
|
OPERATION_MAPPING = {
|
||||||
|
# 生物实验操作
|
||||||
|
"transfer_liquid": "SynBioFactory-liquid_handler.prcxi-transfer_liquid",
|
||||||
|
"transfer": "SynBioFactory-liquid_handler.biomek-transfer",
|
||||||
|
"incubation": "SynBioFactory-liquid_handler.biomek-incubation",
|
||||||
|
"move_labware": "SynBioFactory-liquid_handler.biomek-move_labware",
|
||||||
|
"oscillation": "SynBioFactory-liquid_handler.biomek-oscillation",
|
||||||
|
# 有机化学操作
|
||||||
|
"HeatChillToTemp": "SynBioFactory-workstation-HeatChillProtocol",
|
||||||
|
"StopHeatChill": "SynBioFactory-workstation-HeatChillStopProtocol",
|
||||||
|
"StartHeatChill": "SynBioFactory-workstation-HeatChillStartProtocol",
|
||||||
|
"HeatChill": "SynBioFactory-workstation-HeatChillProtocol",
|
||||||
|
"Dissolve": "SynBioFactory-workstation-DissolveProtocol",
|
||||||
|
"Transfer": "SynBioFactory-workstation-TransferProtocol",
|
||||||
|
"Evaporate": "SynBioFactory-workstation-EvaporateProtocol",
|
||||||
|
"Recrystallize": "SynBioFactory-workstation-RecrystallizeProtocol",
|
||||||
|
"Filter": "SynBioFactory-workstation-FilterProtocol",
|
||||||
|
"Dry": "SynBioFactory-workstation-DryProtocol",
|
||||||
|
"Add": "SynBioFactory-workstation-AddProtocol",
|
||||||
|
}
|
||||||
|
|
||||||
|
UNSUPPORTED_OPERATIONS = ["Purge", "Wait", "Stir", "ResetHandling"]
|
||||||
|
|
||||||
|
for step in data:
|
||||||
|
operation = step.get("action")
|
||||||
|
if not operation or operation in UNSUPPORTED_OPERATIONS:
|
||||||
|
continue
|
||||||
|
|
||||||
|
# 处理重复操作
|
||||||
|
if operation == "Repeat":
|
||||||
|
times = step.get("times", step.get("parameters", {}).get("times", 1))
|
||||||
|
sub_steps = step.get("steps", step.get("parameters", {}).get("steps", []))
|
||||||
|
for i in range(int(times)):
|
||||||
|
sub_data = refactor_data(sub_steps)
|
||||||
|
refactored_data.extend(sub_data)
|
||||||
|
continue
|
||||||
|
|
||||||
|
# 获取模板名称
|
||||||
|
template = OPERATION_MAPPING.get(operation)
|
||||||
|
if not template:
|
||||||
|
# 自动推断模板类型
|
||||||
|
if operation.lower() in ["transfer", "incubation", "move_labware", "oscillation"]:
|
||||||
|
template = f"SynBioFactory-liquid_handler.biomek-{operation}"
|
||||||
|
else:
|
||||||
|
template = f"SynBioFactory-workstation-{operation}Protocol"
|
||||||
|
|
||||||
|
# 创建步骤数据
|
||||||
|
step_data = {
|
||||||
|
"template": template,
|
||||||
|
"description": step.get("description", step.get("purpose", f"{operation} operation")),
|
||||||
|
"lab_node_type": "Device",
|
||||||
|
"parameters": step.get("parameters", step.get("action_args", {})),
|
||||||
|
}
|
||||||
|
refactored_data.append(step_data)
|
||||||
|
|
||||||
|
return refactored_data
|
||||||
|
|
||||||
|
|
||||||
|
def build_protocol_graph(
|
||||||
|
labware_info: List[Dict[str, Any]], protocol_steps: List[Dict[str, Any]], workstation_name: str
|
||||||
|
) -> SimpleGraph:
|
||||||
|
"""统一的协议图构建函数,根据设备类型自动选择构建逻辑"""
|
||||||
|
G = SimpleGraph()
|
||||||
|
resource_last_writer = {}
|
||||||
|
LAB_NAME = "SynBioFactory"
|
||||||
|
|
||||||
|
protocol_steps = refactor_data(protocol_steps)
|
||||||
|
|
||||||
|
# 检查协议步骤中的模板来判断协议类型
|
||||||
|
has_biomek_template = any(
|
||||||
|
("biomek" in step.get("template", "")) or ("prcxi" in step.get("template", ""))
|
||||||
|
for step in protocol_steps
|
||||||
|
)
|
||||||
|
|
||||||
|
if has_biomek_template:
|
||||||
|
# 生物实验协议图构建
|
||||||
|
for labware_id, labware in labware_info.items():
|
||||||
|
node_id = str(uuid.uuid4())
|
||||||
|
|
||||||
|
labware_attrs = labware.copy()
|
||||||
|
labware_id = labware_attrs.pop("id", labware_attrs.get("name", f"labware_{uuid.uuid4()}"))
|
||||||
|
labware_attrs["description"] = labware_id
|
||||||
|
labware_attrs["lab_node_type"] = (
|
||||||
|
"Reagent" if "Plate" in str(labware_id) else "Labware" if "Rack" in str(labware_id) else "Sample"
|
||||||
|
)
|
||||||
|
labware_attrs["device_id"] = workstation_name
|
||||||
|
|
||||||
|
G.add_node(node_id, template=f"{LAB_NAME}-host_node-create_resource", **labware_attrs)
|
||||||
|
resource_last_writer[labware_id] = f"{node_id}:labware"
|
||||||
|
|
||||||
|
# 处理协议步骤
|
||||||
|
prev_node = None
|
||||||
|
for i, step in enumerate(protocol_steps):
|
||||||
|
node_id = str(uuid.uuid4())
|
||||||
|
G.add_node(node_id, **step)
|
||||||
|
|
||||||
|
# 添加控制流边
|
||||||
|
if prev_node is not None:
|
||||||
|
G.add_edge(prev_node, node_id, source_port="ready", target_port="ready")
|
||||||
|
prev_node = node_id
|
||||||
|
|
||||||
|
# 处理物料流
|
||||||
|
params = step.get("parameters", {})
|
||||||
|
if "sources" in params and params["sources"] in resource_last_writer:
|
||||||
|
source_node, source_port = resource_last_writer[params["sources"]].split(":")
|
||||||
|
G.add_edge(source_node, node_id, source_port=source_port, target_port="labware")
|
||||||
|
|
||||||
|
if "targets" in params:
|
||||||
|
resource_last_writer[params["targets"]] = f"{node_id}:labware"
|
||||||
|
|
||||||
|
# 添加协议结束节点
|
||||||
|
end_id = str(uuid.uuid4())
|
||||||
|
G.add_node(end_id, template=f"{LAB_NAME}-liquid_handler.biomek-run_protocol")
|
||||||
|
if prev_node is not None:
|
||||||
|
G.add_edge(prev_node, end_id, source_port="ready", target_port="ready")
|
||||||
|
|
||||||
|
else:
|
||||||
|
# 有机化学协议图构建
|
||||||
|
WORKSTATION_ID = workstation_name
|
||||||
|
|
||||||
|
# 为所有labware创建资源节点
|
||||||
|
for item_id, item in labware_info.items():
|
||||||
|
# item_id = item.get("id") or item.get("name", f"item_{uuid.uuid4()}")
|
||||||
|
node_id = str(uuid.uuid4())
|
||||||
|
|
||||||
|
# 判断节点类型
|
||||||
|
if item.get("type") == "hardware" or "reactor" in str(item_id).lower():
|
||||||
|
if "reactor" not in str(item_id).lower():
|
||||||
|
continue
|
||||||
|
lab_node_type = "Sample"
|
||||||
|
description = f"Prepare Reactor: {item_id}"
|
||||||
|
liquid_type = []
|
||||||
|
liquid_volume = []
|
||||||
|
else:
|
||||||
|
lab_node_type = "Reagent"
|
||||||
|
description = f"Add Reagent to Flask: {item_id}"
|
||||||
|
liquid_type = [item_id]
|
||||||
|
liquid_volume = [1e5]
|
||||||
|
|
||||||
|
G.add_node(
|
||||||
|
node_id,
|
||||||
|
template=f"{LAB_NAME}-host_node-create_resource",
|
||||||
|
description=description,
|
||||||
|
lab_node_type=lab_node_type,
|
||||||
|
res_id=item_id,
|
||||||
|
device_id=WORKSTATION_ID,
|
||||||
|
class_name="container",
|
||||||
|
parent=WORKSTATION_ID,
|
||||||
|
bind_locations={"x": 0.0, "y": 0.0, "z": 0.0},
|
||||||
|
liquid_input_slot=[-1],
|
||||||
|
liquid_type=liquid_type,
|
||||||
|
liquid_volume=liquid_volume,
|
||||||
|
slot_on_deck="",
|
||||||
|
role=item.get("role", ""),
|
||||||
|
)
|
||||||
|
resource_last_writer[item_id] = f"{node_id}:labware"
|
||||||
|
|
||||||
|
last_control_node_id = None
|
||||||
|
|
||||||
|
# 处理协议步骤
|
||||||
|
for step in protocol_steps:
|
||||||
|
node_id = str(uuid.uuid4())
|
||||||
|
G.add_node(node_id, **step)
|
||||||
|
|
||||||
|
# 控制流
|
||||||
|
if last_control_node_id is not None:
|
||||||
|
G.add_edge(last_control_node_id, node_id, source_port="ready", target_port="ready")
|
||||||
|
last_control_node_id = node_id
|
||||||
|
|
||||||
|
# 物料流
|
||||||
|
params = step.get("parameters", {})
|
||||||
|
input_resources = {
|
||||||
|
"Vessel": params.get("vessel"),
|
||||||
|
"ToVessel": params.get("to_vessel"),
|
||||||
|
"FromVessel": params.get("from_vessel"),
|
||||||
|
"reagent": params.get("reagent"),
|
||||||
|
"solvent": params.get("solvent"),
|
||||||
|
"compound": params.get("compound"),
|
||||||
|
"sources": params.get("sources"),
|
||||||
|
"targets": params.get("targets"),
|
||||||
|
}
|
||||||
|
|
||||||
|
for target_port, resource_name in input_resources.items():
|
||||||
|
if resource_name and resource_name in resource_last_writer:
|
||||||
|
source_node, source_port = resource_last_writer[resource_name].split(":")
|
||||||
|
G.add_edge(source_node, node_id, source_port=source_port, target_port=target_port)
|
||||||
|
|
||||||
|
output_resources = {
|
||||||
|
"VesselOut": params.get("vessel"),
|
||||||
|
"FromVesselOut": params.get("from_vessel"),
|
||||||
|
"ToVesselOut": params.get("to_vessel"),
|
||||||
|
"FiltrateOut": params.get("filtrate_vessel"),
|
||||||
|
"reagent": params.get("reagent"),
|
||||||
|
"solvent": params.get("solvent"),
|
||||||
|
"compound": params.get("compound"),
|
||||||
|
"sources_out": params.get("sources"),
|
||||||
|
"targets_out": params.get("targets"),
|
||||||
|
}
|
||||||
|
|
||||||
|
for source_port, resource_name in output_resources.items():
|
||||||
|
if resource_name:
|
||||||
|
resource_last_writer[resource_name] = f"{node_id}:{source_port}"
|
||||||
|
|
||||||
|
return G
|
||||||
|
|
||||||
|
|
||||||
|
def draw_protocol_graph(protocol_graph: SimpleGraph, output_path: str):
|
||||||
|
"""
|
||||||
|
(辅助功能) 使用 networkx 和 matplotlib 绘制协议工作流图,用于可视化。
|
||||||
|
"""
|
||||||
|
if not protocol_graph:
|
||||||
|
print("Cannot draw graph: Graph object is empty.")
|
||||||
|
return
|
||||||
|
|
||||||
|
G = nx.DiGraph()
|
||||||
|
|
||||||
|
for node_id, attrs in protocol_graph.nodes.items():
|
||||||
|
label = attrs.get("description", attrs.get("template", node_id[:8]))
|
||||||
|
G.add_node(node_id, label=label, **attrs)
|
||||||
|
|
||||||
|
for edge in protocol_graph.edges:
|
||||||
|
G.add_edge(edge["source"], edge["target"])
|
||||||
|
|
||||||
|
plt.figure(figsize=(20, 15))
|
||||||
|
try:
|
||||||
|
pos = nx.nx_agraph.graphviz_layout(G, prog="dot")
|
||||||
|
except Exception:
|
||||||
|
pos = nx.shell_layout(G) # Fallback layout
|
||||||
|
|
||||||
|
node_labels = {node: data["label"] for node, data in G.nodes(data=True)}
|
||||||
|
nx.draw(
|
||||||
|
G,
|
||||||
|
pos,
|
||||||
|
with_labels=False,
|
||||||
|
node_size=2500,
|
||||||
|
node_color="skyblue",
|
||||||
|
node_shape="o",
|
||||||
|
edge_color="gray",
|
||||||
|
width=1.5,
|
||||||
|
arrowsize=15,
|
||||||
|
)
|
||||||
|
nx.draw_networkx_labels(G, pos, labels=node_labels, font_size=8, font_weight="bold")
|
||||||
|
|
||||||
|
plt.title("Chemical Protocol Workflow Graph", size=15)
|
||||||
|
plt.savefig(output_path, dpi=300, bbox_inches="tight")
|
||||||
|
plt.close()
|
||||||
|
print(f" - Visualization saved to '{output_path}'")
|
||||||
|
|
||||||
|
|
||||||
|
from networkx.drawing.nx_agraph import to_agraph
|
||||||
|
import re
|
||||||
|
|
||||||
|
COMPASS = {"n","e","s","w","ne","nw","se","sw","c"}
|
||||||
|
|
||||||
|
def _is_compass(port: str) -> bool:
|
||||||
|
return isinstance(port, str) and port.lower() in COMPASS
|
||||||
|
|
||||||
|
def draw_protocol_graph_with_ports(protocol_graph, output_path: str, rankdir: str = "LR"):
|
||||||
|
"""
|
||||||
|
使用 Graphviz 端口语法绘制协议工作流图。
|
||||||
|
- 若边上的 source_port/target_port 是 compass(n/e/s/w/...),直接用 compass。
|
||||||
|
- 否则自动为节点创建 record 形状并定义命名端口 <portname>。
|
||||||
|
最终由 PyGraphviz 渲染并输出到 output_path(后缀决定格式,如 .png/.svg/.pdf)。
|
||||||
|
"""
|
||||||
|
if not protocol_graph:
|
||||||
|
print("Cannot draw graph: Graph object is empty.")
