Compare commits
158 Commits
5d5569121c
...
workstatio
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
d2a30fe33b | ||
|
|
096875e910 | ||
|
|
2e17dee121 | ||
|
|
c03abb341a | ||
|
|
ee4ed26846 | ||
|
|
b97be6a5d4 | ||
|
|
44f830cf00 | ||
|
|
04b578a68b | ||
|
|
19dffcb5db | ||
|
|
b441362cd2 | ||
|
|
ed53ef2f64 | ||
|
|
0c9f26e8fc | ||
|
|
39a799cabd | ||
|
|
0d64563fb6 | ||
|
|
fbb9e0963d | ||
|
|
af411ddfe6 | ||
|
|
f5dbcb1bfc | ||
|
|
1ecf89ea27 | ||
|
|
6efdf6e5a6 | ||
|
|
e32dc55db0 | ||
|
|
acc45b716d | ||
|
|
017eaefb8d | ||
|
|
9e8c692702 | ||
|
|
beb90f20d2 | ||
|
|
7a284069d2 | ||
|
|
4a2d862333 | ||
|
|
538891fcbe | ||
|
|
a0e92b8e9b | ||
|
|
1d77225912 | ||
|
|
06e6ab0b7f | ||
|
|
5399c6c1cf | ||
|
|
f872d3ef56 | ||
|
|
85c6f4e688 | ||
|
|
442b759397 | ||
|
|
47ecb154c8 | ||
|
|
be429147c0 | ||
|
|
123c69e97a | ||
|
|
04004c9b6f | ||
|
|
45a778b928 | ||
|
|
c44ae32070 | ||
|
|
7af32b379b | ||
|
|
48d429ae00 | ||
|
|
9bba4620b7 | ||
|
|
d7494ca458 | ||
|
|
85dc46cd38 | ||
|
|
5a0c2f9850 | ||
|
|
d897d70c3e | ||
|
|
d9dffc6bf8 | ||
|
|
30b202bea0 | ||
|
|
1b2c0dbcd7 | ||
|
|
0f341e9b4d | ||
|
|
4c3972820b | ||
|
|
a2a8ee9088 | ||
|
|
200105f647 | ||
|
|
8b5653d801 | ||
|
|
5f859917d4 | ||
|
|
af2fb7f34a | ||
|
|
baa107c230 | ||
|
|
83854a741d | ||
|
|
86c7880b5c | ||
|
|
6d934e354c | ||
|
|
bed453034f | ||
|
|
5331d7bfba | ||
|
|
38ab7d3e78 | ||
|
|
966b51042d | ||
|
|
d81638e20b | ||
|
|
3c583008aa | ||
|
|
9a85bfddcd | ||
|
|
d4e1286df7 | ||
|
|
765038a136 | ||
|
|
1d4e4c8377 | ||
|
|
54f749bcdb | ||
|
|
16ad4bbecc | ||
|
|
0ad2eaafea | ||
|
|
1477384c1a | ||
|
|
8149a175d9 | ||
|
|
bfd415279b | ||
|
|
0238a92e75 | ||
|
|
8009956326 | ||
|
|
68fc4dd61e | ||
|
|
cd12932788 | ||
|
|
f230028558 | ||
|
|
1c1a6b16c8 | ||
|
|
a2d6012080 | ||
|
|
10adc853a5 | ||
|
|
69ec034623 | ||
|
|
62d08aa954 | ||
|
|
4485907df8 | ||
|
|
b5b2358967 | ||
|
|
11f4f44bf9 | ||
|
|
f52fbd650e | ||
|
|
e561c818b8 | ||
|
|
5cbd880e5a | ||
|
|
41e7251f62 | ||
|
|
727d2c2595 | ||
|
|
202a2667fd | ||
|
|
03745c5d08 | ||
|
|
385a495e21 | ||
|
|
91513a5f4c | ||
|
|
a62896eda2 | ||
|
|
a82d1b7bdb | ||
|
|
6d7c39da9e | ||
|
|
d8e9ad4413 | ||
|
|
eb93b83415 | ||
|
|
6df93a5db7 | ||
|
|
2eb9986edb | ||
|
|
fe4e49e56d | ||
|
|
0fba4cf275 | ||
|
|
ef9359776a | ||
|
|
954f1ee7b2 | ||
|
|
f58921ef82 | ||
|
|
95bdd39bf8 | ||
|
|
b3e28196c6 | ||
|
|
9fe8f4f28f | ||
|
|
39bc317bfc | ||
|
|
a130c03ebd | ||
|
|
a97781c4eb | ||
|
|
c35edcece1 | ||
|
|
524e0f3053 | ||
|
|
66f483929d | ||
|
|
2d58576937 | ||
|
|
ff25e814de | ||
|
|
0163d16cbb | ||
|
|
3231d60646 | ||
|
|
d0279f63f0 | ||
|
|
ceef342860 | ||
|
|
42f7010134 | ||
|
|
190b2d2518 | ||
|
|
2901d72b4b | ||
|
|
6ad0157b50 | ||
|
|
55b678cd37 | ||
|
|
8101a22a0f | ||
|
|
667138baac | ||
|
|
01adf7ca92 | ||
|
|
f606062696 | ||
|
|
67d1c4acce | ||
|
|
7206e42bf1 | ||
|
|
e92d933968 | ||
|
|
f0ebcc60bb | ||
|
|
e2097f0b22 | ||
|
|
fd73731130 | ||
|
|
ab7f2081c9 | ||
|
|
9e850d8a81 | ||
|
|
1af6ffafc6 | ||
|
|
35fc2f5ea6 | ||
|
|
d3d8ba6500 | ||
|
|
5a7845d8ca | ||
|
|
9c4d0256cf | ||
|
|
de7c80c3c2 | ||
|
|
e70c545ec8 | ||
|
|
2c2d1e5569 | ||
|
|
4638611fe7 | ||
|
|
37641c4389 | ||
|
|
ab697ce973 | ||
|
|
d4724b8664 | ||
|
|
2f25063bf1 | ||
|
|
00b4b9cd87 | ||
|
|
d2352cc514 |
@@ -1,6 +1,6 @@
|
||||
package:
|
||||
name: unilabos
|
||||
version: 0.10.12
|
||||
version: 0.10.7
|
||||
|
||||
source:
|
||||
path: ../unilabos
|
||||
|
||||
19
CONTRIBUTORS
@@ -1,18 +1,15 @@
|
||||
56 Xuwznln <18435084+Xuwznln@users.noreply.github.com>
|
||||
10 wznln <18435084+Xuwznln@users.noreply.github.com>
|
||||
6 Junhan Chang <changjh@dp.tech>
|
||||
156 Xuwznln <18435084+Xuwznln@users.noreply.github.com>
|
||||
39 Junhan Chang <changjh@dp.tech>
|
||||
9 wznln <18435084+Xuwznln@users.noreply.github.com>
|
||||
8 Guangxin Zhang <guangxin.zhang.bio@gmail.com>
|
||||
5 ZiWei <131428629+ZiWei09@users.noreply.github.com>
|
||||
2 Guangxin Zhang <guangxin.zhang.bio@gmail.com>
|
||||
2 Junhan Chang <changjh@pku.edu.cn>
|
||||
2 WenzheG <wenzheguo32@gmail.com>
|
||||
1 Harry Liu <113173203+ALITTLELZ@users.noreply.github.com>
|
||||
2 Xie Qiming <97236197+Andy6M@users.noreply.github.com>
|
||||
1 Harvey Que <103566763+Mile-Away@users.noreply.github.com>
|
||||
1 Junhan Chang <1700011741@pku.edu.cn>
|
||||
1 Xianwei Qi <qxw@stu.pku.edu.cn>
|
||||
1 hh.(SII) <103566763+Mile-Away@users.noreply.github.com>
|
||||
1 LccLink <1951855008@qq.com>
|
||||
1 h840473807 <47357934+h840473807@users.noreply.github.com>
|
||||
1 lixinyu1011 <61094742+lixinyu1011@users.noreply.github.com>
|
||||
1 q434343 <73513873+q434343@users.noreply.github.com>
|
||||
1 tt <166512503+tt11142023@users.noreply.github.com>
|
||||
1 xyc <49015816+xiaoyu10031@users.noreply.github.com>
|
||||
1 shiyubo0410 <shiyubo@dp.tech>
|
||||
1 王俊杰 <1800011822@pku.edu.cn>
|
||||
1 王俊杰 <43375851+wjjxxx@users.noreply.github.com>
|
||||
|
||||
@@ -1,4 +1,3 @@
|
||||
recursive-include unilabos/test *
|
||||
recursive-include unilabos/registry *.yaml
|
||||
recursive-include unilabos/app/web/static *
|
||||
recursive-include unilabos/app/web/templates *
|
||||
|
||||
14473
bioyond_yihua_YB.json
Normal file
2521
button_battery_station_resources_unilab.json
Normal file
@@ -1,726 +0,0 @@
|
||||
# Uni-Lab 配置指南
|
||||
|
||||
本文档详细介绍 Uni-Lab 配置文件的结构、配置项、命令行覆盖和环境变量的使用方法。
|
||||
|
||||
## 配置文件概述
|
||||
|
||||
Uni-Lab 使用 Python 格式的配置文件(`.py`),默认为 `unilabos_data/local_config.py`。配置文件采用类属性的方式定义各种配置项,比 YAML 或 JSON 提供更多的灵活性,包括支持注释、条件逻辑和复杂数据结构。
|
||||
|
||||
## 获取实验室密钥
|
||||
|
||||
在配置文件或启动命令中,您需要提供实验室的访问密钥(ak)和私钥(sk)。
|
||||
|
||||
**获取方式:**
|
||||
|
||||
进入 [Uni-Lab 实验室](https://uni-lab.bohrium.com),点击左下角的头像,在实验室详情中获取所在实验室的 ak 和 sk:
|
||||
|
||||

|
||||
|
||||
## 配置文件格式
|
||||
|
||||
### 默认配置示例
|
||||
|
||||
首次使用时,系统会自动创建一个基础配置文件 `local_config.py`:
|
||||
|
||||
```python
|
||||
# unilabos的配置文件
|
||||
|
||||
class BasicConfig:
|
||||
ak = "" # 实验室网页给您提供的ak代码
|
||||
sk = "" # 实验室网页给您提供的sk代码
|
||||
|
||||
|
||||
# WebSocket配置,一般无需调整
|
||||
class WSConfig:
|
||||
reconnect_interval = 5 # 重连间隔(秒)
|
||||
max_reconnect_attempts = 999 # 最大重连次数
|
||||
ping_interval = 30 # ping间隔(秒)
|
||||
```
|
||||
|
||||
### 完整配置示例
|
||||
|
||||
您可以根据需要添加更多配置选项:
|
||||
|
||||
```python
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
"""Uni-Lab 配置文件"""
|
||||
|
||||
# 基础配置
|
||||
class BasicConfig:
|
||||
ak = "" # 实验室访问密钥
|
||||
sk = "" # 实验室私钥
|
||||
working_dir = "" # 工作目录(通常自动设置)
|
||||
config_path = "" # 配置文件路径(自动设置)
|
||||
is_host_mode = True # 是否为主站模式
|
||||
slave_no_host = False # 从站模式下是否跳过等待主机服务
|
||||
upload_registry = False # 是否上传注册表
|
||||
machine_name = "undefined" # 机器名称(自动获取)
|
||||
vis_2d_enable = False # 是否启用2D可视化
|
||||
enable_resource_load = True # 是否启用资源加载
|
||||
communication_protocol = "websocket" # 通信协议
|
||||
log_level = "DEBUG" # 日志级别:TRACE, DEBUG, INFO, WARNING, ERROR, CRITICAL
|
||||
|
||||
# WebSocket配置
|
||||
class WSConfig:
|
||||
reconnect_interval = 5 # 重连间隔(秒)
|
||||
max_reconnect_attempts = 999 # 最大重连次数
|
||||
ping_interval = 30 # ping间隔(秒)
|
||||
|
||||
# HTTP配置
|
||||
class HTTPConfig:
|
||||
remote_addr = "https://uni-lab.bohrium.com/api/v1" # 远程服务器地址
|
||||
|
||||
# ROS配置
|
||||
class ROSConfig:
|
||||
modules = [
|
||||
"std_msgs.msg",
|
||||
"geometry_msgs.msg",
|
||||
"control_msgs.msg",
|
||||
"control_msgs.action",
|
||||
"nav2_msgs.action",
|
||||
"unilabos_msgs.msg",
|
||||
"unilabos_msgs.action",
|
||||
] # 需要加载的ROS模块
|
||||
```
|
||||
|
||||
## 配置优先级
|
||||
|
||||
配置项的生效优先级从高到低为:
|
||||
|
||||
1. **命令行参数**:最高优先级
|
||||
2. **环境变量**:中等优先级
|
||||
3. **配置文件**:基础优先级
|
||||
|
||||
这意味着命令行参数会覆盖环境变量和配置文件,环境变量会覆盖配置文件。
|
||||
|
||||
## 推荐配置方式
|
||||
|
||||
根据参数特性,不同配置项有不同的推荐配置方式:
|
||||
|
||||
### 建议通过命令行指定的参数(不需要写入配置文件)
|
||||
|
||||
以下参数推荐通过命令行或环境变量指定,**一般不需要在配置文件中配置**:
|
||||
|
||||
| 参数 | 命令行参数 | 原因 |
|
||||
| ----------------- | ------------------- | ------------------------------------ |
|
||||
| `ak` / `sk` | `--ak` / `--sk` | **安全考虑**:避免敏感信息泄露 |
|
||||
| `working_dir` | `--working_dir` | **灵活性**:不同环境可能使用不同目录 |
|
||||
| `is_host_mode` | `--is_slave` | **运行模式**:由启动场景决定,不固定 |
|
||||
| `slave_no_host` | `--slave_no_host` | **运行模式**:从站特殊配置,按需使用 |
|
||||
| `upload_registry` | `--upload_registry` | **临时操作**:仅首次启动或更新时需要 |
|
||||
| `vis_2d_enable` | `--2d_vis` | **调试功能**:按需临时启用 |
|
||||
| `remote_addr` | `--addr` | **环境切换**:测试/生产环境快速切换 |
|
||||
|
||||
**推荐用法示例:**
|
||||
|
||||
```bash
|
||||
# 标准启动命令(所有必要参数通过命令行指定)
|
||||
unilab --ak your_ak --sk your_sk -g graph.json
|
||||
|
||||
# 测试环境
|
||||
unilab --addr test --ak your_ak --sk your_sk -g graph.json
|
||||
|
||||
# 从站模式
|
||||
unilab --is_slave --ak your_ak --sk your_sk
|
||||
|
||||
# 首次启动上传注册表
|
||||
unilab --ak your_ak --sk your_sk -g graph.json --upload_registry
|
||||
```
|
||||
|
||||
### 适合在配置文件中配置的参数
|
||||
|
||||
以下参数适合在配置文件中配置,通常不会频繁更改:
|
||||
|
||||
| 参数 | 配置类 | 说明 |
|
||||
| ------------------------ | ----------- | ---------------------- |
|
||||
| `log_level` | BasicConfig | 日志级别配置 |
|
||||
| `reconnect_interval` | WSConfig | WebSocket 重连间隔 |
|
||||
| `max_reconnect_attempts` | WSConfig | WebSocket 最大重连次数 |
|
||||
| `ping_interval` | WSConfig | WebSocket 心跳间隔 |
|
||||
| `modules` | ROSConfig | ROS 模块列表 |
|
||||
|
||||
**配置文件示例(推荐最小配置):**
|
||||
|
||||
```python
|
||||
# unilabos的配置文件
|
||||
|
||||
class BasicConfig:
|
||||
log_level = "INFO" # 生产环境建议 INFO,调试时用 DEBUG
|
||||
|
||||
# WebSocket配置,一般保持默认即可
|
||||
class WSConfig:
|
||||
reconnect_interval = 5
|
||||
max_reconnect_attempts = 999
|
||||
ping_interval = 30
|
||||
```
|
||||
|
||||
**注意:** `ak` 和 `sk` 不建议写在配置文件中,始终通过命令行参数或环境变量传递。
|
||||
|
||||
## 命令行参数覆盖配置
|
||||
|
||||
Uni-Lab 允许通过命令行参数覆盖配置文件中的设置,提供更灵活的配置方式。
|
||||
|
||||
### 支持命令行覆盖的配置项
|
||||
|
||||
| 配置类 | 配置字段 | 命令行参数 | 说明 |
|
||||
| ------------- | ----------------- | ------------------- | -------------------------------- |
|
||||
| `BasicConfig` | `ak` | `--ak` | 实验室访问密钥 |
|
||||
| `BasicConfig` | `sk` | `--sk` | 实验室私钥 |
|
||||
| `BasicConfig` | `working_dir` | `--working_dir` | 工作目录路径 |
|
||||
| `BasicConfig` | `is_host_mode` | `--is_slave` | 主站模式(参数为从站模式,取反) |
|
||||
| `BasicConfig` | `slave_no_host` | `--slave_no_host` | 从站模式下跳过等待主机服务 |
|
||||
| `BasicConfig` | `upload_registry` | `--upload_registry` | 启动时上传注册表信息 |
|
||||
| `BasicConfig` | `vis_2d_enable` | `--2d_vis` | 启用 2D 可视化 |
|
||||
| `HTTPConfig` | `remote_addr` | `--addr` | 远程服务地址 |
|
||||
|
||||
### 特殊命令行参数
|
||||
|
||||
除了直接覆盖配置项的参数外,还有一些特殊的命令行参数:
|
||||
|
||||
| 参数 | 说明 |
|
||||
| ------------------- | ------------------------------------ |
|
||||
| `--config` | 指定配置文件路径 |
|
||||
| `--port` | Web 服务端口(不影响配置文件) |
|
||||
| `--disable_browser` | 禁用自动打开浏览器(不影响配置文件) |
|
||||
| `--visual` | 可视化工具选择(不影响配置文件) |
|
||||
| `--skip_env_check` | 跳过环境检查(不影响配置文件) |
|
||||
|
||||
### 命令行覆盖使用示例
|
||||
|
||||
```bash
|
||||
# 通过命令行覆盖认证信息
|
||||
unilab --ak "new_access_key" --sk "new_secret_key" -g graph.json
|
||||
|
||||
# 覆盖服务器地址
|
||||
unilab --ak ak --sk sk --addr "https://custom.server.com/api/v1" -g graph.json
|
||||
|
||||
# 启用从站模式并跳过等待主机
|
||||
unilab --is_slave --slave_no_host --ak ak --sk sk
|
||||
|
||||
# 启用上传注册表和2D可视化
|
||||
unilab --upload_registry --2d_vis --ak ak --sk sk -g graph.json
|
||||
|
||||
# 组合使用多个覆盖参数
|
||||
unilab --ak "key" --sk "secret" --addr "test" --upload_registry --2d_vis -g graph.json
|
||||
```
|
||||
|
||||
### 预设环境地址
|
||||
|
||||
`--addr` 参数支持以下预设值,会自动转换为对应的完整 URL:
|
||||
|
||||
- `test` → `https://uni-lab.test.bohrium.com/api/v1`
|
||||
- `uat` → `https://uni-lab.uat.bohrium.com/api/v1`
|
||||
- `local` → `http://127.0.0.1:48197/api/v1`
|
||||
- 其他值 → 直接使用作为完整 URL
|
||||
|
||||
## 配置选项详解
|
||||
|
||||
### 1. BasicConfig - 基础配置
|
||||
|