|
||||||
|
return
|
||||||
|
|
||||||
|
# 1) 先用 networkx 搭建有向图,保留端口属性
|
||||||
|
G = nx.DiGraph()
|
||||||
|
for node_id, attrs in protocol_graph.nodes.items():
|
||||||
|
label = attrs.get("description", attrs.get("template", node_id[:8]))
|
||||||
|
# 保留一个干净的“中心标签”,用于放在 record 的中间槽
|
||||||
|
G.add_node(node_id, _core_label=str(label), **{k:v for k,v in attrs.items() if k not in ("label",)})
|
||||||
|
|
||||||
|
edges_data = []
|
||||||
|
in_ports_by_node = {} # 收集命名输入端口
|
||||||
|
out_ports_by_node = {} # 收集命名输出端口
|
||||||
|
|
||||||
|
for edge in protocol_graph.edges:
|
||||||
|
u = edge["source"]
|
||||||
|
v = edge["target"]
|
||||||
|
sp = edge.get("source_port")
|
||||||
|
tp = edge.get("target_port")
|
||||||
|
|
||||||
|
# 记录到图里(保留原始端口信息)
|
||||||
|
G.add_edge(u, v, source_port=sp, target_port=tp)
|
||||||
|
edges_data.append((u, v, sp, tp))
|
||||||
|
|
||||||
|
# 如果不是 compass,就按“命名端口”先归类,等会儿给节点造 record
|
||||||
|
if sp and not _is_compass(sp):
|
||||||
|
out_ports_by_node.setdefault(u, set()).add(str(sp))
|
||||||
|
if tp and not _is_compass(tp):
|
||||||
|
in_ports_by_node.setdefault(v, set()).add(str(tp))
|
||||||
|
|
||||||
|
# 2) 转为 AGraph,使用 Graphviz 渲染
|
||||||
|
A = to_agraph(G)
|
||||||
|
A.graph_attr.update(rankdir=rankdir, splines="true", concentrate="false", fontsize="10")
|
||||||
|
A.node_attr.update(shape="box", style="rounded,filled", fillcolor="lightyellow", color="#999999", fontname="Helvetica")
|
||||||
|
A.edge_attr.update(arrowsize="0.8", color="#666666")
|
||||||
|
|
||||||
|
# 3) 为需要命名端口的节点设置 record 形状与 label
|
||||||
|
# 左列 = 输入端口;中间 = 核心标签;右列 = 输出端口
|
||||||
|
for n in A.nodes():
|
||||||
|
node = A.get_node(n)
|
||||||
|
core = G.nodes[n].get("_core_label", n)
|
||||||
|
|
||||||
|
in_ports = sorted(in_ports_by_node.get(n, []))
|
||||||
|
out_ports = sorted(out_ports_by_node.get(n, []))
|
||||||
|
|
||||||
|
# 如果该节点涉及命名端口,则用 record;否则保留原 box
|
||||||
|
if in_ports or out_ports:
|
||||||
|
def port_fields(ports):
|
||||||
|
if not ports:
|
||||||
|
return " " # 必须留一个空槽占位
|
||||||
|
# 每个端口一个小格子,<p> name
|
||||||
|
return "|".join(f"<{re.sub(r'[^A-Za-z0-9_:.|-]', '_', p)}> {p}" for p in ports)
|
||||||
|
|
||||||
|
left = port_fields(in_ports)
|
||||||
|
right = port_fields(out_ports)
|
||||||
|
|
||||||
|
# 三栏:左(入) | 中(节点名) | 右(出)
|
||||||
|
record_label = f"{{ {left} | {core} | {right} }}"
|
||||||
|
node.attr.update(shape="record", label=record_label)
|
||||||
|
else:
|
||||||
|
# 没有命名端口:普通盒子,显示核心标签
|
||||||
|
node.attr.update(label=str(core))
|
||||||
|
|
||||||
|
# 4) 给边设置 headport / tailport
|
||||||
|
# - 若端口为 compass:直接用 compass(e.g., headport="e")
|
||||||
|
# - 若端口为命名端口:使用在 record 中定义的 <port> 名(同名即可)
|
||||||
|
for (u, v, sp, tp) in edges_data:
|
||||||
|
e = A.get_edge(u, v)
|
||||||
|
|
||||||
|
# Graphviz 属性:tail 是源,head 是目标
|
||||||
|
if sp:
|
||||||
|
if _is_compass(sp):
|
||||||
|
e.attr["tailport"] = sp.lower()
|
||||||
|
else:
|
||||||
|
# 与 record label 中 <port> 名一致;特殊字符已在 label 中做了清洗
|
||||||
|
e.attr["tailport"] = re.sub(r'[^A-Za-z0-9_:.|-]', '_', str(sp))
|
||||||
|
|
||||||
|
if tp:
|
||||||
|
if _is_compass(tp):
|
||||||
|
e.attr["headport"] = tp.lower()
|
||||||
|
else:
|
||||||
|
e.attr["headport"] = re.sub(r'[^A-Za-z0-9_:.|-]', '_', str(tp))
|
||||||
|
|
||||||
|
# 可选:若想让边更贴边缘,可设置 constraint/spline 等
|
||||||
|
# e.attr["arrowhead"] = "vee"
|
||||||
|
|
||||||
|
# 5) 输出
|
||||||
|
A.draw(output_path, prog="dot")
|
||||||
|
print(f" - Port-aware workflow rendered to '{output_path}'")
|
||||||
|
|
||||||
|
|
||||||
|
def flatten_xdl_procedure(procedure_elem: ET.Element) -> List[ET.Element]:
|
||||||
|
"""展平嵌套的XDL程序结构"""
|
||||||
|
flattened_operations = []
|
||||||
|
TEMP_UNSUPPORTED_PROTOCOL = ["Purge", "Wait", "Stir", "ResetHandling"]
|
||||||
|
|
||||||
|
def extract_operations(element: ET.Element):
|
||||||
|
if element.tag not in ["Prep", "Reaction", "Workup", "Purification", "Procedure"]:
|
||||||
|
if element.tag not in TEMP_UNSUPPORTED_PROTOCOL:
|
||||||
|
flattened_operations.append(element)
|
||||||
|
|
||||||
|
for child in element:
|
||||||
|
extract_operations(child)
|
||||||
|
|
||||||
|
for child in procedure_elem:
|
||||||
|
extract_operations(child)
|
||||||
|
|
||||||
|
return flattened_operations
|
||||||
|
|
||||||
|
|
||||||
|
def parse_xdl_content(xdl_content: str) -> tuple:
|
||||||
|
"""解析XDL内容"""
|
||||||
|
try:
|
||||||
|
xdl_content_cleaned = "".join(c for c in xdl_content if c.isprintable())
|
||||||
|
root = ET.fromstring(xdl_content_cleaned)
|
||||||
|
|
||||||
|
synthesis_elem = root.find("Synthesis")
|
||||||
|
if synthesis_elem is None:
|
||||||
|
return None, None, None
|
||||||
|
|
||||||
|
# 解析硬件组件
|
||||||
|
hardware_elem = synthesis_elem.find("Hardware")
|
||||||
|
hardware = []
|
||||||
|
if hardware_elem is not None:
|
||||||
|
hardware = [{"id": c.get("id"), "type": c.get("type")} for c in hardware_elem.findall("Component")]
|
||||||
|
|
||||||
|
# 解析试剂
|
||||||
|
reagents_elem = synthesis_elem.find("Reagents")
|
||||||
|
reagents = []
|
||||||
|
if reagents_elem is not None:
|
||||||
|
reagents = [{"name": r.get("name"), "role": r.get("role", "")} for r in reagents_elem.findall("Reagent")]
|
||||||
|
|
||||||
|
# 解析程序
|
||||||
|
procedure_elem = synthesis_elem.find("Procedure")
|
||||||
|
if procedure_elem is None:
|
||||||
|
return None, None, None
|
||||||
|
|
||||||
|
flattened_operations = flatten_xdl_procedure(procedure_elem)
|
||||||
|
return hardware, reagents, flattened_operations
|
||||||
|
|
||||||
|
except ET.ParseError as e:
|
||||||
|
raise ValueError(f"Invalid XDL format: {e}")
|
||||||
|
|
||||||
|
|
||||||
|
def convert_xdl_to_dict(xdl_content: str) -> Dict[str, Any]:
|
||||||
|
"""
|
||||||
|
将XDL XML格式转换为标准的字典格式
|
||||||
|
|
||||||
|
Args:
|
||||||
|
xdl_content: XDL XML内容
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
转换结果,包含步骤和器材信息
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
hardware, reagents, flattened_operations = parse_xdl_content(xdl_content)
|
||||||
|
if hardware is None:
|
||||||
|
return {"error": "Failed to parse XDL content", "success": False}
|
||||||
|
|
||||||
|
# 将XDL元素转换为字典格式
|
||||||
|
steps_data = []
|
||||||
|
for elem in flattened_operations:
|
||||||
|
# 转换参数类型
|
||||||
|
parameters = {}
|
||||||
|
for key, val in elem.attrib.items():
|
||||||
|
converted_val = convert_to_type(val)
|
||||||
|
if converted_val is not None:
|
||||||
|
parameters[key] = converted_val
|
||||||
|
|
||||||
|
step_dict = {
|
||||||
|
"operation": elem.tag,
|
||||||
|
"parameters": parameters,
|
||||||
|
"description": elem.get("purpose", f"Operation: {elem.tag}"),
|
||||||
|
}
|
||||||
|
steps_data.append(step_dict)
|
||||||
|
|
||||||
|
# 合并硬件和试剂为统一的labware_info格式
|
||||||
|
labware_data = []
|
||||||
|
labware_data.extend({"id": hw["id"], "type": "hardware", **hw} for hw in hardware)
|
||||||
|
labware_data.extend({"name": reagent["name"], "type": "reagent", **reagent} for reagent in reagents)
|
||||||
|
|
||||||
|
return {
|
||||||
|
"success": True,
|
||||||
|
"steps": steps_data,
|
||||||
|
"labware": labware_data,
|
||||||
|
"message": f"Successfully converted XDL to dict format. Found {len(steps_data)} steps and {len(labware_data)} labware items.",
|
||||||
|
}
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
error_msg = f"XDL conversion failed: {str(e)}"
|
||||||
|
logger.error(error_msg)
|
||||||
|
return {"error": error_msg, "success": False}
|
||||||
|
|
||||||
|
|
||||||
def create_workflow(
|
def create_workflow(
|
||||||
|
|||||||
@@ -74,8 +74,7 @@ class HTTPClient:
|
|||||||
Dict[str, str]: 旧UUID到新UUID的映射关系 {old_uuid: new_uuid}
|
Dict[str, str]: 旧UUID到新UUID的映射关系 {old_uuid: new_uuid}
|
||||||
"""
|
"""
|
||||||
with open(os.path.join(BasicConfig.working_dir, "req_resource_tree_add.json"), "w", encoding="utf-8") as f:
|
with open(os.path.join(BasicConfig.working_dir, "req_resource_tree_add.json"), "w", encoding="utf-8") as f:
|
||||||
payload = {"nodes": [x for xs in resources.dump() for x in xs], "mount_uuid": mount_uuid}
|
f.write(json.dumps({"nodes": [x for xs in resources.dump() for x in xs], "mount_uuid": mount_uuid}, indent=4))
|
||||||
f.write(json.dumps(payload, indent=4))
|
|
||||||
# 从序列化数据中提取所有节点的UUID(保存旧UUID)
|
# 从序列化数据中提取所有节点的UUID(保存旧UUID)
|
||||||
old_uuids = {n.res_content.uuid: n for n in resources.all_nodes}
|
old_uuids = {n.res_content.uuid: n for n in resources.all_nodes}
|
||||||
if not self.initialized or first_add:
|
if not self.initialized or first_add:
|
||||||
@@ -334,67 +333,6 @@ class HTTPClient:
|
|||||||
logger.error(f"响应内容: {response.text}")
|
logger.error(f"响应内容: {response.text}")
|
||||||
return None
|
return None
|
||||||
|
|
||||||
def workflow_import(
|
|
||||||
self,
|
|
||||||
name: str,
|
|
||||||
workflow_uuid: str,
|
|
||||||
workflow_name: str,
|
|
||||||
nodes: List[Dict[str, Any]],
|
|
||||||
edges: List[Dict[str, Any]],
|
|
||||||
tags: Optional[List[str]] = None,
|
|
||||||
published: bool = False,
|
|
||||||
) -> Dict[str, Any]:
|
|
||||||
"""
|
|
||||||
导入工作流到服务器
|
|
||||||
|
|
||||||
Args:
|
|
||||||
name: 工作流名称(顶层)
|
|
||||||
workflow_uuid: 工作流UUID
|
|
||||||
workflow_name: 工作流名称(data内部)
|
|
||||||
nodes: 工作流节点列表
|
|
||||||
edges: 工作流边列表
|
|
||||||
tags: 工作流标签列表,默认为空列表
|
|
||||||
published: 是否发布工作流,默认为False
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
Dict: API响应数据,包含 code 和 data (uuid, name)
|
|
||||||
"""
|
|
||||||
# target_lab_uuid 暂时使用默认值,后续由后端根据 ak/sk 获取
|
|
||||||
payload = {
|
|
||||||
"target_lab_uuid": "28c38bb0-63f6-4352-b0d8-b5b8eb1766d5",
|
|
||||||
"name": name,
|
|
||||||
"data": {
|
|
||||||
"workflow_uuid": workflow_uuid,
|
|
||||||
"workflow_name": workflow_name,
|
|
||||||
"nodes": nodes,
|
|
||||||
"edges": edges,
|
|
||||||
"tags": tags if tags is not None else [],
|
|
||||||
"published": published,
|
|
||||||
},
|
|
||||||
}
|
|
||||||
# 保存请求到文件
|
|
||||||
with open(os.path.join(BasicConfig.working_dir, "req_workflow_upload.json"), "w", encoding="utf-8") as f:
|
|
||||||
f.write(json.dumps(payload, indent=4, ensure_ascii=False))
|
|
||||||
|
|
||||||
response = requests.post(
|
|
||||||
f"{self.remote_addr}/lab/workflow/owner/import",
|
|
||||||
json=payload,
|
|
||||||
headers={"Authorization": f"Lab {self.auth}"},
|
|
||||||
timeout=60,
|
|
||||||
)
|
|
||||||
# 保存响应到文件
|
|
||||||
with open(os.path.join(BasicConfig.working_dir, "res_workflow_upload.json"), "w", encoding="utf-8") as f:
|
|
||||||
f.write(f"{response.status_code}" + "\n" + response.text)
|
|
||||||
|
|
||||||
if response.status_code == 200:
|
|
||||||
res = response.json()
|
|
||||||
if "code" in res and res["code"] != 0:
|
|
||||||
logger.error(f"导入工作流失败: {response.text}")
|
|
||||||
return res
|
|
||||||
else:
|
|
||||||
logger.error(f"导入工作流失败: {response.status_code}, {response.text}")
|
|
||||||
return {"code": response.status_code, "message": response.text}
|
|
||||||
|
|
||||||
|
|
||||||
# 创建默认客户端实例
|
# 创建默认客户端实例
|
||||||
http_client = HTTPClient()
|
http_client = HTTPClient()
|
||||||
|
|||||||
@@ -439,7 +439,7 @@ class MessageProcessor:
|
|||||||
self.connected = True
|
self.connected = True
|
||||||
self.reconnect_count = 0
|
self.reconnect_count = 0
|
||||||
|
|
||||||
logger.trace(f"[MessageProcessor] Connected to {self.websocket_url}")
|
logger.info(f"[MessageProcessor] Connected to {self.websocket_url}")
|
||||||
|
|
||||||
# 启动发送协程
|
# 启动发送协程
|
||||||
send_task = asyncio.create_task(self._send_handler())
|
send_task = asyncio.create_task(self._send_handler())
|
||||||
@@ -517,7 +517,7 @@ class MessageProcessor:
|
|||||||
|
|
||||||
async def _send_handler(self):
|
async def _send_handler(self):
|
||||||
"""处理发送队列中的消息"""
|
"""处理发送队列中的消息"""
|
||||||
logger.trace("[MessageProcessor] Send handler started")
|
logger.debug("[MessageProcessor] Send handler started")
|
||||||
|
|
||||||
try:
|
try:
|
||||||
while self.connected and self.websocket:
|
while self.connected and self.websocket:
|
||||||
@@ -1026,7 +1026,7 @@ class QueueProcessor:
|
|||||||
|
|
||||||
def _run(self):
|
def _run(self):
|
||||||
"""运行队列处理主循环"""
|
"""运行队列处理主循环"""
|
||||||
logger.trace("[QueueProcessor] Queue processor started")
|
logger.debug("[QueueProcessor] Queue processor started")
|
||||||
|
|
||||||
while self.is_running:
|
while self.is_running:
|
||||||
try:
|
try:
|
||||||
@@ -1236,6 +1236,7 @@ class WebSocketClient(BaseCommunicationClient):
|
|||||||
else:
|
else:
|
||||||
url = f"{scheme}://{parsed.netloc}/api/v1/ws/schedule"
|
url = f"{scheme}://{parsed.netloc}/api/v1/ws/schedule"
|
||||||
|
|
||||||
|
logger.debug(f"[WebSocketClient] URL: {url}")
|
||||||
return url
|
return url
|
||||||
|
|
||||||
def start(self) -> None:
|
def start(self) -> None:
|
||||||
@@ -1248,11 +1249,13 @@ class WebSocketClient(BaseCommunicationClient):
|
|||||||
logger.error("[WebSocketClient] WebSocket URL not configured")
|
logger.error("[WebSocketClient] WebSocket URL not configured")
|
||||||
return
|
return
|
||||||
|
|
||||||
|
logger.info(f"[WebSocketClient] Starting connection to {self.websocket_url}")
|
||||||
|
|
||||||
# 启动两个核心线程
|
# 启动两个核心线程
|
||||||
self.message_processor.start()
|
self.message_processor.start()
|
||||||
self.queue_processor.start()
|
self.queue_processor.start()
|
||||||
|
|
||||||
logger.trace("[WebSocketClient] All threads started")
|
logger.info("[WebSocketClient] All threads started")
|
||||||
|
|
||||||
def stop(self) -> None:
|
def stop(self) -> None:
|
||||||
"""停止WebSocket客户端"""
|
"""停止WebSocket客户端"""
|
||||||
|
|||||||
@@ -9743,34 +9743,7 @@ liquid_handler.prcxi:
|
|||||||
touch_tip: false
|
touch_tip: false
|
||||||
use_channels:
|
use_channels:
|
||||||
- 0
|
- 0
|
||||||
handles:
|
handles: {}
|
||||||
input:
|
|
||||||
- data_key: sources
|
|
||||||
data_source: handle
|
|
||||||
data_type: resource
|
|
||||||
handler_key: sources_identifier
|
|
||||||
label: 待移动液体
|
|
||||||
- data_key: targets
|
|
||||||
data_source: handle
|
|
||||||
data_type: resource
|
|
||||||
handler_key: targets_identifier
|
|
||||||
label: 转移目标
|
|
||||||
- data_key: tip_rack
|
|
||||||
data_source: handle
|
|
||||||
data_type: resource
|
|
||||||
handler_key: tip_rack_identifier
|
|
||||||
label: 墙头盒
|
|
||||||
output:
|
|
||||||
- data_key: liquid
|
|
||||||
data_source: handle
|
|
||||||
data_type: resource
|
|
||||||
handler_key: sources_out
|
|
||||||
label: sources
|
|
||||||
- data_key: liquid
|
|
||||||
data_source: executor
|
|
||||||
data_type: resource
|
|
||||||
handler_key: targets_out
|
|
||||||
label: targets
|
|
||||||
placeholder_keys:
|
placeholder_keys:
|
||||||
sources: unilabos_resources
|
sources: unilabos_resources
|
||||||
targets: unilabos_resources
|
targets: unilabos_resources
|
||||||
|
|||||||
File diff suppressed because it is too large
Load Diff
@@ -163,7 +163,6 @@ class Registry:
|
|||||||
"res_id": "unilabos_resources", # 将当前实验室的全部物料id作为下拉框可选择
|
"res_id": "unilabos_resources", # 将当前实验室的全部物料id作为下拉框可选择
|
||||||
"device_id": "unilabos_devices", # 将当前实验室的全部设备id作为下拉框可选择
|
"device_id": "unilabos_devices", # 将当前实验室的全部设备id作为下拉框可选择
|
||||||
"parent": "unilabos_nodes", # 将当前实验室的设备/物料作为下拉框可选择
|
"parent": "unilabos_nodes", # 将当前实验室的设备/物料作为下拉框可选择
|
||||||
"class_name": "unilabos_class",
|
|
||||||
},
|
},
|
||||||
},
|
},
|
||||||
"test_latency": {
|
"test_latency": {
|
||||||
@@ -266,7 +265,7 @@ class Registry:
|
|||||||
abs_path = Path(path).absolute()
|
abs_path = Path(path).absolute()
|
||||||
resource_path = abs_path / "resources"
|
resource_path = abs_path / "resources"
|
||||||
files = list(resource_path.glob("*/*.yaml"))
|
files = list(resource_path.glob("*/*.yaml"))
|
||||||
logger.trace(f"[UniLab Registry] load resources? {resource_path.exists()}, total: {len(files)}")
|
logger.debug(f"[UniLab Registry] resources: {resource_path.exists()}, total: {len(files)}")
|
||||||
current_resource_number = len(self.resource_type_registry) + 1
|
current_resource_number = len(self.resource_type_registry) + 1
|
||||||
for i, file in enumerate(files):
|
for i, file in enumerate(files):
|
||||||
with open(file, encoding="utf-8", mode="r") as f:
|
with open(file, encoding="utf-8", mode="r") as f:
|
||||||
|
|||||||
@@ -42,7 +42,7 @@ def canonicalize_nodes_data(
|
|||||||
Returns:
|
Returns:
|
||||||
ResourceTreeSet: 标准化后的资源树集合
|
ResourceTreeSet: 标准化后的资源树集合
|
||||||
"""
|
"""
|
||||||
print_status(f"{len(nodes)} Resources loaded", "info")
|
print_status(f"{len(nodes)} Resources loaded:", "info")
|
||||||
|
|
||||||
# 第一步:基本预处理(处理graphml的label字段)
|
# 第一步:基本预处理(处理graphml的label字段)
|
||||||
outer_host_node_id = None
|
outer_host_node_id = None
|
||||||
@@ -597,8 +597,6 @@ def resource_plr_to_ulab(resource_plr: "ResourcePLR", parent_name: str = None, w
|
|||||||
"tube": "tube",
|
"tube": "tube",
|
||||||
"bottle_carrier": "bottle_carrier",
|
"bottle_carrier": "bottle_carrier",
|
||||||
"plate_adapter": "plate_adapter",
|
"plate_adapter": "plate_adapter",
|
||||||
"electrode_sheet": "electrode_sheet",
|
|
||||||
"material_hole": "material_hole",
|
|
||||||
}
|
}
|
||||||
if source in replace_info:
|
if source in replace_info:
|
||||||
return replace_info[source]
|
return replace_info[source]
|
||||||
|
|||||||
@@ -66,8 +66,8 @@ class ResourceDict(BaseModel):
|
|||||||
klass: str = Field(alias="class", description="Resource class name")
|
klass: str = Field(alias="class", description="Resource class name")
|
||||||
pose: ResourceDictPosition = Field(description="Resource position", default_factory=ResourceDictPosition)
|
pose: ResourceDictPosition = Field(description="Resource position", default_factory=ResourceDictPosition)
|
||||||
config: Dict[str, Any] = Field(description="Resource configuration")
|
config: Dict[str, Any] = Field(description="Resource configuration")
|
||||||
data: Dict[str, Any] = Field(description="Resource data, eg: container liquid data")
|
data: Dict[str, Any] = Field(description="Resource data")
|
||||||
extra: Dict[str, Any] = Field(description="Extra data, eg: slot index")
|
extra: Dict[str, Any] = Field(description="Extra data")
|
||||||
|
|
||||||
@field_serializer("parent_uuid")
|
@field_serializer("parent_uuid")
|
||||||
def _serialize_parent(self, parent_uuid: Optional["ResourceDict"]):
|
def _serialize_parent(self, parent_uuid: Optional["ResourceDict"]):
|
||||||
|
|||||||
@@ -1319,32 +1319,19 @@ class BaseROS2DeviceNode(Node, Generic[T]):
|
|||||||
resource_inputs = action_kwargs[k] if is_sequence else [action_kwargs[k]]
|
resource_inputs = action_kwargs[k] if is_sequence else [action_kwargs[k]]