||||
基础配置包含了系统运行的核心参数:
|
||||
|
||||
| 参数 | 类型 | 默认值 | 说明 |
|
||||
| ------------------------ | ---- | ------------- | ------------------------------------------ |
|
||||
| `ak` | str | `""` | 实验室访问密钥(必需) |
|
||||
| `sk` | str | `""` | 实验室私钥(必需) |
|
||||
| `working_dir` | str | `""` | 工作目录,通常自动设置 |
|
||||
| `config_path` | str | `""` | 配置文件路径,自动设置 |
|
||||
| `is_host_mode` | bool | `True` | 是否为主站模式 |
|
||||
| `slave_no_host` | bool | `False` | 从站模式下是否跳过等待主机服务 |
|
||||
| `upload_registry` | bool | `False` | 启动时是否上传注册表信息 |
|
||||
| `machine_name` | str | `"undefined"` | 机器名称,自动从 hostname 获取(不可配置) |
|
||||
| `vis_2d_enable` | bool | `False` | 是否启用 2D 可视化 |
|
||||
| `enable_resource_load` | bool | `True` | 是否启用资源加载 |
|
||||
| `communication_protocol` | str | `"websocket"` | 通信协议,固定为 websocket |
|
||||
| `log_level` | str | `"DEBUG"` | 日志级别 |
|
||||
|
||||
#### 日志级别选项
|
||||
|
||||
- `TRACE` - 追踪级别(最详细)
|
||||
- `DEBUG` - 调试级别(默认)
|
||||
- `INFO` - 信息级别
|
||||
- `WARNING` - 警告级别
|
||||
- `ERROR` - 错误级别
|
||||
- `CRITICAL` - 严重错误级别(最简略)
|
||||
|
||||
#### 认证配置(ak / sk)
|
||||
|
||||
`ak` 和 `sk` 是必需的认证参数:
|
||||
|
||||
1. **获取方式**:在 [Uni-Lab 官网](https://uni-lab.bohrium.com) 注册实验室后获得
|
||||
2. **配置方式**:
|
||||
- **命令行参数**:`--ak "your_key" --sk "your_secret"`(最高优先级,推荐)
|
||||
- **环境变量**:`UNILABOS_BASICCONFIG_AK` 和 `UNILABOS_BASICCONFIG_SK`
|
||||
- **配置文件**:在 `BasicConfig` 类中设置(不推荐,安全风险)
|
||||
3. **安全注意**:请妥善保管您的密钥信息,不要提交到版本控制
|
||||
|
||||
**推荐做法**:
|
||||
|
||||
- **开发环境**:使用命令行参数或环境变量
|
||||
- **生产环境**:使用环境变量
|
||||
- **临时测试**:使用命令行参数
|
||||
|
||||
### 2. WSConfig - WebSocket 配置
|
||||
|
||||
WebSocket 是 Uni-Lab 的主要通信方式:
|
||||
|
||||
| 参数 | 类型 | 默认值 | 说明 |
|
||||
| ------------------------ | ---- | ------ | ------------------ |
|
||||
| `reconnect_interval` | int | `5` | 断线重连间隔(秒) |
|
||||
| `max_reconnect_attempts` | int | `999` | 最大重连次数 |
|
||||
| `ping_interval` | int | `30` | 心跳检测间隔(秒) |
|
||||
|
||||
### 3. HTTPConfig - HTTP 配置
|
||||
|
||||
HTTP 客户端配置用于与云端服务通信:
|
||||
|
||||
| 参数 | 类型 | 默认值 | 说明 |
|
||||
| ------------- | ---- | -------------------------------------- | ------------ |
|
||||
| `remote_addr` | str | `"https://uni-lab.bohrium.com/api/v1"` | 远程服务地址 |
|
||||
|
||||
**预设环境地址**:
|
||||
|
||||
- 生产环境:`https://uni-lab.bohrium.com/api/v1`(默认)
|
||||
- 测试环境:`https://uni-lab.test.bohrium.com/api/v1`
|
||||
- UAT 环境:`https://uni-lab.uat.bohrium.com/api/v1`
|
||||
- 本地环境:`http://127.0.0.1:48197/api/v1`
|
||||
|
||||
### 4. ROSConfig - ROS 配置
|
||||
|
||||
配置 ROS 消息转换器需要加载的模块:
|
||||
|
||||
| 配置项 | 类型 | 默认值 | 说明 |
|
||||
| --------- | ---- | ---------- | ------------ |
|
||||
| `modules` | list | 见下方示例 | ROS 模块列表 |
|
||||
|
||||
**默认模块列表:**
|
||||
|
||||
```python
|
||||
class ROSConfig:
|
||||
modules = [
|
||||
"std_msgs.msg", # 标准消息类型
|
||||
"geometry_msgs.msg", # 几何消息类型
|
||||
"control_msgs.msg", # 控制消息类型
|
||||
"control_msgs.action", # 控制动作类型
|
||||
"nav2_msgs.action", # 导航动作类型
|
||||
"unilabos_msgs.msg", # UniLab 自定义消息类型
|
||||
"unilabos_msgs.action", # UniLab 自定义动作类型
|
||||
]
|
||||
```
|
||||
|
||||
您可以根据实际使用的设备和功能添加其他 ROS 模块。
|
||||
|
||||
## 环境变量配置
|
||||
|
||||
Uni-Lab 支持通过环境变量覆盖配置文件中的设置。
|
||||
|
||||
### 环境变量命名规则
|
||||
|
||||
```
|
||||
UNILABOS_<配置类名>_<配置项名>
|
||||
```
|
||||
|
||||
**注意:**
|
||||
|
||||
- 环境变量名不区分大小写
|
||||
- 配置类名和配置项名都会转换为大写进行匹配
|
||||
|
||||
### 设置环境变量
|
||||
|
||||
#### Linux / macOS
|
||||
|
||||
```bash
|
||||
# 临时设置(当前终端)
|
||||
export UNILABOS_BASICCONFIG_LOG_LEVEL=INFO
|
||||
export UNILABOS_BASICCONFIG_AK="your_access_key"
|
||||
export UNILABOS_BASICCONFIG_SK="your_secret_key"
|
||||
|
||||
# 永久设置(添加到 ~/.bashrc 或 ~/.zshrc)
|
||||
echo 'export UNILABOS_BASICCONFIG_LOG_LEVEL=INFO' >> ~/.bashrc
|
||||
source ~/.bashrc
|
||||
```
|
||||
|
||||
#### Windows (cmd)
|
||||
|
||||
```cmd
|
||||
# 临时设置
|
||||
set UNILABOS_BASICCONFIG_LOG_LEVEL=INFO
|
||||
set UNILABOS_BASICCONFIG_AK=your_access_key
|
||||
|
||||
# 永久设置(系统环境变量)
|
||||
setx UNILABOS_BASICCONFIG_LOG_LEVEL INFO
|
||||
```
|
||||
|
||||
#### Windows (PowerShell)
|
||||
|
||||
```powershell
|
||||
# 临时设置
|
||||
$env:UNILABOS_BASICCONFIG_LOG_LEVEL="INFO"
|
||||
$env:UNILABOS_BASICCONFIG_AK="your_access_key"
|
||||
|
||||
# 永久设置
|
||||
[Environment]::SetEnvironmentVariable("UNILABOS_BASICCONFIG_LOG_LEVEL", "INFO", "User")
|
||||
```
|
||||
|
||||
### 环境变量类型转换
|
||||
|
||||
系统会根据配置项的原始类型自动转换环境变量值:
|
||||
|
||||
| 原始类型 | 转换规则 |
|
||||
| -------- | --------------------------------------- |
|
||||
| `bool` | "true", "1", "yes" → True;其他 → False |
|
||||
| `int` | 转换为整数 |
|
||||
| `float` | 转换为浮点数 |
|
||||
| `str` | 直接使用字符串值 |
|
||||
|
||||
**示例:**
|
||||
|
||||
```bash
|
||||
# 布尔值
|
||||
export UNILABOS_BASICCONFIG_IS_HOST_MODE=true # 将设置为 True
|
||||
export UNILABOS_BASICCONFIG_IS_HOST_MODE=false # 将设置为 False
|
||||
|
||||
# 整数
|
||||
export UNILABOS_WSCONFIG_RECONNECT_INTERVAL=10 # 将设置为 10
|
||||
|
||||
# 字符串
|
||||
export UNILABOS_BASICCONFIG_LOG_LEVEL=INFO # 将设置为 "INFO"
|
||||
```
|
||||
|
||||
### 环境变量示例
|
||||
|
||||
```bash
|
||||
# 设置基础配置
|
||||
export UNILABOS_BASICCONFIG_AK="your_access_key"
|
||||
export UNILABOS_BASICCONFIG_SK="your_secret_key"
|
||||
export UNILABOS_BASICCONFIG_IS_HOST_MODE="true"
|
||||
|
||||
# 设置WebSocket配置
|
||||
export UNILABOS_WSCONFIG_RECONNECT_INTERVAL="10"
|
||||
export UNILABOS_WSCONFIG_MAX_RECONNECT_ATTEMPTS="500"
|
||||
|
||||
# 设置HTTP配置
|
||||
export UNILABOS_HTTPCONFIG_REMOTE_ADDR="https://uni-lab.test.bohrium.com/api/v1"
|
||||
```
|
||||
|
||||
## 配置文件使用方法
|
||||
|
||||
### 1. 使用默认配置文件(推荐)
|
||||
|
||||
系统会自动查找并加载配置文件:
|
||||
|
||||
```bash
|
||||
# 直接启动,使用默认的 unilabos_data/local_config.py
|
||||
unilab --ak your_ak --sk your_sk -g graph.json
|
||||
```
|
||||
|
||||
查找顺序:
|
||||
|
||||
1. 环境变量 `UNILABOS_BASICCONFIG_CONFIG_PATH` 指定的路径
|
||||
2. 工作目录下的 `local_config.py`
|
||||
3. 首次使用时会引导创建配置文件
|