|
||||||
|
|
||||||
# 批量查询资源
|
# 批量查询资源
|
||||||
queried_resources: list = [None] * len(resource_inputs)
|
queried_resources = []
|
||||||
uuid_indices: list[tuple[int, str, dict]] = [] # (index, uuid, resource_data)
|
for resource_data in resource_inputs:
|
||||||
|
|
||||||
# 第一遍:处理没有uuid的资源,收集有uuid的资源信息
|
|
||||||
for idx, resource_data in enumerate(resource_inputs):
|
|
||||||
unilabos_uuid = resource_data.get("data", {}).get("unilabos_uuid")
|
unilabos_uuid = resource_data.get("data", {}).get("unilabos_uuid")
|
||||||
if unilabos_uuid is None:
|
if unilabos_uuid is None:
|
||||||
plr_resource = await self.get_resource_with_dir(
|
plr_resource = await self.get_resource_with_dir(
|
||||||
resource_id=resource_data["id"], with_children=True
|
resource_id=resource_data["id"], with_children=True
|
||||||
)
|
)
|
||||||
if "sample_id" in resource_data:
|
|
||||||
plr_resource.unilabos_extra["sample_uuid"] = resource_data["sample_id"]
|
|
||||||
queried_resources[idx] = plr_resource
|
|
||||||
else:
|
else:
|
||||||
uuid_indices.append((idx, unilabos_uuid, resource_data))
|
resource_tree = await self.get_resource([unilabos_uuid])
|
||||||
|
plr_resource = resource_tree.to_plr_resources()[0]
|
||||||
# 第二遍:批量查询有uuid的资源
|
if "sample_id" in resource_data:
|
||||||
if uuid_indices:
|
plr_resource.unilabos_extra["sample_uuid"] = resource_data["sample_id"]
|
||||||
uuids = [item[1] for item in uuid_indices]
|
queried_resources.append(plr_resource)
|
||||||
resource_tree = await self.get_resource(uuids)
|
|
||||||
plr_resources = resource_tree.to_plr_resources()
|
|
||||||
for i, (idx, _, resource_data) in enumerate(uuid_indices):
|
|
||||||
plr_resource = plr_resources[i]
|
|
||||||
if "sample_id" in resource_data:
|
|
||||||
plr_resource.unilabos_extra["sample_uuid"] = resource_data["sample_id"]
|
|
||||||
queried_resources[idx] = plr_resource
|
|
||||||
|
|
||||||
self.lab_logger().debug(f"资源查询结果: 共 {len(queried_resources)} 个资源")
|
self.lab_logger().debug(f"资源查询结果: 共 {len(queried_resources)} 个资源")
|
||||||
|
|
||||||
|
|||||||
@@ -808,7 +808,6 @@ class HostNode(BaseROS2DeviceNode):
|
|||||||
goal_msg = convert_to_ros_msg(action_client._action_type.Goal(), action_kwargs)
|
goal_msg = convert_to_ros_msg(action_client._action_type.Goal(), action_kwargs)
|
||||||
|
|
||||||
self.lab_logger().info(f"[Host Node] Sending goal for {action_id}: {str(goal_msg)[:1000]}")
|
self.lab_logger().info(f"[Host Node] Sending goal for {action_id}: {str(goal_msg)[:1000]}")
|
||||||
self.lab_logger().trace(f"[Host Node] Sending goal for {action_id}: {action_kwargs}")
|
|
||||||
self.lab_logger().trace(f"[Host Node] Sending goal for {action_id}: {goal_msg}")
|
self.lab_logger().trace(f"[Host Node] Sending goal for {action_id}: {goal_msg}")
|
||||||
action_client.wait_for_server()
|
action_client.wait_for_server()
|
||||||
goal_uuid_obj = UUID(uuid=list(u.bytes))
|
goal_uuid_obj = UUID(uuid=list(u.bytes))
|
||||||
|
|||||||
@@ -1,547 +0,0 @@
|
|||||||
import re
|
|
||||||
import uuid
|
|
||||||
|
|
||||||
import networkx as nx
|
|
||||||
from networkx.drawing.nx_agraph import to_agraph
|
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
from typing import Dict, List, Any, Tuple, Optional
|
|
||||||
|
|
||||||
Json = Dict[str, Any]
|
|
||||||
|
|
||||||
# ---------------- Graph ----------------
|
|
||||||
|
|
||||||
|
|
||||||
class WorkflowGraph:
|
|
||||||
"""简单的有向图实现:使用 params 单层参数;inputs 内含连线;支持 node-link 导出"""
|
|
||||||
|
|
||||||
def __init__(self):
|
|
||||||
self.nodes: Dict[str, Dict[str, Any]] = {}
|
|
||||||
self.edges: List[Dict[str, Any]] = []
|
|
||||||
|
|
||||||
def add_node(self, node_id: str, **attrs):
|
|
||||||
self.nodes[node_id] = attrs
|
|
||||||
|
|
||||||
def add_edge(self, source: str, target: str, **attrs):
|
|
||||||
# 将 source_port/target_port 映射为服务端期望的 source_handle_key/target_handle_key
|
|
||||||
source_handle_key = attrs.pop("source_port", "") or attrs.pop("source_handle_key", "")
|
|
||||||
target_handle_key = attrs.pop("target_port", "") or attrs.pop("target_handle_key", "")
|
|
||||||
|
|
||||||
edge = {
|
|
||||||
"source": source,
|
|
||||||
"target": target,
|
|
||||||
"source_node_uuid": source,
|
|
||||||
"target_node_uuid": target,
|
|
||||||
"source_handle_key": source_handle_key,
|
|
||||||
"source_handle_io": attrs.pop("source_handle_io", "source"),
|
|
||||||
"target_handle_key": target_handle_key,
|
|
||||||
"target_handle_io": attrs.pop("target_handle_io", "target"),
|
|
||||||
**attrs,
|
|
||||||
}
|
|
||||||
self.edges.append(edge)
|
|
||||||
|
|
||||||
def _materialize_wiring_into_inputs(
|
|
||||||
self,
|
|
||||||
obj: Any,
|
|
||||||
inputs: Dict[str, Any],
|
|
||||||
variable_sources: Dict[str, Dict[str, Any]],
|
|
||||||
target_node_id: str,
|
|
||||||
base_path: List[str],
|
|
||||||
):
|
|
||||||
has_var = False
|
|
||||||
|
|
||||||
def walk(node: Any, path: List[str]):
|
|
||||||
nonlocal has_var
|
|
||||||
if isinstance(node, dict):
|
|
||||||
if "__var__" in node:
|
|
||||||
has_var = True
|
|
||||||
varname = node["__var__"]
|
|
||||||
placeholder = f"${{{varname}}}"
|
|
||||||
src = variable_sources.get(varname)
|
|
||||||
if src:
|
|
||||||
key = ".".join(path) # e.g. "params.foo.bar.0"
|
|
||||||
inputs[key] = {"node": src["node_id"], "output": src.get("output_name", "result")}
|
|
||||||
self.add_edge(
|
|
||||||
str(src["node_id"]),
|
|
||||||
target_node_id,
|
|
||||||
source_handle_io=src.get("output_name", "result"),
|
|
||||||
target_handle_io=key,
|
|
||||||
)
|
|
||||||
return placeholder
|
|
||||||
return {k: walk(v, path + [k]) for k, v in node.items()}
|
|
||||||
if isinstance(node, list):
|
|
||||||
return [walk(v, path + [str(i)]) for i, v in enumerate(node)]
|
|
||||||
return node
|
|
||||||
|
|
||||||
replaced = walk(obj, base_path[:])
|
|
||||||
return replaced, has_var
|
|
||||||
|
|
||||||
def add_workflow_node(
|
|
||||||
self,
|
|
||||||
node_id: int,
|
|
||||||
*,
|
|
||||||
device_key: Optional[str] = None, # 实例名,如 "ser"
|
|
||||||
resource_name: Optional[str] = None, # registry key(原 device_class)
|
|
||||||
module: Optional[str] = None,
|
|
||||||
template_name: Optional[str] = None, # 动作/模板名(原 action_key)
|
|
||||||
params: Dict[str, Any],
|
|
||||||
variable_sources: Dict[str, Dict[str, Any]],
|
|
||||||
add_ready_if_no_vars: bool = True,
|
|
||||||
prev_node_id: Optional[int] = None,
|
|
||||||
**extra_attrs,
|
|
||||||
) -> None:
|
|
||||||
"""添加工作流节点:params 单层;自动变量连线与 ready 串联;支持附加属性"""
|
|
||||||
node_id_str = str(node_id)
|
|
||||||
inputs: Dict[str, Any] = {}
|
|
||||||
|
|
||||||
params, has_var = self._materialize_wiring_into_inputs(
|
|
||||||
params, inputs, variable_sources, node_id_str, base_path=["params"]
|
|
||||||
)
|
|
||||||
|
|
||||||
if add_ready_if_no_vars and not has_var:
|
|
||||||
last_id = str(prev_node_id) if prev_node_id is not None else "-1"
|
|
||||||
inputs["ready"] = {"node": int(last_id), "output": "ready"}
|
|
||||||
self.add_edge(last_id, node_id_str, source_handle_io="ready", target_handle_io="ready")
|
|
||||||
|
|
||||||
node_obj = {
|
|
||||||
"device_key": device_key,
|
|
||||||
"resource_name": resource_name, # ✅ 新名字
|
|
||||||
"module": module,
|
|
||||||
"template_name": template_name, # ✅ 新名字
|
|
||||||
"params": params,
|
|
||||||
"inputs": inputs,
|
|
||||||
}
|
|
||||||
node_obj.update(extra_attrs or {})
|
|
||||||
self.add_node(node_id_str, parameters=node_obj)
|
|
||||||
|
|
||||||
# 顺序工作流导出(连线在 inputs,不返回 edges)
|
|
||||||
def to_dict(self) -> List[Dict[str, Any]]:
|
|
||||||
result = []
|
|
||||||
for node_id, attrs in self.nodes.items():
|
|
||||||
node = {"uuid": node_id}
|
|
||||||
params = dict(attrs.get("parameters", {}) or {})
|
|
||||||
flat = {k: v for k, v in attrs.items() if k != "parameters"}
|
|
||||||
flat.update(params)
|
|
||||||
node.update(flat)
|
|
||||||
result.append(node)
|
|
||||||
return sorted(result, key=lambda n: int(n["uuid"]) if str(n["uuid"]).isdigit() else n["uuid"])
|
|
||||||
|
|
||||||
# node-link 导出(含 edges)
|
|
||||||
def to_node_link_dict(self) -> Dict[str, Any]:
|
|
||||||
nodes_list = []
|
|
||||||
for node_id, attrs in self.nodes.items():
|
|
||||||
node_attrs = attrs.copy()
|
|
||||||
params = node_attrs.pop("parameters", {}) or {}
|
|
||||||
node_attrs.update(params)
|
|
||||||
nodes_list.append({"uuid": node_id, **node_attrs})
|
|
||||||
return {
|
|
||||||
"directed": True,
|
|
||||||
"multigraph": False,
|
|
||||||
"graph": {},
|
|
||||||
"nodes": nodes_list,
|
|
||||||
"edges": self.edges,
|
|
||||||
"links": self.edges,
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
def refactor_data(
|
|
||||||
data: List[Dict[str, Any]],
|
|
||||||
action_resource_mapping: Optional[Dict[str, str]] = None,
|
|
||||||
) -> List[Dict[str, Any]]:
|
|
||||||
"""统一的数据重构函数,根据操作类型自动选择模板
|
|
||||||
|
|
||||||
Args:
|
|
||||||
data: 原始步骤数据列表
|
|
||||||
action_resource_mapping: action 到 resource_name 的映射字典,可选
|
|
||||||
"""
|
|
||||||
refactored_data = []
|
|
||||||
|
|
||||||
# 定义操作映射,包含生物实验和有机化学的所有操作
|
|
||||||
OPERATION_MAPPING = {
|
|
||||||
# 生物实验操作
|
|
||||||
"transfer_liquid": "transfer_liquid",
|
|
||||||
"transfer": "transfer",
|
|
||||||
"incubation": "incubation",
|
|
||||||
"move_labware": "move_labware",