||||
|
||||
### 2. 指定配置文件启动
|
||||
|
||||
```bash
|
||||
# 使用指定配置文件启动
|
||||
unilab --config /path/to/your/config.py --ak ak --sk sk -g graph.json
|
||||
```
|
||||
|
||||
### 3. 配置文件验证
|
||||
|
||||
系统启动时会自动验证配置文件:
|
||||
|
||||
- **语法检查**:确保 Python 语法正确
|
||||
- **类型检查**:验证配置项类型是否匹配
|
||||
- **加载确认**:控制台输出加载成功信息
|
||||
|
||||
## 常用配置场景
|
||||
|
||||
### 场景 1:调整日志级别
|
||||
|
||||
**配置文件方式:**
|
||||
|
||||
```python
|
||||
class BasicConfig:
|
||||
log_level = "INFO" # 生产环境建议使用 INFO 或 WARNING
|
||||
```
|
||||
|
||||
**环境变量方式:**
|
||||
|
||||
```bash
|
||||
export UNILABOS_BASICCONFIG_LOG_LEVEL=INFO
|
||||
unilab --ak ak --sk sk -g graph.json
|
||||
```
|
||||
|
||||
**命令行方式**(需要配置文件已包含):
|
||||
|
||||
```bash
|
||||
# 配置文件无直接命令行参数,需通过环境变量
|
||||
UNILABOS_BASICCONFIG_LOG_LEVEL=INFO unilab --ak ak --sk sk -g graph.json
|
||||
```
|
||||
|
||||
### 场景 2:配置 WebSocket 重连
|
||||
|
||||
**配置文件方式:**
|
||||
|
||||
```python
|
||||
class WSConfig:
|
||||
reconnect_interval = 10 # 增加重连间隔到 10 秒
|
||||
max_reconnect_attempts = 100 # 减少最大重连次数到 100 次
|
||||
```
|
||||
|
||||
**环境变量方式:**
|
||||
|
||||
```bash
|
||||
export UNILABOS_WSCONFIG_RECONNECT_INTERVAL=10
|
||||
export UNILABOS_WSCONFIG_MAX_RECONNECT_ATTEMPTS=100
|
||||
```
|
||||
|
||||
### 场景 3:切换服务器环境
|
||||
|
||||
**配置文件方式:**
|
||||
|
||||
```python
|
||||
class HTTPConfig:
|
||||
remote_addr = "https://uni-lab.test.bohrium.com/api/v1"
|
||||
```
|
||||
|
||||
**环境变量方式:**
|
||||
|
||||
```bash
|
||||
export UNILABOS_HTTPCONFIG_REMOTE_ADDR=https://uni-lab.test.bohrium.com/api/v1
|
||||
```
|
||||
|
||||
**命令行方式(推荐):**
|
||||
|
||||
```bash
|
||||
unilab --addr test --ak your_ak --sk your_sk -g graph.json
|
||||
```
|
||||
|
||||
### 场景 4:从站模式配置
|
||||
|
||||
**配置文件方式:**
|
||||
|
||||
```python
|
||||
class BasicConfig:
|
||||
is_host_mode = False # 从站模式
|
||||
slave_no_host = True # 不等待主机服务
|
||||
```
|
||||
|
||||
**命令行方式(推荐):**
|
||||
|
||||
```bash
|
||||
unilab --is_slave --slave_no_host --ak your_ak --sk your_sk
|
||||
```
|
||||
|
||||
## 最佳实践
|
||||
|
||||
### 1. 安全配置
|
||||
|
||||
**不要在配置文件中存储敏感信息**
|
||||
|
||||
- ❌ **不推荐**:在配置文件中明文存储 ak/sk
|
||||
- ✅ **推荐**:使用环境变量或命令行参数
|
||||
|
||||
```bash
|
||||
# 生产环境 - 使用环境变量(推荐)
|
||||
export UNILABOS_BASICCONFIG_AK="your_access_key"
|
||||
export UNILABOS_BASICCONFIG_SK="your_secret_key"
|
||||
unilab -g graph.json
|
||||
|
||||
# 或使用命令行参数
|
||||
unilab --ak "your_access_key" --sk "your_secret_key" -g graph.json
|
||||
```
|
||||
|
||||
**其他安全建议:**
|
||||
|
||||
- 不要将包含密钥的配置文件提交到版本控制系统
|
||||
- 限制配置文件权限:`chmod 600 local_config.py`
|
||||
- 定期更换访问密钥
|
||||
- 使用 `.gitignore` 排除配置文件
|
||||
|
||||
### 2. 多环境配置
|
||||
|
||||
为不同环境创建不同的配置文件:
|
||||
|
||||
```
|
||||
configs/
|
||||
├── base_config.py # 基础配置(非敏感)
|
||||
├── dev_config.py # 开发环境
|
||||
├── test_config.py # 测试环境
|
||||
├── prod_config.py # 生产环境
|
||||
└── example_config.py # 示例配置
|
||||
```
|
||||
|
||||
**环境切换示例**:
|
||||
|
||||
```bash
|
||||
# 本地开发环境
|
||||
unilab --config configs/dev_config.py --addr local --ak ak --sk sk -g graph.json
|
||||
|
||||
# 测试环境
|
||||
unilab --config configs/test_config.py --addr test --ak ak --sk sk --upload_registry -g graph.json
|
||||
|
||||
# 生产环境
|
||||
unilab --config configs/prod_config.py --ak "$PROD_AK" --sk "$PROD_SK" -g graph.json
|
||||
```
|
||||
|
||||
### 3. 配置管理
|
||||
|
||||
**配置文件最佳实践:**
|
||||
|
||||
- 保持配置文件简洁,只包含需要修改的配置项
|
||||
- 为配置项添加注释说明其作用
|
||||
- 定期检查和更新配置文件
|
||||
- 版本控制仅保存示例配置,不包含实际密钥
|
||||
|
||||
**命令行参数优先使用场景:**
|
||||
|
||||
- 临时测试不同配置
|
||||
- CI/CD 流水线中的动态配置
|
||||
- 不同环境间快速切换
|
||||
- 敏感信息的安全传递
|
||||
|
||||
### 4. 灵活配置策略
|
||||
|
||||
**基础配置文件 + 命令行覆盖**的推荐方式:
|
||||
|
||||
```python
|
||||
# base_config.py - 基础配置(非敏感信息)
|
||||
class BasicConfig:
|
||||
# 非敏感配置写在文件中
|
||||
is_host_mode = True
|
||||
upload_registry = False
|
||||
vis_2d_enable = False
|
||||
log_level = "INFO"
|
||||
|
||||
class WSConfig:
|
||||
reconnect_interval = 5
|
||||
max_reconnect_attempts = 999
|
||||
ping_interval = 30
|
||||
```
|
||||
|
||||
```bash
|
||||
# 启动时通过命令行覆盖关键参数
|
||||
unilab --config base_config.py \
|
||||
--ak "$AK" \
|
||||
--sk "$SK" \
|
||||
--addr "test" \
|
||||
--upload_registry \
|
||||
--2d_vis \
|
||||
-g graph.json
|
||||
```
|
||||
|
||||
## 故障排除
|
||||
|
||||
### 1. 配置文件加载失败
|
||||
|
||||
**错误信息**:`[ENV] 配置文件 xxx 不存在`
|
||||
|
||||
**解决方法**:
|
||||
|
||||
- 确认配置文件路径正确
|
||||
- 检查文件权限是否可读
|
||||
- 确保配置文件是 `.py` 格式
|
||||
- 使用绝对路径或相对于当前目录的路径
|
||||
|
||||
### 2. 语法错误
|
||||
|
||||
**错误信息**:`[ENV] 加载配置文件 xxx 失败`
|
||||
|
||||
**解决方法**:
|
||||
|
||||
- 检查 Python 语法是否正确
|
||||
- 确认类名和字段名拼写正确
|
||||
- 验证缩进是否正确(使用空格而非制表符)
|
||||
- 确保字符串使用引号包裹
|
||||
|
||||
### 3. 认证失败
|
||||
|
||||
**错误信息**:`后续运行必须拥有一个实验室`
|
||||
|
||||
**解决方法**:
|
||||
|
||||
- 确认 `ak` 和 `sk` 已正确配置
|
||||
- 检查密钥是否有效(未过期或撤销)
|
||||
- 确认网络连接正常
|
||||
- 验证密钥是否来自正确的实验室
|
||||
|
||||
### 4. 环境变量不生效
|
||||
|
||||
**解决方法**:
|
||||
|
||||
- 确认环境变量名格式正确(`UNILABOS_<类名>_<字段名>`)
|
||||
- 检查环境变量是否已正确设置(`echo $VARIABLE_NAME`)
|
||||
- 重启终端或重新加载环境变量
|
||||
- 确认环境变量值的类型正确
|
||||
|
||||
### 5. 命令行参数不生效
|
||||
|
||||
**错误现象**:设置了命令行参数但配置没有生效
|
||||
|
||||
**解决方法**:
|
||||
|
||||
- 确认参数名拼写正确(如 `--ak` 而不是 `--access_key`)
|
||||
- 检查参数格式是否正确(布尔参数如 `--is_slave` 不需要值)
|
||||
- 确认参数位置正确(所有参数都应在 `unilab` 之后)
|
||||
- 查看启动日志确认参数是否被正确解析
|
||||
- 检查是否有配置文件或环境变量与之冲突
|
||||
|
||||
### 6. 配置优先级混淆
|
||||
|
||||
**错误现象**:不确定哪个配置生效
|
||||
|
||||
**解决方法**:
|
||||
|
||||
- 记住优先级:**命令行参数 > 环境变量 > 配置文件**
|
||||
- 使用 `--ak` 和 `--sk` 参数时会看到提示信息:"传入了 ak 参数,优先采用传入参数!"
|
||||
- 检查启动日志中的配置加载信息
|
||||
- 临时移除低优先级配置来测试高优先级配置是否生效
|
||||
- 使用 `printenv | grep UNILABOS` 查看所有相关环境变量
|
||||
|
||||
## 配置验证
|
||||
|
||||
### 检查配置是否生效
|
||||
|
||||
启动 Uni-Lab 时,控制台会输出配置加载信息:
|
||||
|
||||
```
|
||||
[ENV] 配置文件 /path/to/config.py 加载成功
|
||||
[ENV] 设置 BasicConfig.log_level = INFO
|
||||
传入了ak参数,优先采用传入参数!
|
||||
传入了sk参数,优先采用传入参数!
|
||||
```
|
||||
|
||||
### 常见配置错误
|
||||
|
||||
1. **配置文件格式错误**
|
||||
|
||||
```
|
||||
[ENV] 加载配置文件 /path/to/config.py 失败
|
||||
```
|
||||
|
||||
**解决方案**:检查 Python 语法,确保配置类定义正确
|
||||
|
||||
2. **环境变量格式错误**
|
||||
|
||||
```
|
||||
[ENV] 环境变量格式不正确:UNILABOS_INVALID_VAR
|
||||
```
|
||||
|
||||
**解决方案**:确保环境变量遵循 `UNILABOS_<类名>_<字段名>` 格式
|
||||
|
||||
3. **类或字段不存在**
|
||||
```
|
||||
[ENV] 未找到类:UNKNOWNCONFIG
|
||||
[ENV] 类 BasicConfig 中未找到字段:UNKNOWN_FIELD
|
||||
```
|
||||
**解决方案**:检查配置类名和字段名是否正确
|
||||
|
||||
## 相关文档
|
||||
|
||||
- [工作目录详解](working_directory.md)
|
||||
- [启动参数详解](../user_guide/launch.md)
|
||||
- [快速安装指南](../user_guide/quick_install_guide.md)
|
||||
|
Before Width: | Height: | Size: 526 KiB |
@@ -1,218 +0,0 @@
|
||||
# 工作目录详解
|
||||
|
||||
本文档详细介绍 Uni-Lab 工作目录(`working_dir`)的判断逻辑和详细用法。
|
||||
|
||||
## 什么是工作目录
|
||||
|
||||
工作目录是 Uni-Lab 存储配置文件、日志和运行数据的目录。默认情况下,工作目录为 `当前目录/unilabos_data`。
|
||||
|
||||
## 工作目录判断逻辑
|
||||
|
||||
系统按以下决策树自动确定工作目录:
|
||||
|
||||
### 第一步:初始判断
|
||||
|
||||
```python
|
||||
# 检查当前目录
|
||||
if 当前目录以 "unilabos_data" 结尾:
|
||||
working_dir = 当前目录的绝对路径
|
||||
else:
|
||||
working_dir = 当前目录/unilabos_data
|
||||
```
|
||||
|
||||
**解释:**
|
||||
- 如果您已经在 `unilabos_data` 目录内启动,系统直接使用当前目录
|
||||
- 否则,系统会在当前目录下创建或使用 `unilabos_data` 子目录
|
||||
|
||||
### 第二步:处理 `--working_dir` 参数
|
||||
|
||||
如果用户指定了 `--working_dir` 参数:
|
||||
|
||||
```python
|
||||
working_dir = 用户指定的路径
|
||||
```
|
||||
|
||||
此时还会检查配置文件:
|
||||
- 如果同时指定了 `--config` 但该文件不存在
|
||||
- 系统会尝试在 `working_dir/local_config.py` 查找
|
||||
- 如果仍未找到,报错退出
|
||||
|
||||
### 第三步:处理 `--config` 参数
|
||||
|
||||
如果用户指定了 `--config` 且文件存在:
|
||||
|
||||
```python
|
||||
# 工作目录改为配置文件所在目录
|
||||
working_dir = config_path 的父目录
|
||||
```
|
||||
|
||||
**重要:** 这意味着配置文件的位置会影响工作目录的判断。
|
||||
|
||||
## 使用场景示例
|
||||
|
||||
### 场景 1:默认场景(推荐)
|
||||
|
||||
```bash
|
||||
# 当前目录:/home/user/project
|
||||
unilab --ak your_ak --sk your_sk -g graph.json
|
||||
|
||||
# 结果:
|
||||
# working_dir = /home/user/project/unilabos_data
|
||||
# config_path = /home/user/project/unilabos_data/local_config.py
|
||||
```
|
||||
|
||||
### 场景 2:在 unilabos_data 目录内启动
|
||||
|
||||
```bash
|
||||
cd /home/user/project/unilabos_data
|
||||
unilab --ak your_ak --sk your_sk -g graph.json
|
||||
|
||||
# 结果:
|
||||
# working_dir = /home/user/project/unilabos_data
|
||||
# config_path = /home/user/project/unilabos_data/local_config.py
|
||||
```
|
||||
|
||||
### 场景 3:手动指定工作目录
|
||||
|
||||
```bash
|
||||
unilab --working_dir /custom/path --ak your_ak --sk your_sk -g graph.json
|
||||
|
||||
# 结果:
|
||||
# working_dir = /custom/path
|
||||
# config_path = /custom/path/local_config.py (如果存在)
|
||||
```
|
||||
|
||||
### 场景 4:通过配置文件路径推断工作目录
|
||||
|
||||
```bash
|
||||
unilab --config /data/lab_a/local_config.py --ak your_ak --sk your_sk -g graph.json
|
||||
|
||||
# 结果:
|
||||
# working_dir = /data/lab_a
|
||||
# config_path = /data/lab_a/local_config.py
|
||||
```
|
||||
|
||||
## 高级用法:管理多个实验室配置
|
||||
|
||||
### 方法 1:使用不同的工作目录
|
||||
|
||||
```bash
|
||||
# 实验室 A
|
||||
unilab --working_dir ~/labs/lab_a --ak ak_a --sk sk_a -g graph_a.json
|
||||
|
||||
# 实验室 B
|
||||
unilab --working_dir ~/labs/lab_b --ak ak_b --sk sk_b -g graph_b.json
|
||||
```
|
||||
|
||||
### 方法 2:使用不同的配置文件
|
||||
|
||||
```bash
|
||||
# 实验室 A
|
||||
unilab --config ~/labs/lab_a/config.py --ak ak_a --sk sk_a -g graph_a.json
|
||||
|
||||
# 实验室 B
|
||||
unilab --config ~/labs/lab_b/config.py --ak ak_b --sk sk_b -g graph_b.json
|
||||
```
|
||||
|
||||
### 方法 3:使用shell脚本管理
|
||||
|
||||
创建 `start_lab_a.sh`:
|
||||
|
||||
```bash
|
||||
#!/bin/bash
|
||||
cd ~/labs/lab_a
|
||||
unilab --ak your_ak_a --sk your_sk_a -g graph_a.json
|
||||
```
|
||||
|
||||
创建 `start_lab_b.sh`:
|
||||
|
||||
```bash
|
||||
#!/bin/bash
|
||||
cd ~/labs/lab_b
|
||||
unilab --ak your_ak_b --sk your_sk_b -g graph_b.json
|
||||
```
|
||||
|
||||
## 完整决策流程图
|
||||
|
||||
```
|
||||
开始
|
||||
↓
|
||||
判断当前目录是否以 unilabos_data 结尾?
|
||||
├─ 是 → working_dir = 当前目录
|
||||
└─ 否 → working_dir = 当前目录/unilabos_data
|
||||
↓
|
||||
用户是否指定 --working_dir?
|
||||
└─ 是 → working_dir = 指定路径
|
||||
↓
|
||||
用户是否指定 --config 且文件存在?
|
||||
└─ 是 → working_dir = config 文件所在目录
|
||||
↓
|
||||
检查 working_dir/local_config.py 是否存在?
|
||||
├─ 是 → 加载配置文件 → 继续启动
|
||||
└─ 否 → 询问是否首次使用
|
||||
├─ 是 → 创建目录和配置文件 → 继续启动
|
||||
└─ 否 → 退出程序
|
||||
```
|
||||
|
||||
## 常见问题
|
||||
|
||||
### 1. 如何查看当前使用的工作目录?
|
||||
|
||||
启动 Uni-Lab 时,系统会在控制台输出:
|
||||
|
||||
```
|
||||
当前工作目录为 /path/to/working_dir
|
||||
```
|
||||
|
||||
### 2. 可以在同一台机器上运行多个实验室吗?
|
||||
|
||||
可以。使用不同的工作目录或配置文件即可:
|
||||
|
||||
```bash
|
||||
# 终端 1
|
||||
unilab --working_dir ~/lab1 --ak ak1 --sk sk1 -g graph1.json
|
||||
|
||||
# 终端 2
|
||||
unilab --working_dir ~/lab2 --ak ak2 --sk sk2 -g graph2.json
|
||||
```
|
||||
|
||||
### 3. 工作目录中存储了什么?
|
||||
|
||||
- `local_config.py` - 配置文件
|
||||
- 日志文件
|
||||
- 临时运行数据
|
||||
- 缓存文件
|
||||
|
||||
### 4. 可以删除工作目录吗?
|
||||
|
||||
可以,但会丢失:
|
||||
- 配置文件(需要重新创建)