|
|
||||||
"oscillation": "oscillation",
|
|
||||||
# 有机化学操作
|
|
||||||
"HeatChillToTemp": "HeatChillProtocol",
|
|
||||||
"StopHeatChill": "HeatChillStopProtocol",
|
|
||||||
"StartHeatChill": "HeatChillStartProtocol",
|
|
||||||
"HeatChill": "HeatChillProtocol",
|
|
||||||
"Dissolve": "DissolveProtocol",
|
|
||||||
"Transfer": "TransferProtocol",
|
|
||||||
"Evaporate": "EvaporateProtocol",
|
|
||||||
"Recrystallize": "RecrystallizeProtocol",
|
|
||||||
"Filter": "FilterProtocol",
|
|
||||||
"Dry": "DryProtocol",
|
|
||||||
"Add": "AddProtocol",
|
|
||||||
}
|
|
||||||
|
|
||||||
UNSUPPORTED_OPERATIONS = ["Purge", "Wait", "Stir", "ResetHandling"]
|
|
||||||
|
|
||||||
for step in data:
|
|
||||||
operation = step.get("action")
|
|
||||||
if not operation or operation in UNSUPPORTED_OPERATIONS:
|
|
||||||
continue
|
|
||||||
|
|
||||||
# 处理重复操作
|
|
||||||
if operation == "Repeat":
|
|
||||||
times = step.get("times", step.get("parameters", {}).get("times", 1))
|
|
||||||
sub_steps = step.get("steps", step.get("parameters", {}).get("steps", []))
|
|
||||||
for i in range(int(times)):
|
|
||||||
sub_data = refactor_data(sub_steps, action_resource_mapping)
|
|
||||||
refactored_data.extend(sub_data)
|
|
||||||
continue
|
|
||||||
|
|
||||||
# 获取模板名称
|
|
||||||
template_name = OPERATION_MAPPING.get(operation)
|
|
||||||
if not template_name:
|
|
||||||
# 自动推断模板类型
|
|
||||||
if operation.lower() in ["transfer", "incubation", "move_labware", "oscillation"]:
|
|
||||||
template_name = f"biomek-{operation}"
|
|
||||||
else:
|
|
||||||
template_name = f"{operation}Protocol"
|
|
||||||
|
|
||||||
# 获取 resource_name
|
|
||||||
resource_name = f"device.{operation.lower()}"
|
|
||||||
if action_resource_mapping:
|
|
||||||
resource_name = action_resource_mapping.get(operation, resource_name)
|
|
||||||
|
|
||||||
# 获取步骤编号,生成 name 字段
|
|
||||||
step_number = step.get("step_number")
|
|
||||||
name = f"Step {step_number}" if step_number is not None else None
|
|
||||||
|
|
||||||
# 创建步骤数据
|
|
||||||
step_data = {
|
|
||||||
"template_name": template_name,
|
|
||||||
"resource_name": resource_name,
|
|
||||||
"description": step.get("description", step.get("purpose", f"{operation} operation")),
|
|
||||||
"lab_node_type": "Device",
|
|
||||||
"param": step.get("parameters", step.get("action_args", {})),
|
|
||||||
"footer": f"{template_name}-{resource_name}",
|
|
||||||
}
|
|
||||||
if name:
|
|
||||||
step_data["name"] = name
|
|
||||||
refactored_data.append(step_data)
|
|
||||||
|
|
||||||
return refactored_data
|
|
||||||
|
|
||||||
|
|
||||||
def build_protocol_graph(
|
|
||||||
labware_info: List[Dict[str, Any]],
|
|
||||||
protocol_steps: List[Dict[str, Any]],
|
|
||||||
workstation_name: str,
|
|
||||||
action_resource_mapping: Optional[Dict[str, str]] = None,
|
|
||||||
) -> WorkflowGraph:
|
|
||||||
"""统一的协议图构建函数,根据设备类型自动选择构建逻辑
|
|
||||||
|
|
||||||
Args:
|
|
||||||
labware_info: labware 信息字典
|
|
||||||
protocol_steps: 协议步骤列表
|
|
||||||
workstation_name: 工作站名称
|
|
||||||
action_resource_mapping: action 到 resource_name 的映射字典,可选
|
|
||||||
"""
|
|
||||||
G = WorkflowGraph()
|
|
||||||
resource_last_writer = {}
|
|
||||||
|
|
||||||
protocol_steps = refactor_data(protocol_steps, action_resource_mapping)
|
|
||||||
# 有机化学&移液站协议图构建
|
|
||||||
WORKSTATION_ID = workstation_name
|
|
||||||
|
|
||||||
# 为所有labware创建资源节点
|
|
||||||
res_index = 0
|
|
||||||
for labware_id, item in labware_info.items():
|
|
||||||
# item_id = item.get("id") or item.get("name", f"item_{uuid.uuid4()}")
|
|
||||||
node_id = str(uuid.uuid4())
|
|
||||||
|
|
||||||
# 判断节点类型
|
|
||||||
if "Rack" in str(labware_id) or "Tip" in str(labware_id):
|
|
||||||
lab_node_type = "Labware"
|
|
||||||
description = f"Prepare Labware: {labware_id}"
|
|
||||||
liquid_type = []
|
|
||||||
liquid_volume = []
|
|
||||||
elif item.get("type") == "hardware" or "reactor" in str(labware_id).lower():
|
|
||||||
if "reactor" not in str(labware_id).lower():
|
|
||||||
continue
|
|
||||||
lab_node_type = "Sample"
|
|
||||||
description = f"Prepare Reactor: {labware_id}"
|
|
||||||
liquid_type = []
|
|
||||||
liquid_volume = []
|
|
||||||
else:
|
|
||||||
lab_node_type = "Reagent"
|
|
||||||
description = f"Add Reagent to Flask: {labware_id}"
|
|
||||||
liquid_type = [labware_id]
|
|
||||||
liquid_volume = [1e5]
|
|
||||||
|
|
||||||
res_index += 1
|
|
||||||
G.add_node(
|
|
||||||
node_id,
|
|
||||||
template_name="create_resource",
|
|
||||||
resource_name="host_node",
|
|
||||||
name=f"Res {res_index}",
|
|
||||||
description=description,
|
|
||||||
lab_node_type=lab_node_type,
|
|
||||||
footer="create_resource-host_node",
|
|
||||||
param={
|
|
||||||
"res_id": labware_id,
|
|
||||||
"device_id": WORKSTATION_ID,
|
|
||||||
"class_name": "container",
|
|
||||||
"parent": WORKSTATION_ID,
|
|
||||||
"bind_locations": {"x": 0.0, "y": 0.0, "z": 0.0},
|
|
||||||
"liquid_input_slot": [-1],
|
|
||||||
"liquid_type": liquid_type,
|
|
||||||
"liquid_volume": liquid_volume,
|
|
||||||
"slot_on_deck": "",
|
|
||||||
},
|
|
||||||
)
|
|
||||||
resource_last_writer[labware_id] = f"{node_id}:labware"
|
|
||||||
|
|
||||||
last_control_node_id = None
|
|
||||||
|
|
||||||
# 处理协议步骤
|
|
||||||
for step in protocol_steps:
|
|
||||||
node_id = str(uuid.uuid4())
|
|
||||||
G.add_node(node_id, **step)
|
|
||||||
|
|
||||||
# 控制流
|
|
||||||
if last_control_node_id is not None:
|
|
||||||
G.add_edge(last_control_node_id, node_id, source_port="ready", target_port="ready")
|
|
||||||
last_control_node_id = node_id
|
|
||||||
|
|
||||||
# 物料流
|
|
||||||
params = step.get("param", {})
|
|
||||||
input_resources_possible_names = [
|
|
||||||
"vessel",
|
|
||||||
"to_vessel",
|
|
||||||
"from_vessel",
|
|
||||||
"reagent",
|
|
||||||
"solvent",
|
|
||||||
"compound",
|
|
||||||
"sources",
|
|
||||||
"targets",
|
|
||||||
]
|
|
||||||
|
|
||||||
for target_port in input_resources_possible_names:
|
|
||||||
resource_name = params.get(target_port)
|
|
||||||
if resource_name and resource_name in resource_last_writer:
|
|
||||||
source_node, source_port = resource_last_writer[resource_name].split(":")
|
|
||||||
G.add_edge(source_node, node_id, source_port=source_port, target_port=target_port)
|
|
||||||
|
|
||||||
output_resources = {
|
|
||||||
"vessel_out": params.get("vessel"),
|
|
||||||
"from_vessel_out": params.get("from_vessel"),
|
|
||||||
"to_vessel_out": params.get("to_vessel"),
|
|
||||||
"filtrate_out": params.get("filtrate_vessel"),
|
|
||||||
"reagent": params.get("reagent"),
|
|
||||||
"solvent": params.get("solvent"),
|
|
||||||
"compound": params.get("compound"),
|
|
||||||
"sources_out": params.get("sources"),
|
|
||||||
"targets_out": params.get("targets"),
|
|
||||||
}
|
|
||||||
|
|
||||||
for source_port, resource_name in output_resources.items():
|
|
||||||
if resource_name:
|
|
||||||
resource_last_writer[resource_name] = f"{node_id}:{source_port}"
|
|
||||||
|
|
||||||
return G
|
|
||||||
|
|
||||||
|
|
||||||
def draw_protocol_graph(protocol_graph: WorkflowGraph, output_path: str):
|
|
||||||
"""
|
|
||||||
(辅助功能) 使用 networkx 和 matplotlib 绘制协议工作流图,用于可视化。
|
|
||||||
"""
|
|
||||||
if not protocol_graph:
|
|
||||||
print("Cannot draw graph: Graph object is empty.")
|
|
||||||
return
|
|
||||||
|
|
||||||
G = nx.DiGraph()
|
|
||||||
|
|
||||||
for node_id, attrs in protocol_graph.nodes.items():
|
|
||||||
label = attrs.get("description", attrs.get("template_name", node_id[:8]))
|
|
||||||
G.add_node(node_id, label=label, **attrs)
|
|
||||||
|
|
||||||
for edge in protocol_graph.edges:
|
|
||||||
G.add_edge(edge["source"], edge["target"])
|
|
||||||
|
|
||||||
plt.figure(figsize=(20, 15))
|
|
||||||
try:
|
|
||||||
pos = nx.nx_agraph.graphviz_layout(G, prog="dot")
|
|
||||||
except Exception:
|
|
||||||
pos = nx.shell_layout(G) # Fallback layout
|
|
||||||
|
|
||||||
node_labels = {node: data["label"] for node, data in G.nodes(data=True)}
|
|
||||||
nx.draw(
|
|
||||||
G,
|
|
||||||
pos,
|
|
||||||
with_labels=False,
|
|
||||||
node_size=2500,
|
|
||||||
node_color="skyblue",
|
|
||||||
node_shape="o",
|
|
||||||
edge_color="gray",
|
|
||||||
width=1.5,
|
|
||||||
arrowsize=15,
|
|
||||||
)
|
|
||||||
nx.draw_networkx_labels(G, pos, labels=node_labels, font_size=8, font_weight="bold")
|
|
||||||
|
|
||||||
plt.title("Chemical Protocol Workflow Graph", size=15)
|
|
||||||
plt.savefig(output_path, dpi=300, bbox_inches="tight")
|
|
||||||
plt.close()
|
|
||||||
print(f" - Visualization saved to '{output_path}'")
|
|
||||||
|
|
||||||
|
|
||||||
COMPASS = {"n", "e", "s", "w", "ne", "nw", "se", "sw", "c"}
|
|
||||||
|
|
||||||
|
|
||||||
def _is_compass(port: str) -> bool:
|
|
||||||
return isinstance(port, str) and port.lower() in COMPASS
|
|
||||||
|
|
||||||
|
|
||||||
def draw_protocol_graph_with_ports(protocol_graph, output_path: str, rankdir: str = "LR"):
|
|
||||||
"""
|
|
||||||
使用 Graphviz 端口语法绘制协议工作流图。
|
|
||||||
- 若边上的 source_port/target_port 是 compass(n/e/s/w/...),直接用 compass。
|
|
||||||
- 否则自动为节点创建 record 形状并定义命名端口 <portname>。
|
|
||||||
最终由 PyGraphviz 渲染并输出到 output_path(后缀决定格式,如 .png/.svg/.pdf)。
|
|
||||||
"""
|
|
||||||
if not protocol_graph:
|
|
||||||
print("Cannot draw graph: Graph object is empty.")