|
||||
- 历史日志
|
||||
- 缓存数据
|
||||
|
||||
建议定期备份配置文件。
|
||||
|
||||
### 5. 如何迁移到新的工作目录?
|
||||
|
||||
```bash
|
||||
# 1. 复制旧的工作目录
|
||||
cp -r ~/old_path/unilabos_data ~/new_path/unilabos_data
|
||||
|
||||
# 2. 在新位置启动
|
||||
cd ~/new_path
|
||||
unilab --ak your_ak --sk your_sk -g graph.json
|
||||
```
|
||||
|
||||
## 最佳实践
|
||||
|
||||
1. **使用默认工作目录**:对于单一实验室,使用默认的 `./unilabos_data` 即可
|
||||
2. **组织多实验室**:为每个实验室创建独立的目录结构
|
||||
3. **版本控制**:将配置文件纳入版本控制,但排除日志和缓存
|
||||
4. **备份配置**:定期备份 `local_config.py` 文件
|
||||
5. **使用脚本**:为不同实验室创建启动脚本,简化操作
|
||||
|
||||
## 相关文档
|
||||
|
||||
- [配置文件指南](configuration.md)
|
||||
- [启动参数详解](../user_guide/launch.md)
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
(instructions)=
|
||||
# 设备抽象、指令集与通信中间件
|
||||
|
||||
Uni-Lab-OS的目的是将不同类型和厂家的实验仪器进行抽象统一,对应用层提供服务。因此,理清实验室设备之间的业务逻辑至关重要。
|
||||
Uni-Lab 操作系统的目的是将不同类型和厂家的实验仪器进行抽象统一,对应用层提供服务。因此,理清实验室设备之间的业务逻辑至关重要。
|
||||
|
||||
## 设备间通信模式
|
||||
|
||||
|
||||
@@ -24,7 +24,6 @@ extensions = [
|
||||
"sphinx.ext.autodoc",
|
||||
"sphinx.ext.napoleon", # 如果您使用 Google 或 NumPy 风格的 docstrings
|
||||
"sphinx_rtd_theme",
|
||||
"sphinxcontrib.mermaid"
|
||||
]
|
||||
|
||||
source_suffix = {
|
||||
@@ -43,8 +42,6 @@ myst_enable_extensions = [
|
||||
"substitution",
|
||||
]
|
||||
|
||||
myst_fence_as_directive = ["mermaid"]
|
||||
|
||||
templates_path = ["_templates"]
|
||||
exclude_patterns = ["_build", "Thumbs.db", ".DS_Store"]
|
||||
|
||||
@@ -206,5 +203,3 @@ def generate_action_includes(app):
|
||||
|
||||
def setup(app):
|
||||
app.connect("builder-inited", generate_action_includes)
|
||||
app.add_js_file("https://cdn.jsdelivr.net/npm/mermaid/dist/mermaid.min.js")
|
||||
app.add_js_file(None, body="mermaid.initialize({startOnLoad:true});")
|
||||
|
||||
@@ -1,17 +1,6 @@
|
||||
# 实例:电池装配工站接入(PLC 控制)
|
||||
# 电池装配工站接入(PLC)
|
||||
|
||||
> **文档类型**:实际应用案例
|
||||
> **适用场景**:使用 PLC 控制的电池装配工站接入
|
||||
> **前置知识**:{doc}`../add_device` | {doc}`../add_registry`
|
||||
|
||||
本指南以电池装配工站为实际案例,引导你完成 PLC 控制设备的完整接入流程,包括新建工站文件、编写驱动与寄存器读写、生成注册表、上传及注意事项。
|
||||
|
||||
## 案例概述
|
||||
|
||||
**设备类型**:电池装配工站
|
||||
**通信方式**:Modbus TCP (PLC)
|
||||
**工站基类**:`WorkstationBase`
|
||||
**主要功能**:电池组装、寄存器读写、数据采集
|
||||
本指南将引导你完成电池装配工站(以 PLC 控制为例)的接入流程,包括新建工站文件、编写驱动与寄存器读写、生成注册表、上传及注意事项。
|
||||
|
||||
## 1. 新建工站文件
|
||||
|
||||
@@ -50,6 +39,8 @@ class CoinCellAssemblyWorkstation(WorkstationBase):
|
||||
self.client = tcp.register_node_list(self.nodes)
|
||||
```
|
||||
|
||||
|
||||
|
||||
## 2. 编写驱动与寄存器读写
|
||||
|
||||
### 2.1 寄存器示例
|
||||
@@ -93,49 +84,49 @@ def start_and_read_metrics(self):
|
||||
|
||||
完成工站类与驱动后,需要生成(或更新)工站注册表供系统识别。
|
||||
|
||||
### 3.1 新增工站设备(或资源)首次生成注册表
|
||||
|
||||
首先通过以下命令启动 unilab。进入 unilab 系统状态检查页面
|
||||
### 3.1 新增工站设备(或资源)首次生成注册表
|
||||
首先通过以下命令启动unilab。进入unilab系统状态检查页面
|
||||
|
||||
```bash
|
||||
python unilabos\app\main.py -g celljson.json --ak <user的AK> --sk <user的SK>
|
||||
```
|
||||
|
||||
点击注册表编辑,进入注册表编辑页面
|
||||
|
||||

|
||||

|
||||
|
||||
按照图示步骤填写自动生成注册表信息:
|
||||
|
||||

|
||||

|
||||
|
||||
步骤说明:
|
||||
|
||||
1. 选择新增的工站`coin_cell_assembly.py`文件
|
||||
2. 点击分析按钮,分析`coin_cell_assembly.py`文件
|
||||
3. 选择`coin_cell_assembly.py`文件中继承`WorkstationBase`类
|
||||
4. 填写新增的工站.py 文件与`unilabos`目录的距离。例如,新增的工站文件`coin_cell_assembly.py`路径为`unilabos\devices\workstation\coin_cell_assembly\coin_cell_assembly.py`,则此处填写`unilabos.devices.workstation.coin_cell_assembly`。
|
||||
4. 填写新增的工站.py文件与`unilabos`目录的距离。例如,新增的工站文件`coin_cell_assembly.py`路径为`unilabos\devices\workstation\coin_cell_assembly\coin_cell_assembly.py`,则此处填写`unilabos.devices.workstation.coin_cell_assembly`。
|
||||
5. 此处填写新定义工站的类的名字(名称可以自拟)
|
||||
6. 填写新的工站注册表备注信息
|
||||
7. 生成注册表
|
||||
|
||||
以上操作步骤完成,则会生成的新的注册表 YAML 文件,如下图:
|
||||
以上操作步骤完成,则会生成的新的注册表ymal文件,如下图:
|
||||

|
||||
|
||||
|
||||
|
||||
|
||||
|
||||

|
||||
|
||||
### 3.2 添加新生成注册表
|
||||
|
||||
在`unilabos\registry\devices`目录下新建一个 yaml 文件,此处新建文件命名为`coincellassemblyworkstation_device.yaml`,将上面生成的新的注册表信息粘贴到`coincellassemblyworkstation_device.yaml`文件中。
|
||||
在`unilabos\registry\devices`目录下新建一个yaml文件,此处新建文件命名为`coincellassemblyworkstation_device.yaml`,将上面生成的新的注册表信息粘贴到`coincellassemblyworkstation_device.yaml`文件中。
|
||||
|
||||
在终端输入以下命令进行注册表补全操作。
|
||||
|
||||
```bash
|
||||
python unilabos\app\register.py --complete_registry
|
||||
```
|
||||
|
||||
|
||||
### 3.3 启动并上传注册表
|
||||
|
||||
新增设备之后,启动 unilab 需要增加`--upload_registry`参数,来上传注册表信息。
|
||||
新增设备之后,启动unilab需要增加`--upload_registry`参数,来上传注册表信息。
|
||||
|
||||
```bash
|
||||
python unilabos\app\main.py -g celljson.json --ak <user的AK> --sk <user的SK> --upload_registry
|
||||
@@ -143,60 +134,14 @@ python unilabos\app\main.py -g celljson.json --ak <user的AK> --sk <user的SK> -
|
||||
|
||||
## 4. 注意事项
|
||||
|
||||
### 4.1 验证模块路径
|
||||
- 在新生成的 YAML 中,确认 `module` 指向新工站类,本例中需检查`coincellassemblyworkstation_device.yaml`文件中是否指向了`coin_cell_assembly.py`文件中定义的`CoinCellAssemblyWorkstation`类文件:
|
||||
|
||||
在新生成的 YAML 中,确认 `module` 指向新工站类。本例中需检查 `coincellassemblyworkstation_device.yaml` 文件中是否正确指向了 `CoinCellAssemblyWorkstation` 类:
|
||||
|
||||
```yaml
|
||||
```
|
||||
module: unilabos.devices.workstation.coin_cell_assembly.coin_cell_assembly:CoinCellAssemblyWorkstation
|
||||
```
|
||||
|
||||
### 4.2 首次接入流程
|
||||
- 首次新增设备(或资源)需要在网页端新增注册表信息,`--complete_registry`补全注册表,`--upload_registry`上传注册表信息。
|
||||
|
||||
首次新增设备(或资源)需要完整流程:
|
||||
- 如果不是新增设备(或资源),仅对工站驱动的.py文件进行了修改,则不需要在网页端新增注册表信息。只需要运行补全注册表信息之后,上传注册表即可。
|
||||
|
||||
1. ✅ 在网页端生成注册表信息
|
||||
2. ✅ 使用 `--complete_registry` 补全注册表
|
||||
3. ✅ 使用 `--upload_registry` 上传注册表信息
|
||||
|
||||
### 4.3 驱动更新流程
|
||||
|
||||
如果不是新增设备,仅修改了工站驱动的 `.py` 文件:
|
||||
|
||||
1. ✅ 运行 `--complete_registry` 补全注册表
|
||||
2. ✅ 运行 `--upload_registry` 上传注册表
|
||||
3. ❌ 不需要在网页端重新生成注册表
|
||||
|
||||
### 4.4 PLC 通信注意事项
|
||||
|
||||
- **握手机制**:若需参数下发,建议在 PLC 端设置标志寄存器并完成握手复位,避免粘连与竞争
|
||||
- **字节序**:FLOAT32 等多字节数据类型需要正确指定字节序(如 `WorderOrder.LITTLE`)
|
||||
- **寄存器映射**:确保 CSV 文件中的寄存器地址与 PLC 实际配置一致
|
||||
- **连接稳定性**:在初始化时检查 PLC 连接状态,建议添加重连机制
|
||||
|
||||
## 5. 扩展阅读
|
||||
|
||||
### 相关文档
|
||||
|
||||
- {doc}`../add_device` - 设备驱动编写通用指南
|
||||
- {doc}`../add_registry` - 注册表配置完整指南
|
||||
- {doc}`../workstation_architecture` - 工站架构详解
|
||||
|
||||
### 技术要点
|
||||
|
||||
- **Modbus TCP 通信**:PLC 通信协议和寄存器读写
|
||||
- **WorkstationBase**:工站基类的继承和使用
|
||||
- **寄存器映射**:CSV 格式的寄存器配置
|
||||
- **注册表生成**:自动化工具使用
|
||||
|
||||
## 6. 总结
|
||||
|
||||
通过本案例,你应该掌握:
|
||||
|
||||
1. ✅ 如何创建 PLC 控制的工站驱动
|
||||
2. ✅ Modbus TCP 通信和寄存器读写
|
||||
3. ✅ 使用可视化编辑器生成注册表
|
||||