|
|
||||||
return
|
|
||||||
|
|
||||||
# 1) 先用 networkx 搭建有向图,保留端口属性
|
|
||||||
G = nx.DiGraph()
|
|
||||||
for node_id, attrs in protocol_graph.nodes.items():
|
|
||||||
label = attrs.get("description", attrs.get("template_name", node_id[:8]))
|
|
||||||
# 保留一个干净的“中心标签”,用于放在 record 的中间槽
|
|
||||||
G.add_node(node_id, _core_label=str(label), **{k: v for k, v in attrs.items() if k not in ("label",)})
|
|
||||||
|
|
||||||
edges_data = []
|
|
||||||
in_ports_by_node = {} # 收集命名输入端口
|
|
||||||
out_ports_by_node = {} # 收集命名输出端口
|
|
||||||
|
|
||||||
for edge in protocol_graph.edges:
|
|
||||||
u = edge["source"]
|
|
||||||
v = edge["target"]
|
|
||||||
sp = edge.get("source_handle_key") or edge.get("source_port")
|
|
||||||
tp = edge.get("target_handle_key") or edge.get("target_port")
|
|
||||||
|
|
||||||
# 记录到图里(保留原始端口信息)
|
|
||||||
G.add_edge(u, v, source_handle_key=sp, target_handle_key=tp)
|
|
||||||
edges_data.append((u, v, sp, tp))
|
|
||||||
|
|
||||||
# 如果不是 compass,就按“命名端口”先归类,等会儿给节点造 record
|
|
||||||
if sp and not _is_compass(sp):
|
|
||||||
out_ports_by_node.setdefault(u, set()).add(str(sp))
|
|
||||||
if tp and not _is_compass(tp):
|
|
||||||
in_ports_by_node.setdefault(v, set()).add(str(tp))
|
|
||||||
|
|
||||||
# 2) 转为 AGraph,使用 Graphviz 渲染
|
|
||||||
A = to_agraph(G)
|
|
||||||
A.graph_attr.update(rankdir=rankdir, splines="true", concentrate="false", fontsize="10")
|
|
||||||
A.node_attr.update(
|
|
||||||
shape="box", style="rounded,filled", fillcolor="lightyellow", color="#999999", fontname="Helvetica"
|
|
||||||
)
|
|
||||||
A.edge_attr.update(arrowsize="0.8", color="#666666")
|
|
||||||
|
|
||||||
# 3) 为需要命名端口的节点设置 record 形状与 label
|
|
||||||
# 左列 = 输入端口;中间 = 核心标签;右列 = 输出端口
|
|
||||||
for n in A.nodes():
|
|
||||||
node = A.get_node(n)
|
|
||||||
core = G.nodes[n].get("_core_label", n)
|
|
||||||
|
|
||||||
in_ports = sorted(in_ports_by_node.get(n, []))
|
|
||||||
out_ports = sorted(out_ports_by_node.get(n, []))
|
|
||||||
|
|
||||||
# 如果该节点涉及命名端口,则用 record;否则保留原 box
|
|
||||||
if in_ports or out_ports:
|
|
||||||
|
|
||||||
def port_fields(ports):
|
|
||||||
if not ports:
|
|
||||||
return " " # 必须留一个空槽占位
|
|
||||||
# 每个端口一个小格子,<p> name
|
|
||||||
return "|".join(f"<{re.sub(r'[^A-Za-z0-9_:.|-]', '_', p)}> {p}" for p in ports)
|
|
||||||
|
|
||||||
left = port_fields(in_ports)
|
|
||||||
right = port_fields(out_ports)
|
|
||||||
|
|
||||||
# 三栏:左(入) | 中(节点名) | 右(出)
|
|
||||||
record_label = f"{{ {left} | {core} | {right} }}"
|
|
||||||
node.attr.update(shape="record", label=record_label)
|
|
||||||
else:
|
|
||||||
# 没有命名端口:普通盒子,显示核心标签
|
|
||||||
node.attr.update(label=str(core))
|
|
||||||
|
|
||||||
# 4) 给边设置 headport / tailport
|
|
||||||
# - 若端口为 compass:直接用 compass(e.g., headport="e")
|
|
||||||
# - 若端口为命名端口:使用在 record 中定义的 <port> 名(同名即可)
|
|
||||||
for u, v, sp, tp in edges_data:
|
|
||||||
e = A.get_edge(u, v)
|
|
||||||
|
|
||||||
# Graphviz 属性:tail 是源,head 是目标
|
|
||||||
if sp:
|
|
||||||
if _is_compass(sp):
|
|
||||||
e.attr["tailport"] = sp.lower()
|
|
||||||
else:
|
|
||||||
# 与 record label 中 <port> 名一致;特殊字符已在 label 中做了清洗
|
|
||||||
e.attr["tailport"] = re.sub(r"[^A-Za-z0-9_:.|-]", "_", str(sp))
|
|
||||||
|
|
||||||
if tp:
|
|
||||||
if _is_compass(tp):
|
|
||||||
e.attr["headport"] = tp.lower()
|
|
||||||
else:
|
|
||||||
e.attr["headport"] = re.sub(r"[^A-Za-z0-9_:.|-]", "_", str(tp))
|
|
||||||
|
|
||||||
# 可选:若想让边更贴边缘,可设置 constraint/spline 等
|
|
||||||
# e.attr["arrowhead"] = "vee"
|
|
||||||
|
|
||||||
# 5) 输出
|
|
||||||
A.draw(output_path, prog="dot")
|
|
||||||
print(f" - Port-aware workflow rendered to '{output_path}'")
|
|
||||||
|
|
||||||
|
|
||||||
# ---------------- Registry Adapter ----------------
|
|
||||||
|
|
||||||
|
|
||||||
class RegistryAdapter:
|
|
||||||
"""根据 module 的类名(冒号右侧)反查 registry 的 resource_name(原 device_class),并抽取参数顺序"""
|
|
||||||
|
|
||||||
def __init__(self, device_registry: Dict[str, Any]):
|
|
||||||
self.device_registry = device_registry or {}
|
|
||||||
self.module_class_to_resource = self._build_module_class_index()
|
|
||||||
|
|
||||||
def _build_module_class_index(self) -> Dict[str, str]:
|
|
||||||
idx = {}
|
|
||||||
for resource_name, info in self.device_registry.items():
|
|
||||||
module = info.get("module")
|
|
||||||
if isinstance(module, str) and ":" in module:
|
|
||||||
cls = module.split(":")[-1]
|
|
||||||
idx[cls] = resource_name
|
|
||||||
idx[cls.lower()] = resource_name
|
|
||||||
return idx
|
|
||||||
|
|
||||||
def resolve_resource_by_classname(self, class_name: str) -> Optional[str]:
|
|
||||||
if not class_name:
|
|
||||||
return None
|
|
||||||
return self.module_class_to_resource.get(class_name) or self.module_class_to_resource.get(class_name.lower())
|
|
||||||
|
|
||||||
def get_device_module(self, resource_name: Optional[str]) -> Optional[str]:
|
|
||||||
if not resource_name:
|
|
||||||
return None
|
|
||||||
return self.device_registry.get(resource_name, {}).get("module")
|
|
||||||
|
|
||||||
def get_actions(self, resource_name: Optional[str]) -> Dict[str, Any]:
|
|
||||||
if not resource_name:
|
|
||||||
return {}
|
|
||||||
return (self.device_registry.get(resource_name, {}).get("class", {}).get("action_value_mappings", {})) or {}
|
|
||||||
|
|
||||||
def get_action_schema(self, resource_name: Optional[str], template_name: str) -> Optional[Json]:
|
|
||||||
return (self.get_actions(resource_name).get(template_name) or {}).get("schema")
|
|
||||||
|
|
||||||
def get_action_goal_default(self, resource_name: Optional[str], template_name: str) -> Json:
|
|
||||||
return (self.get_actions(resource_name).get(template_name) or {}).get("goal_default", {}) or {}
|
|
||||||
|
|
||||||
def get_action_input_keys(self, resource_name: Optional[str], template_name: str) -> List[str]:
|
|
||||||
schema = self.get_action_schema(resource_name, template_name) or {}
|
|
||||||
goal = (schema.get("properties") or {}).get("goal") or {}
|
|
||||||
props = goal.get("properties") or {}
|
|
||||||
required = goal.get("required") or []
|
|
||||||
return list(dict.fromkeys(required + list(props.keys())))
|
|
||||||
@@ -1,356 +0,0 @@
|
|||||||
"""
|
|
||||||
JSON 工作流转换模块
|
|
||||||
|
|
||||||
提供从多种 JSON 格式转换为统一工作流格式的功能。
|
|
||||||
支持的格式:
|
|
||||||
1. workflow/reagent 格式
|
|
||||||
2. steps_info/labware_info 格式
|
|
||||||
"""
|
|
||||||
|
|
||||||
import json
|
|
||||||
from os import PathLike
|
|
||||||
from pathlib import Path
|
|
||||||
from typing import Any, Dict, List, Optional, Set, Tuple, Union
|
|
||||||
|
|
||||||
from unilabos.workflow.common import WorkflowGraph, build_protocol_graph
|
|
||||||
from unilabos.registry.registry import lab_registry
|
|
||||||
|
|
||||||
|
|
||||||
def get_action_handles(resource_name: str, template_name: str) -> Dict[str, List[str]]:
|
|
||||||
"""
|
|
||||||
从 registry 获取指定设备和动作的 handles 配置
|
|
||||||
|
|
||||||
Args:
|
|
||||||
resource_name: 设备资源名称,如 "liquid_handler.prcxi"
|
|
||||||
template_name: 动作模板名称,如 "transfer_liquid"
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
包含 source 和 target handler_keys 的字典:
|
|
||||||
{"source": ["sources_out", "targets_out", ...], "target": ["sources", "targets", ...]}
|
|
||||||
"""
|
|
||||||
result = {"source": [], "target": []}
|
|
||||||
|
|
||||||
device_info = lab_registry.device_type_registry.get(resource_name, {})
|
|
||||||
if not device_info:
|
|
||||||
return result
|
|
||||||
|
|
||||||
action_mappings = device_info.get("class", {}).get("action_value_mappings", {})
|
|
||||||
action_config = action_mappings.get(template_name, {})
|
|
||||||
handles = action_config.get("handles", {})
|
|
||||||
|
|
||||||
if isinstance(handles, dict):
|
|
||||||
# 处理 input handles (作为 target)
|
|
||||||
for handle in handles.get("input", []):
|
|
||||||
handler_key = handle.get("handler_key", "")
|
|
||||||
if handler_key:
|
|
||||||
result["source"].append(handler_key)
|
|
||||||
# 处理 output handles (作为 source)
|
|
||||||
for handle in handles.get("output", []):
|
|
||||||
handler_key = handle.get("handler_key", "")
|
|
||||||
if handler_key:
|
|
||||||
result["target"].append(handler_key)
|
|
||||||
|
|
||||||
return result
|
|
||||||
|
|
||||||
|
|
||||||
def validate_workflow_handles(graph: WorkflowGraph) -> Tuple[bool, List[str]]:
|
|
||||||
"""
|
|
||||||
校验工作流图中所有边的句柄配置是否正确
|
|
||||||
|
|
||||||
Args:
|
|
||||||
graph: 工作流图对象
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
(is_valid, errors): 是否有效,错误信息列表
|
|
||||||
"""
|
|
||||||
errors = []
|
|
||||||
nodes = graph.nodes
|
|
||||||
|
|
||||||
for edge in graph.edges:
|
|
||||||
left_uuid = edge.get("source")
|
|
||||||
right_uuid = edge.get("target")
|
|
||||||
# target_handle_key是target, right的输入节点(入节点)
|
|
||||||
# source_handle_key是source, left的输出节点(出节点)
|
|
||||||
right_source_conn_key = edge.get("target_handle_key", "")
|
|
||||||
left_target_conn_key = edge.get("source_handle_key", "")
|
|
||||||
|
|
||||||
# 获取源节点和目标节点信息
|
|
||||||
left_node = nodes.get(left_uuid, {})
|
|
||||||
right_node = nodes.get(right_uuid, {})
|
|
||||||
|
|
||||||
left_res_name = left_node.get("resource_name", "")
|
|
||||||
left_template_name = left_node.get("template_name", "")
|
|
||||||
right_res_name = right_node.get("resource_name", "")
|
|
||||||
right_template_name = right_node.get("template_name", "")
|
|
||||||
|
|
||||||
# 获取源节点的 output handles
|
|
||||||
left_node_handles = get_action_handles(left_res_name, left_template_name)
|
|
||||||
target_valid_keys = left_node_handles.get("target", [])
|
|
||||||
target_valid_keys.append("ready")
|
|
||||||
|
|
||||||
# 获取目标节点的 input handles
|
|
||||||
right_node_handles = get_action_handles(right_res_name, right_template_name)
|
|
||||||
source_valid_keys = right_node_handles.get("source", [])
|
|
||||||
source_valid_keys.append("ready")
|
|
||||||
|
|
||||||
# 如果节点配置了 output handles,则 source_port 必须有效
|
|
||||||
if not right_source_conn_key:
|
|
||||||
node_name = left_node.get("name", left_uuid[:8])
|
|
||||||
errors.append(f"源节点 '{node_name}' 的 source_handle_key 为空," f"应设置为: {source_valid_keys}")
|
|
||||||
elif right_source_conn_key not in source_valid_keys:
|
|
||||||
node_name = left_node.get("name", left_uuid[:8])
|
|
||||||
errors.append(
|
|
||||||
f"源节点 '{node_name}' 的 source 端点 '{right_source_conn_key}' 不存在," f"支持的端点: {source_valid_keys}"
|
|
||||||
)
|
|
||||||
|
|
||||||
# 如果节点配置了 input handles,则 target_port 必须有效
|
|
||||||
if not left_target_conn_key:
|
|
||||||
node_name = right_node.get("name", right_uuid[:8])
|
|
||||||
errors.append(f"目标节点 '{node_name}' 的 target_handle_key 为空," f"应设置为: {target_valid_keys}")
|
|
||||||
elif left_target_conn_key not in target_valid_keys:
|
|
||||||
node_name = right_node.get("name", right_uuid[:8])
|
|
||||||
errors.append(
|
|
||||||
f"目标节点 '{node_name}' 的 target 端点 '{left_target_conn_key}' 不存在,"
|
|
||||||
f"支持的端点: {target_valid_keys}"
|
|
||||||
)
|
|
||||||
|
|
||||||
return len(errors) == 0, errors
|
|
||||||
|
|
||||||
|
|
||||||
# action 到 resource_name 的映射
|
|
||||||
ACTION_RESOURCE_MAPPING: Dict[str, str] = {
|
|
||||||
# 生物实验操作
|
|
||||||
"transfer_liquid": "liquid_handler.prcxi",
|
|
||||||
"transfer": "liquid_handler.prcxi",
|
|
||||||
"incubation": "incubator.prcxi",
|
|
||||||
"move_labware": "labware_mover.prcxi",
|
|
||||||
"oscillation": "shaker.prcxi",
|
|
||||||
# 有机化学操作
|
|
||||||
"HeatChillToTemp": "heatchill.chemputer",
|
|
||||||
"StopHeatChill": "heatchill.chemputer",
|
|
||||||
"StartHeatChill": "heatchill.chemputer",
|
|
||||||
"HeatChill": "heatchill.chemputer",
|
|
||||||
"Dissolve": "stirrer.chemputer",
|
|
||||||
"Transfer": "liquid_handler.chemputer",
|
|
||||||
"Evaporate": "rotavap.chemputer",
|
|
||||||
"Recrystallize": "reactor.chemputer",
|
|
||||||
"Filter": "filter.chemputer",
|
|
||||||
"Dry": "dryer.chemputer",
|
|
||||||
"Add": "liquid_handler.chemputer",
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
def normalize_steps(data: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
|
|
||||||
"""
|
|
||||||
将不同格式的步骤数据规范化为统一格式
|
|
||||||
|
|
||||||
支持的输入格式:
|
|
||||||
- action + parameters
|
|
||||||
- action + action_args
|
|
||||||
- operation + parameters
|
|
||||||
|
|
||||||
Args:
|
|
||||||
data: 原始步骤数据列表
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
规范化后的步骤列表,格式为 [{"action": str, "parameters": dict, "description": str?, "step_number": int?}, ...]
|
|
||||||
"""
|
|
||||||
normalized = []
|
|
||||||
for idx, step in enumerate(data):
|
|
||||||
# 获取动作名称(支持 action 或 operation 字段)
|
|
||||||
action = step.get("action") or step.get("operation")
|
|
||||||
if not action:
|
|
||||||
continue
|
|
||||||
|
|
||||||
# 获取参数(支持 parameters 或 action_args 字段)
|
|
||||||
raw_params = step.get("parameters") or step.get("action_args") or {}
|
|
||||||
params = dict(raw_params)
|
|
||||||
|
|
||||||
# 规范化 source/target -> sources/targets
|
|
||||||
if "source" in raw_params and "sources" not in raw_params:
|
|
||||||
params["sources"] = raw_params["source"]
|
|
||||||
if "target" in raw_params and "targets" not in raw_params:
|
|
||||||
params["targets"] = raw_params["target"]
|
|
||||||
|
|
||||||
# 获取描述(支持 description 或 purpose 字段)
|
|
||||||
description = step.get("description") or step.get("purpose")
|
|
||||||
|
|
||||||
# 获取步骤编号(优先使用原始数据中的 step_number,否则使用索引+1)
|
|
||||||
step_number = step.get("step_number", idx + 1)
|
|
||||||
|
|
||||||
step_dict = {"action": action, "parameters": params, "step_number": step_number}
|
|
||||||
if description:
|
|
||||||
step_dict["description"] = description
|
|
||||||
|
|
||||||
normalized.append(step_dict)
|
|
||||||
|
|
||||||
return normalized
|
|
||||||
|
|
||||||
|
|
||||||
def normalize_labware(data: List[Dict[str, Any]]) -> Dict[str, Dict[str, Any]]:
|
|
||||||
"""
|
|
||||||
将不同格式的 labware 数据规范化为统一的字典格式
|
|
||||||
|
|
||||||
支持的输入格式:
|
|
||||||
- reagent_name + material_name + positions
|
|
||||||
- name + labware + slot
|
|
||||||
|
|
||||||
Args:
|
|
||||||
data: 原始 labware 数据列表
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
规范化后的 labware 字典,格式为 {name: {"slot": int, "labware": str, "well": list, "type": str, "role": str, "name": str}, ...}
|
|
||||||
"""
|
|
||||||
labware = {}
|
|
||||||
for item in data:
|
|
||||||
# 获取 key 名称(优先使用 reagent_name,其次是 material_name 或 name)
|
|
||||||
reagent_name = item.get("reagent_name")
|
|
||||||
key = reagent_name or item.get("material_name") or item.get("name")
|
|
||||||
if not key:
|
|
||||||
continue
|
|
||||||
|
|
||||||
key = str(key)
|
|
||||||
|
|
||||||
# 处理重复 key,自动添加后缀
|
|
||||||
idx = 1
|
|
||||||
original_key = key
|
|
||||||
while key in labware:
|
|
||||||
idx += 1
|
|
||||||
key = f"{original_key}_{idx}"
|
|
||||||
|
|
||||||
labware[key] = {
|
|
||||||
"slot": item.get("positions") or item.get("slot"),
|
|
||||||
"labware": item.get("material_name") or item.get("labware"),
|
|
||||||
"well": item.get("well", []),
|
|
||||||
"type": item.get("type", "reagent"),
|
|
||||||
"role": item.get("role", ""),
|
|
||||||
"name": key,
|
|
||||||
}
|
|
||||||
|
|
||||||
return labware
|
|
||||||
|
|
||||||
|
|
||||||
def convert_from_json(
|
|
||||||
data: Union[str, PathLike, Dict[str, Any]],
|
|
||||||
workstation_name: str = "PRCXi",
|
|
||||||
validate: bool = True,
|
|
||||||
) -> WorkflowGraph:
|
|
||||||
"""
|
|
||||||
从 JSON 数据或文件转换为 WorkflowGraph
|
|
||||||
|
|
||||||
支持的 JSON 格式:
|
|
||||||
1. {"workflow": [...], "reagent": {...}} - 直接格式
|
|
||||||
2. {"steps_info": [...], "labware_info": [...]} - 需要规范化的格式
|
|
||||||
|
|
||||||
Args:
|
|
||||||
data: JSON 文件路径、字典数据、或 JSON 字符串
|
|
||||||
workstation_name: 工作站名称,默认 "PRCXi"
|
|
||||||
validate: 是否校验句柄配置,默认 True
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
WorkflowGraph: 构建好的工作流图
|
|
||||||
|
|
||||||
Raises:
|
|
||||||
ValueError: 不支持的 JSON 格式 或 句柄校验失败
|
|
||||||
FileNotFoundError: 文件不存在
|
|
||||||
json.JSONDecodeError: JSON 解析失败
|
|
||||||
"""
|
|
||||||
# 处理输入数据
|
|
||||||
if isinstance(data, (str, PathLike)):
|
|
||||||
path = Path(data)
|
|
||||||
if path.exists():
|
|
||||||
with path.open("r", encoding="utf-8") as fp:
|
|
||||||
json_data = json.load(fp)
|
|
||||||
elif isinstance(data, str):
|
|
||||||
# 尝试作为 JSON 字符串解析
|
|
||||||
json_data = json.loads(data)
|
|
||||||
else:
|
|
||||||
raise FileNotFoundError(f"文件不存在: {data}")
|
|
||||||
elif isinstance(data, dict):
|
|
||||||
json_data = data
|
|
||||||
else:
|
|
||||||
raise TypeError(f"不支持的数据类型: {type(data)}")
|
|
||||||
|
|
||||||
# 根据格式解析数据
|
|
||||||
if "workflow" in json_data and "reagent" in json_data:
|
|
||||||
# 格式1: workflow/reagent(已经是规范格式)
|
|
||||||
protocol_steps = json_data["workflow"]
|
|
||||||
labware_info = json_data["reagent"]
|
|
||||||
elif "steps_info" in json_data and "labware_info" in json_data:
|
|
||||||
# 格式2: steps_info/labware_info(需要规范化)
|
|
||||||
protocol_steps = normalize_steps(json_data["steps_info"])
|
|
||||||
labware_info = normalize_labware(json_data["labware_info"])
|
|
||||||
elif "steps" in json_data and "labware" in json_data:
|
|
||||||
# 格式3: steps/labware(另一种常见格式)
|
|
||||||
protocol_steps = normalize_steps(json_data["steps"])
|
|
||||||
if isinstance(json_data["labware"], list):
|
|
||||||
labware_info = normalize_labware(json_data["labware"])
|
|
||||||
else:
|
|
||||||
labware_info = json_data["labware"]
|
|
||||||
else:
|
|
||||||
raise ValueError(
|
|
||||||
"不支持的 JSON 格式。支持的格式:\n"
|
|
||||||
"1. {'workflow': [...], 'reagent': {...}}\n"
|
|
||||||
"2. {'steps_info': [...], 'labware_info': [...]}\n"
|
|
||||||
"3. {'steps': [...], 'labware': [...]}"
|
|
||||||
)
|
|
||||||
|
|
||||||
# 构建工作流图
|
|
||||||
graph = build_protocol_graph(
|
|
||||||
labware_info=labware_info,
|
|
||||||
protocol_steps=protocol_steps,
|
|
||||||
workstation_name=workstation_name,
|
|
||||||
action_resource_mapping=ACTION_RESOURCE_MAPPING,
|
|
||||||
)
|
|
||||||
|
|
||||||
# 校验句柄配置
|
|
||||||
if validate:
|
|
||||||
is_valid, errors = validate_workflow_handles(graph)
|
|
||||||
if not is_valid:
|
|
||||||
import warnings
|
|
||||||
|
|
||||||
for error in errors:
|
|
||||||
warnings.warn(f"句柄校验警告: {error}")
|
|
||||||
|
|
||||||
return graph
|
|
||||||
|
|
||||||
|
|
||||||
def convert_json_to_node_link(
|
|
||||||
data: Union[str, PathLike, Dict[str, Any]],
|
|
||||||
workstation_name: str = "PRCXi",
|
|
||||||
) -> Dict[str, Any]:
|
|
||||||
"""
|
|
||||||
将 JSON 数据转换为 node-link 格式的字典
|
|
||||||
|
|
||||||
Args:
|
|
||||||
data: JSON 文件路径、字典数据、或 JSON 字符串
|
|
||||||
workstation_name: 工作站名称,默认 "PRCXi"
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
Dict: node-link 格式的工作流数据
|
|
||||||
"""
|
|
||||||
graph = convert_from_json(data, workstation_name)
|
|
||||||
return graph.to_node_link_dict()
|
|
||||||
|
|
||||||
|
|
||||||
def convert_json_to_workflow_list(
|
|
||||||
data: Union[str, PathLike, Dict[str, Any]],
|
|
||||||
workstation_name: str = "PRCXi",
|
|
||||||
) -> List[Dict[str, Any]]:
|
|
||||||
"""
|
|
||||||
将 JSON 数据转换为工作流列表格式
|
|
||||||
|
|
||||||
Args:
|
|
||||||
data: JSON 文件路径、字典数据、或 JSON 字符串
|
|
||||||
workstation_name: 工作站名称,默认 "PRCXi"
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
List: 工作流节点列表
|
|
||||||
"""
|
|
||||||
graph = convert_from_json(data, workstation_name)
|
|
||||||
return graph.to_dict()
|
|
||||||
|
|
||||||
|
|
||||||
# 为了向后兼容,保留下划线前缀的别名
|
|
||||||
_normalize_steps = normalize_steps
|
|
||||||
_normalize_labware = normalize_labware
|
|
||||||
@@ -1,241 +0,0 @@
|
|||||||
import ast
|
|
||||||
import json
|
|
||||||
from typing import Dict, List, Any, Tuple, Optional
|
|
||||||
|
|
||||||
from .common import WorkflowGraph, RegistryAdapter
|
|
||||||
|
|
||||||
Json = Dict[str, Any]
|
|
||||||
|
|
||||||
# ---------------- Converter ----------------
|
|
||||||
|
|
||||||
class DeviceMethodConverter:
|
|
||||||
"""
|
|
||||||
- 字段统一:resource_name(原 device_class)、template_name(原 action_key)
|
|
||||||
- params 单层;inputs 使用 'params.' 前缀
|
|
||||||
- SimpleGraph.add_workflow_node 负责变量连线与边
|
|
||||||
"""
|
|
||||||
def __init__(self, device_registry: Optional[Dict[str, Any]] = None):
|
|
||||||
self.graph = WorkflowGraph()
|
|
||||||
self.variable_sources: Dict[str, Dict[str, Any]] = {} # var -> {node_id, output_name}
|
|
||||||
self.instance_to_resource: Dict[str, Optional[str]] = {} # 实例名 -> resource_name
|
|
||||||
self.node_id_counter: int = 0
|
|
||||||
self.registry = RegistryAdapter(device_registry or {})
|
|
||||||
|
|
||||||
# ---- helpers ----
|
|
||||||
def _new_node_id(self) -> int:
|
|
||||||
nid = self.node_id_counter
|
|
||||||
self.node_id_counter += 1
|
|
||||||
return nid
|
|
||||||
|
|
||||||
def _assign_targets(self, targets) -> List[str]:
|
|
||||||
names: List[str] = []
|
|
||||||
import ast
|
|
||||||
if isinstance(targets, ast.Tuple):
|
|
||||||
for elt in targets.elts:
|
|
||||||
if isinstance(elt, ast.Name):
|
|
||||||
names.append(elt.id)
|
|
||||||
elif isinstance(targets, ast.Name):
|
|
||||||
names.append(targets.id)
|
|
||||||
return names
|
|
||||||
|
|
||||||
def _extract_device_instantiation(self, node) -> Optional[Tuple[str, str]]:
|
|
||||||
import ast
|
|
||||||
if not isinstance(node.value, ast.Call):
|
|
||||||
return None
|
|
||||||
callee = node.value.func
|
|
||||||
if isinstance(callee, ast.Name):
|
|
||||||
class_name = callee.id
|
|
||||||
elif isinstance(callee, ast.Attribute) and isinstance(callee.value, ast.Name):
|
|
||||||
class_name = callee.attr
|
|
||||||
else:
|
|
||||||
return None
|
|
||||||
if isinstance(node.targets[0], ast.Name):
|
|
||||||
instance = node.targets[0].id
|
|
||||||
return instance, class_name
|
|
||||||
return None
|
|
||||||
|
|
||||||
def _extract_call(self, call) -> Tuple[str, str, Dict[str, Any], str]:
|
|
||||||
import ast
|
|
||||||
owner_name, method_name, call_kind = "", "", "func"
|
|
||||||
if isinstance(call.func, ast.Attribute):
|
|
||||||
method_name = call.func.attr
|
|
||||||
if isinstance(call.func.value, ast.Name):
|
|
||||||
owner_name = call.func.value.id
|
|
||||||
call_kind = "instance" if owner_name in self.instance_to_resource else "class_or_module"
|
|
||||||
elif isinstance(call.func.value, ast.Attribute) and isinstance(call.func.value.value, ast.Name):
|
|
||||||
owner_name = call.func.value.attr
|
|
||||||
call_kind = "class_or_module"
|
|
||||||
elif isinstance(call.func, ast.Name):
|
|
||||||
method_name = call.func.id
|
|
||||||
call_kind = "func"
|
|
||||||
|
|
||||||
def pack(node):
|
|
||||||
if isinstance(node, ast.Name):
|
|
||||||
return {"type": "variable", "value": node.id}
|
|
||||||
if isinstance(node, ast.Constant):
|
|
||||||
return {"type": "constant", "value": node.value}
|
|
||||||
if isinstance(node, ast.Dict):
|
|
||||||
return {"type": "dict", "value": self._parse_dict(node)}
|
|
||||||
if isinstance(node, ast.List):
|
|
||||||
return {"type": "list", "value": self._parse_list(node)}
|
|
||||||
return {"type": "raw", "value": ast.unparse(node) if hasattr(ast, "unparse") else str(node)}
|
|
||||||
|
|
||||||
args: Dict[str, Any] = {}
|
|
||||||
pos: List[Any] = []
|
|
||||||
for a in call.args:
|
|
||||||
pos.append(pack(a))
|
|
||||||
for kw in call.keywords:
|
|
||||||
args[kw.arg] = pack(kw.value)
|
|
||||||
if pos:
|
|
||||||
args["_positional"] = pos
|
|
||||||
return owner_name, method_name, args, call_kind
|
|
||||||
|
|
||||||
def _parse_dict(self, node) -> Dict[str, Any]:
|
|
||||||
import ast
|
|
||||||
out: Dict[str, Any] = {}
|
|
||||||
for k, v in zip(node.keys, node.values):
|
|
||||||
if isinstance(k, ast.Constant):
|
|
||||||
key = str(k.value)
|
|
||||||
if isinstance(v, ast.Name):
|
|
||||||
out[key] = f"var:{v.id}"
|
|
||||||
elif isinstance(v, ast.Constant):
|
|
||||||
out[key] = v.value
|
|
||||||
elif isinstance(v, ast.Dict):
|
|
||||||
out[key] = self._parse_dict(v)
|
|
||||||
elif isinstance(v, ast.List):
|
|
||||||
out[key] = self._parse_list(v)
|
|
||||||
return out
|
|
||||||
|
|
||||||
def _parse_list(self, node) -> List[Any]:
|
|
||||||
import ast
|
|
||||||
out: List[Any] = []
|
|
||||||
for elt in node.elts:
|
|
||||||
if isinstance(elt, ast.Name):
|
|
||||||
out.append(f"var:{elt.id}")
|
|
||||||
elif isinstance(elt, ast.Constant):
|
|
||||||
out.append(elt.value)
|
|
||||||
elif isinstance(elt, ast.Dict):
|
|
||||||
out.append(self._parse_dict(elt))
|
|
||||||
elif isinstance(elt, ast.List):
|
|
||||||
out.append(self._parse_list(elt))
|
|
||||||
return out
|
|
||||||
|
|
||||||
def _normalize_var_tokens(self, x: Any) -> Any:
|
|
||||||
if isinstance(x, str) and x.startswith("var:"):
|
|
||||||
return {"__var__": x[4:]}
|
|
||||||
if isinstance(x, list):
|
|
||||||
return [self._normalize_var_tokens(i) for i in x]
|
|
||||||
if isinstance(x, dict):
|
|
||||||
return {k: self._normalize_var_tokens(v) for k, v in x.items()}
|
|
||||||
return x
|
|
||||||
|
|
||||||
def _make_params_payload(self, resource_name: Optional[str], template_name: str, call_args: Dict[str, Any]) -> Dict[str, Any]:
|
|
||||||
input_keys = self.registry.get_action_input_keys(resource_name, template_name) if resource_name else []
|
|
||||||
defaults = self.registry.get_action_goal_default(resource_name, template_name) if resource_name else {}
|
|
||||||
params: Dict[str, Any] = dict(defaults)
|
|
||||||
|
|
||||||
def unpack(p):
|
|
||||||
t, v = p.get("type"), p.get("value")
|
|
||||||
if t == "variable":
|
|
||||||
return {"__var__": v}
|
|
||||||
if t == "dict":
|
|
||||||
return self._normalize_var_tokens(v)
|
|
||||||
if t == "list":
|
|
||||||
return self._normalize_var_tokens(v)
|
|
||||||
return v
|
|
||||||
|
|
||||||
for k, p in call_args.items():
|
|
||||||
if k == "_positional":
|
|
||||||
continue
|
|
||||||
params[k] = unpack(p)
|
|
||||||
|
|
||||||
pos = call_args.get("_positional", [])
|
|
||||||
if pos:
|
|
||||||
if input_keys:
|
|
||||||
for i, p in enumerate(pos):
|
|
||||||
if i >= len(input_keys):
|
|
||||||
break
|
|
||||||
name = input_keys[i]
|
|
||||||
if name in params:
|
|
||||||
continue
|
|
||||||
params[name] = unpack(p)
|
|
||||||
else:
|
|
||||||
for i, p in enumerate(pos):
|
|
||||||
params[f"arg_{i}"] = unpack(p)
|
|
||||||
return params
|
|
||||||
|
|
||||||
# ---- handlers ----
|
|
||||||
def _on_assign(self, stmt):
|
|
||||||
import ast
|
|
||||||
inst = self._extract_device_instantiation(stmt)
|
|
||||||
if inst:
|
|
||||||
instance, code_class = inst
|
|
||||||
resource_name = self.registry.resolve_resource_by_classname(code_class)
|
|
||||||
self.instance_to_resource[instance] = resource_name
|
|
||||||
return
|
|
||||||
|
|
||||||
if isinstance(stmt.value, ast.Call):
|
|
||||||
owner, method, call_args, kind = self._extract_call(stmt.value)
|
|
||||||
if kind == "instance":
|
|
||||||
device_key = owner
|
|
||||||
resource_name = self.instance_to_resource.get(owner)
|
|
||||||
else:
|
|
||||||
device_key = owner
|
|
||||||
resource_name = self.registry.resolve_resource_by_classname(owner)
|
|
||||||
|
|
||||||
module = self.registry.get_device_module(resource_name)
|
|
||||||
params = self._make_params_payload(resource_name, method, call_args)
|
|
||||||
|
|
||||||
nid = self._new_node_id()
|
|
||||||
self.graph.add_workflow_node(
|
|
||||||
nid,
|
|
||||||
device_key=device_key,
|
|
||||||
resource_name=resource_name, # ✅
|
|
||||||
module=module,
|
|
||||||
template_name=method, # ✅
|
|
||||||
params=params,
|
|
||||||
variable_sources=self.variable_sources,
|
|
||||||
add_ready_if_no_vars=True,
|
|
||||||
prev_node_id=(nid - 1) if nid > 0 else None,
|
|
||||||
)
|
|
||||||
|
|
||||||
out_vars = self._assign_targets(stmt.targets[0])
|
|
||||||
for var in out_vars:
|
|
||||||
self.variable_sources[var] = {"node_id": nid, "output_name": "result"}
|
|
||||||
|
|
||||||
def _on_expr(self, stmt):
|
|
||||||
import ast
|
|
||||||
if not isinstance(stmt.value, ast.Call):
|
|
||||||
return
|
|
||||||
owner, method, call_args, kind = self._extract_call(stmt.value)
|
|
||||||
if kind == "instance":
|
|
||||||
device_key = owner
|
|
||||||
resource_name = self.instance_to_resource.get(owner)
|
|
||||||
else:
|
|
||||||
device_key = owner
|
|
||||||
resource_name = self.registry.resolve_resource_by_classname(owner)
|
|
||||||
|
|
||||||
module = self.registry.get_device_module(resource_name)
|
|
||||||
params = self._make_params_payload(resource_name, method, call_args)
|
|
||||||
|
|
||||||
nid = self._new_node_id()
|
|
||||||
self.graph.add_workflow_node(
|
|
||||||
nid,
|
|
||||||
device_key=device_key,
|
|
||||||
resource_name=resource_name, # ✅
|
|
||||||
module=module,
|
|
||||||
template_name=method, # ✅
|
|
||||||
params=params,
|
|
||||||
variable_sources=self.variable_sources,
|
|
||||||
add_ready_if_no_vars=True,
|
|
||||||
prev_node_id=(nid - 1) if nid > 0 else None,
|
|
||||||
)
|
|
||||||
|
|
||||||
def convert(self, python_code: str):
|
|
||||||
tree = ast.parse(python_code)
|
|
||||||
for stmt in tree.body:
|
|
||||||
if isinstance(stmt, ast.Assign):
|
|
||||||
self._on_assign(stmt)
|
|
||||||
elif isinstance(stmt, ast.Expr):
|
|
||||||
self._on_expr(stmt)
|
|
||||||
return self
|
|
||||||
@@ -1,131 +0,0 @@
|
|||||||
from typing import List, Any, Dict
|
|
||||||
import xml.etree.ElementTree as ET
|
|
||||||
|
|
||||||
|
|
||||||
def convert_to_type(val: str) -> Any:
|
|
||||||
"""将字符串值转换为适当的数据类型"""
|
|
||||||
if val == "True":
|
|
||||||
return True
|
|
||||||
if val == "False":
|
|
||||||
return False
|
|
||||||
if val == "?":
|
|
||||||
return None
|
|
||||||
if val.endswith(" g"):
|
|
||||||
return float(val.split(" ")[0])
|
|
||||||
if val.endswith("mg"):
|
|
||||||
return float(val.split("mg")[0])
|
|
||||||
elif val.endswith("mmol"):
|
|
||||||
return float(val.split("mmol")[0]) / 1000
|
|
||||||
elif val.endswith("mol"):
|
|
||||||
return float(val.split("mol")[0])
|
|
||||||
elif val.endswith("ml"):
|
|
||||||
return float(val.split("ml")[0])
|
|
||||||
elif val.endswith("RPM"):
|
|
||||||
return float(val.split("RPM")[0])
|
|
||||||
elif val.endswith(" °C"):
|
|
||||||
return float(val.split(" ")[0])
|
|
||||||
elif val.endswith(" %"):
|
|
||||||
return float(val.split(" ")[0])
|
|
||||||
return val
|
|
||||||
|
|
||||||
|
|
||||||
def flatten_xdl_procedure(procedure_elem: ET.Element) -> List[ET.Element]:
|
|
||||||
"""展平嵌套的XDL程序结构"""
|
|
||||||
flattened_operations = []
|
|
||||||
TEMP_UNSUPPORTED_PROTOCOL = ["Purge", "Wait", "Stir", "ResetHandling"]
|
|
||||||
|
|
||||||
def extract_operations(element: ET.Element):
|
|
||||||
if element.tag not in ["Prep", "Reaction", "Workup", "Purification", "Procedure"]:
|
|
||||||
if element.tag not in TEMP_UNSUPPORTED_PROTOCOL:
|
|
||||||
flattened_operations.append(element)
|
|
||||||
|
|
||||||
for child in element:
|
|
||||||
extract_operations(child)
|
|
||||||
|
|
||||||
for child in procedure_elem:
|
|
||||||
extract_operations(child)
|
|
||||||
|
|
||||||
return flattened_operations
|
|
||||||
|
|
||||||
|
|
||||||
def parse_xdl_content(xdl_content: str) -> tuple:
|
|
||||||
"""解析XDL内容"""
|
|
||||||
try:
|
|
||||||
xdl_content_cleaned = "".join(c for c in xdl_content if c.isprintable())
|
|
||||||
root = ET.fromstring(xdl_content_cleaned)
|
|
||||||
|
|
||||||
synthesis_elem = root.find("Synthesis")
|
|
||||||
if synthesis_elem is None:
|
|
||||||
return None, None, None
|
|
||||||
|
|
||||||
# 解析硬件组件
|
|
||||||
hardware_elem = synthesis_elem.find("Hardware")
|
|
||||||
hardware = []
|
|
||||||
if hardware_elem is not None:
|
|
||||||
hardware = [{"id": c.get("id"), "type": c.get("type")} for c in hardware_elem.findall("Component")]
|
|
||||||
|
|
||||||
# 解析试剂
|
|
||||||
reagents_elem = synthesis_elem.find("Reagents")
|
|
||||||
reagents = []
|
|
||||||
if reagents_elem is not None:
|
|
||||||
reagents = [{"name": r.get("name"), "role": r.get("role", "")} for r in reagents_elem.findall("Reagent")]
|
|
||||||
|
|
||||||
# 解析程序
|
|
||||||
procedure_elem = synthesis_elem.find("Procedure")
|
|
||||||
if procedure_elem is None:
|
|
||||||
return None, None, None
|
|
||||||
|
|
||||||
flattened_operations = flatten_xdl_procedure(procedure_elem)
|
|
||||||
return hardware, reagents, flattened_operations
|
|
||||||
|
|
||||||
except ET.ParseError as e:
|
|
||||||
raise ValueError(f"Invalid XDL format: {e}")
|
|
||||||
|
|
||||||
|
|
||||||
def convert_xdl_to_dict(xdl_content: str) -> Dict[str, Any]:
|
|
||||||
"""
|
|
||||||
将XDL XML格式转换为标准的字典格式
|
|
||||||
|
|
||||||
Args:
|
|
||||||
xdl_content: XDL XML内容
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
转换结果,包含步骤和器材信息
|
|
||||||
"""
|
|
||||||
try:
|
|
||||||
hardware, reagents, flattened_operations = parse_xdl_content(xdl_content)
|
|
||||||
if hardware is None:
|
|
||||||
return {"error": "Failed to parse XDL content", "success": False}
|
|
||||||
|
|
||||||
# 将XDL元素转换为字典格式
|
|
||||||
steps_data = []
|
|
||||||
for elem in flattened_operations:
|
|
||||||
# 转换参数类型
|
|
||||||
parameters = {}
|
|
||||||
for key, val in elem.attrib.items():
|
|
||||||
converted_val = convert_to_type(val)
|
|
||||||
if converted_val is not None:
|
|
||||||
parameters[key] = converted_val
|
|
||||||
|
|
||||||
step_dict = {
|
|
||||||
"operation": elem.tag,
|
|
||||||
"parameters": parameters,
|
|
||||||
"description": elem.get("purpose", f"Operation: {elem.tag}"),
|
|
||||||
}
|
|
||||||
steps_data.append(step_dict)
|
|
||||||
|
|
||||||
# 合并硬件和试剂为统一的labware_info格式
|
|
||||||
labware_data = []
|
|
||||||
labware_data.extend({"id": hw["id"], "type": "hardware", **hw} for hw in hardware)
|
|
||||||
labware_data.extend({"name": reagent["name"], "type": "reagent", **reagent} for reagent in reagents)
|
|
||||||
|
|
||||||
return {
|
|
||||||
"success": True,
|
|
||||||
"steps": steps_data,
|
|
||||||
"labware": labware_data,
|
|
||||||
"message": f"Successfully converted XDL to dict format. Found {len(steps_data)} steps and {len(labware_data)} labware items.",
|
|
||||||
}
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
error_msg = f"XDL conversion failed: {str(e)}"
|
|
||||||
return {"error": error_msg, "success": False}
|
|
||||||
Reference in New Issue
Block a user