4. ✅ 注册表的补全和上传流程
|
||||
5. ✅ 新增设备与更新驱动的区别
|
||||
|
||||
这个案例展示了完整的 PLC 设备接入流程,可以作为其他类似设备接入的参考模板。
|
||||
@@ -1,18 +1,10 @@
|
||||
# 添加设备:编写驱动
|
||||
# 添加新设备
|
||||
|
||||
在 Uni-Lab 中,设备(Device)是实验操作的基础单元。Uni-Lab 使用**注册表机制**来兼容管理种类繁多的设备驱动程序。抽象的设备对外拥有【话题】【服务】【动作】三种通信机制,因此将设备添加进 Uni-Lab,实际上是将设备驱动中的这三种机制映射到 Uni-Lab 标准指令集上。
|
||||
在 Uni-Lab 中,设备(Device)是实验操作的基础单元。Uni-Lab 使用**注册表机制**来兼容管理种类繁多的设备驱动程序。回顾 {ref}`instructions` 中的概念,抽象的设备对外拥有【话题】【服务】【动作】三种通信机制,因此将设备添加进 Uni-Lab,实际上是将设备驱动中的三种机制映射到 Uni-Lab 标准指令集上。
|
||||
|
||||
> **💡 提示:** 本文档介绍如何使用已有的设备驱动(SDK)。若设备没有现成的驱动程序,需要自己开发驱动,请参考 {doc}`add_old_device`。
|
||||
能被 Uni-Lab 添加的驱动程序类型有以下种类:
|
||||
|
||||
## 支持的驱动类型
|
||||
|
||||
Uni-Lab 支持以下两种驱动程序:
|
||||
|
||||
### 1. Python Class(推荐)
|
||||
|
||||
Python 类设备驱动在完成注册表后可以直接在 Uni-Lab 中使用,无需额外编译。
|
||||
|
||||
**示例:**
|
||||
1. Python Class,如
|
||||
|
||||
```python
|
||||
class MockGripper:
|
||||
@@ -39,11 +31,12 @@ class MockGripper:
|
||||
def status(self) -> str:
|
||||
return self._status
|
||||
|
||||
# 会被自动识别的设备动作,接入 Uni-Lab 时会作为 ActionServer 接受任意控制者的指令
|
||||
@status.setter
|
||||
def status(self, target):
|
||||
self._status = target
|
||||
|
||||
# 会被自动识别的设备动作,接入 Uni-Lab 时会作为 ActionServer 接受任意控制者的指令
|
||||
# 需要在注册表添加的设备动作,接入 Uni-Lab 时会作为 ActionServer 接受任意控制者的指令
|
||||
def push_to(self, position: float, torque: float, velocity: float = 0.0):
|
||||
self._status = "Running"
|
||||
current_pos = self.position
|
||||
@@ -60,11 +53,9 @@ class MockGripper:
|
||||
self._status = "Idle"
|
||||
```
|
||||
|
||||
### 2. C# Class
|
||||
Python 类设备驱动在完成注册表后可以直接在 Uni-Lab 使用。
|
||||
|
||||
C# 驱动设备在完成注册表后,需要调用 Uni-Lab C# 编译后才能使用(仅需一次)。
|
||||
|
||||
**示例:**
|
||||
2. C# Class,如
|
||||
|
||||
```csharp
|
||||
using System;
|
||||
@@ -93,7 +84,7 @@ public class MockGripper
|
||||
position = currentPos + (Position - currentPos) / 20 * (i + 1);
|
||||
torque = Torque / (20 - i);
|
||||
velocity = Velocity;
|
||||
await Task.Delay((int)(moveTime * 1000 / 20));
|
||||
await Task.Delay((int)(moveTime * 1000 / 20)); // Convert seconds to milliseconds
|
||||
}
|
||||
torque = Torque;
|
||||
status = "Idle";
|
||||
@@ -101,16 +92,12 @@ public class MockGripper
|
||||
}
|
||||
```
|
||||
|
||||
---
|
||||
C# 驱动设备在完成注册表后,需要调用 Uni-Lab C# 编译后才能使用,但只需一次。
|
||||
|
||||
## 快速开始:两种方式添加设备
|
||||
|
||||
### 方式 1:使用注册表编辑器(推荐)
|
||||
## 快速开始:使用注册表编辑器(推荐)
|
||||
|
||||
推荐使用 Uni-Lab-OS 自带的可视化编辑器,它能自动分析您的设备驱动并生成大部分配置:
|
||||
|
||||
**步骤:**
|
||||
|
||||
1. 启动 Uni-Lab-OS
|
||||
2. 在浏览器中打开"注册表编辑器"页面
|
||||
3. 选择您的 Python 设备驱动文件
|
||||
@@ -119,18 +106,13 @@ public class MockGripper
|
||||
6. 点击"生成注册表",复制生成的内容
|
||||
7. 保存到 `devices/` 目录下
|
||||
|
||||
**优点:**
|
||||
---
|
||||
|
||||
- 自动识别设备属性和方法
|
||||
- 可视化界面,易于操作
|
||||
- 自动生成完整配置
|
||||
- 减少手动配置错误
|
||||
|
||||
### 方式 2:手动编写注册表(简化版)
|
||||
## 手动编写注册表(简化版)
|
||||
|
||||
如果需要手动编写,只需要提供两个必需字段,系统会自动补全其余内容:
|
||||
|
||||
**最小配置示例:**
|
||||
### 最小配置示例
|
||||
|
||||
```yaml
|
||||
my_device: # 设备唯一标识符
|
||||
@@ -139,22 +121,22 @@ my_device: # 设备唯一标识符
|
||||
type: python # 驱动类型
|
||||
```
|
||||
|
||||
**注册表文件位置:**
|
||||
### 注册表文件位置
|
||||
|
||||
- 默认路径:`unilabos/registry/devices`
|
||||
- 自定义路径:启动时使用 `--registry_path` 参数指定
|
||||
- 可将多个设备写在同一个 YAML 文件中
|
||||
- 自定义路径:启动时使用 `--registry` 参数指定
|
||||
- 可将多个设备写在同一个 yaml 文件中
|
||||
|
||||
**系统自动生成的内容:**
|
||||
### 系统自动生成的内容
|
||||
|
||||
系统会自动分析您的 Python 驱动类并生成:
|
||||
|
||||
- `status_types`:从 `@property` 装饰的方法自动识别状态属性
|
||||
- `status_types`:从 `get_*` 方法自动识别状态属性
|
||||
- `action_value_mappings`:从类方法自动生成动作映射
|
||||
- `init_param_schema`:从 `__init__` 方法分析初始化参数
|
||||
- `schema`:前端显示用的属性类型定义
|
||||
|
||||
**完整结构概览:**
|
||||
### 完整结构概览
|
||||
|
||||
```yaml
|
||||
my_device:
|
||||
@@ -169,848 +151,4 @@ my_device:
|
||||
schema: {} # 自动生成
|
||||
```
|
||||
|
||||
> 💡 **提示:** 详细的注册表编写指南和高级配置,请参考 {doc}`03_add_device_registry`。
|
||||
|
||||
---
|
||||
|
||||
## Python 类结构要求
|
||||
|
||||
Uni-Lab 设备驱动是一个 Python 类,需要遵循以下结构:
|
||||
|
||||
```python
|
||||
from typing import Dict, Any
|
||||
|
||||
class MyDevice:
|
||||
"""设备类文档字符串
|
||||
|
||||
说明设备的功能、连接方式等
|
||||
"""
|
||||
|
||||
def __init__(self, config: Dict[str, Any]):
|
||||
"""初始化设备
|
||||
|
||||
Args:
|
||||
config: 配置字典,来自图文件或注册表
|
||||
"""
|
||||
self.port = config.get('port', '/dev/ttyUSB0')
|
||||
self.baudrate = config.get('baudrate', 9600)
|
||||
self._status = "idle"
|
||||
# 初始化硬件连接
|
||||
|
||||
@property
|
||||
def status(self) -> str:
|
||||
"""设备状态(会自动广播)"""
|
||||
return self._status
|
||||
|
||||
def my_action(self, param: float) -> Dict[str, Any]:
|
||||
"""执行动作
|
||||
|
||||
Args:
|
||||
param: 参数说明
|
||||
|
||||
Returns:
|
||||
{"success": True, "result": ...}
|
||||
"""
|
||||
# 执行设备操作
|
||||
return {"success": True}
|
||||
```
|
||||
|
||||
## 状态属性 vs 动作方法
|
||||
|
||||
### 状态属性(@property)
|
||||
|
||||
状态属性会被自动识别并定期广播:
|
||||
|
||||
```python
|
||||
@property
|
||||
def temperature(self) -> float:
|
||||
"""当前温度"""
|
||||
return self._read_temperature()
|
||||
|
||||
@property
|
||||
def status(self) -> str:
|
||||
"""设备状态: idle, running, error"""
|
||||
return self._status
|
||||
|
||||
@property
|
||||
def is_ready(self) -> bool:
|
||||
"""设备是否就绪"""
|
||||
return self._status == "idle"
|
||||
```
|
||||
|
||||
**特点**:
|
||||
|
||||
- 使用`@property`装饰器
|
||||
- 只读,不能有参数
|
||||
- 自动添加到注册表的`status_types`
|
||||
- 定期发布到 ROS2 topic
|
||||
|
||||
### 动作方法
|
||||
|
||||
动作方法是设备可以执行的操作:
|
||||
|
||||
```python
|
||||
def start_heating(self, target_temp: float, rate: float = 1.0) -> Dict[str, Any]:
|
||||
"""开始加热
|
||||
|
||||
Args:
|
||||
target_temp: 目标温度(°C)
|
||||
rate: 升温速率(°C/min)
|
||||
|
||||
Returns:
|
||||
{"success": bool, "message": str}
|
||||
"""
|
||||
self._status = "heating"
|
||||
self._target_temp = target_temp
|
||||
# 发送命令到硬件
|
||||
return {"success": True, "message": f"Heating to {target_temp}°C"}
|
||||
|
||||
async def async_operation(self, duration: float) -> Dict[str, Any]:
|
||||
"""异步操作(长时间运行)
|
||||
|
||||
Args:
|
||||
duration: 持续时间(秒)
|
||||
"""
|
||||
# 使用 self.sleep 而不是 asyncio.sleep(ROS2 异步机制)
|
||||
await self.sleep(duration)
|
||||
return {"success": True}
|
||||
```
|
||||
|
||||
**特点**:
|
||||
|
||||
- 普通方法或 async 方法
|
||||
- 返回 Dict 类型的结果
|
||||
- 自动注册为 ROS2 Action
|
||||
- 支持参数和返回值
|
||||
|
||||
### 返回值设计指南
|
||||
|
||||
> **⚠️ 重要:返回值会自动显示在前端**
|
||||
>
|
||||
> 动作方法的返回值(字典)会自动显示在 Web 界面的工作流执行结果中。因此,**强烈建议**设计结构化、可读的返回值字典。
|
||||
|
||||
**推荐的返回值结构:**
|
||||
|
||||
```python
|
||||
def my_action(self, param: float) -> Dict[str, Any]:
|
||||
"""执行操作"""
|
||||
try:
|
||||
# 执行操作...
|
||||
result = self._do_something(param)
|
||||
|
||||
return {
|
||||
"success": True, # 必需:操作是否成功
|
||||
"message": "操作完成", # 推荐:用户友好的消息
|
||||
"result": result, # 可选:具体结果数据
|
||||
"param_used": param, # 可选:记录使用的参数
|
||||
# 其他有用的信息...
|
||||
}
|
||||
except Exception as e:
|
||||
return {
|
||||
"success": False,
|
||||
"error": str(e),
|
||||
"message": "操作失败"
|
||||
}
|
||||
```
|
||||
|
||||
**最佳实践示例(参考 `host_node.test_latency`):**
|
||||
|
||||
```python
|
||||
def test_latency(self) -> Dict[str, Any]:
|
||||
"""测试网络延迟
|
||||
|
||||
返回值会在前端显示,包含详细的测试结果
|
||||
"""
|
||||
# 执行测试...
|
||||
avg_rtt_ms = 25.5
|
||||
avg_time_diff_ms = 10.2
|
||||
test_count = 5
|
||||
|
||||
# 返回结构化的测试结果
|
||||
return {
|
||||
"status": "success", # 状态标识
|
||||
"avg_rtt_ms": avg_rtt_ms, # 平均往返时间
|
||||
"avg_time_diff_ms": avg_time_diff_ms, # 平均时间差
|
||||
"max_time_error_ms": 5.3, # 最大误差
|
||||
"task_delay_ms": 15.7, # 任务延迟
|
||||
"test_count": test_count, # 测试次数
|
||||
}
|
||||
```
|
||||
|
||||
**前端显示效果:**
|
||||
|
||||
当用户在 Web 界面执行工作流时,返回的字典会以 JSON 格式显示在结果面板中:
|
||||
|
||||
```json
|
||||
{
|
||||
"status": "success",
|
||||
"avg_rtt_ms": 25.5,
|
||||
"avg_time_diff_ms": 10.2,
|
||||
"max_time_error_ms": 5.3,
|
||||
"task_delay_ms": 15.7,
|
||||
"test_count": 5
|
||||
}
|
||||
```
|
||||
|
||||
**返回值设计建议:**
|
||||
|
||||
1. **始终包含 `success` 字段**:布尔值,表示操作是否成功
|
||||
2. **包含 `message` 字段**:字符串,提供用户友好的描述
|
||||
3. **使用有意义的键名**:使用描述性的键名(如 `avg_rtt_ms` 而不是 `v1`)
|
||||
4. **包含单位**:在键名中包含单位(如 `_ms`、`_ml`、`_celsius`)
|
||||
5. **记录重要参数**:返回使用的关键参数值,便于追溯
|
||||
6. **错误信息详细**:失败时包含 `error` 字段和详细的错误描述
|
||||
7. **避免返回大数据**:不要返回大型数组或二进制数据,这会影响前端性能
|
||||
|
||||
**错误处理示例:**
|
||||
|
||||
```python
|
||||
def risky_operation(self, param: float) -> Dict[str, Any]:
|
||||
"""可能失败的操作"""
|
||||
if param < 0:
|
||||
return {
|
||||
"success": False,
|
||||
"error": "参数不能为负数",
|
||||
"message": f"无效参数: {param}",
|
||||
"param": param
|
||||
}
|
||||
|
||||
try:
|
||||
result = self._execute(param)
|
||||
return {
|
||||
"success": True,
|
||||
"message": "操作成功",
|
||||
"result": result,
|
||||
"param": param
|
||||
}
|
||||
except IOError as e:
|
||||
return {
|
||||
"success": False,
|
||||
"error": "通信错误",
|
||||
"message": str(e),
|
||||
"device_status": self._status
|
||||
}
|
||||
```
|
||||
|
||||
## 特殊参数类型:ResourceSlot 和 DeviceSlot
|
||||
|
||||
Uni-Lab 提供特殊的参数类型,用于在方法中声明需要选择资源或设备。
|
||||
|
||||
### 导入类型
|
||||
|
||||
```python
|
||||
from unilabos.registry.placeholder_type import ResourceSlot, DeviceSlot
|
||||
from typing import List
|
||||
```
|
||||
|
||||
### ResourceSlot - 资源选择
|
||||
|
||||
用于需要选择物料资源的场景:
|
||||
|
||||
```python
|
||||
def pipette_liquid(
|
||||
self,
|
||||
source: ResourceSlot, # 单个源容器
|
||||
target: ResourceSlot, # 单个目标容器
|
||||
volume: float
|
||||
) -> Dict[str, Any]:
|
||||
"""从源容器吸取液体到目标容器
|
||||
|
||||
Args:
|
||||
source: 源容器(前端会显示资源选择下拉框)
|
||||
target: 目标容器(前端会显示资源选择下拉框)
|
||||
volume: 体积(μL)
|
||||
"""
|
||||
print(f"Pipetting {volume}μL from {source.id} to {target.id}")
|
||||
return {"success": True}
|
||||
```
|
||||
|
||||
**多选示例**:
|
||||
|
||||
```python
|
||||
def mix_multiple(
|
||||
self,
|
||||
containers: List[ResourceSlot], # 多个容器选择
|
||||
speed: float
|
||||
) -> Dict[str, Any]:
|
||||
"""混合多个容器
|
||||
|
||||
Args:
|
||||
containers: 容器列表(前端会显示多选下拉框)
|
||||
speed: 混合速度
|
||||
"""
|
||||
for container in containers:
|
||||
print(f"Mixing {container.name}")
|
||||
return {"success": True}
|
||||
```
|
||||
|
||||
### DeviceSlot - 设备选择
|
||||
|
||||
用于需要选择其他设备的场景:
|
||||
|
||||
```python
|
||||
def coordinate_with_device(
|
||||
self,
|
||||
other_device: DeviceSlot, # 单个设备选择
|
||||
command: str
|
||||
) -> Dict[str, Any]:
|
||||
"""与另一个设备协同工作
|
||||
|
||||
Args:
|
||||
other_device: 协同设备(前端会显示设备选择下拉框)
|
||||
command: 命令
|
||||
"""
|
||||
print(f"Coordinating with {other_device.name}")
|
||||
return {"success": True}
|
||||
```
|
||||
|
||||
**多设备示例**:
|
||||
|
||||
```python
|
||||
def sync_devices(
|
||||
self,
|
||||
devices: List[DeviceSlot], # 多个设备选择
|
||||
sync_signal: str
|
||||
) -> Dict[str, Any]:
|
||||
"""同步多个设备
|
||||
|
||||
Args:
|
||||
devices: 设备列表(前端会显示多选下拉框)
|
||||
sync_signal: 同步信号
|
||||
"""
|
||||
for dev in devices:
|
||||
print(f"Syncing {dev.name}")
|
||||
return {"success": True}
|
||||
```
|
||||
|
||||
### 完整示例:液体处理工作站
|
||||
|
||||
```python
|
||||
from unilabos.registry.placeholder_type import ResourceSlot, DeviceSlot
|
||||
from typing import List, Dict, Any
|
||||
|
||||
class LiquidHandler:
|
||||
"""液体处理工作站"""
|
||||
|
||||
def __init__(self, config: Dict[str, Any]):
|
||||
self.simulation = config.get('simulation', False)
|
||||
self._status = "idle"
|
||||
|
||||
@property
|
||||
def status(self) -> str:
|
||||
return self._status
|
||||
|
||||
def transfer_liquid(
|
||||
self,
|
||||
source: ResourceSlot, # 源容器选择
|
||||
target: ResourceSlot, # 目标容器选择
|
||||
volume: float,
|
||||
tip: ResourceSlot = None # 可选的枪头选择
|
||||
) -> Dict[str, Any]:
|
||||
"""转移液体
|
||||
|
||||
前端效果:
|
||||
- source: 下拉框,列出所有可用容器
|
||||
- target: 下拉框,列出所有可用容器
|
||||
- volume: 数字输入框
|
||||
- tip: 下拉框(可选),列出所有枪头
|
||||
"""
|
||||
self._status = "transferring"
|
||||
|
||||
# source和target会被解析为实际的资源对象
|
||||
print(f"Transferring {volume}μL")
|
||||
print(f" From: {source.id} ({source.name})")
|
||||
print(f" To: {target.id} ({target.name})")
|
||||
|
||||
if tip:
|
||||
print(f" Using tip: {tip.id}")
|
||||
|
||||
# 执行实际的液体转移
|
||||
# ...
|
||||
|
||||
self._status = "idle"
|
||||
return {
|
||||
"success": True,
|
||||
"volume_transferred": volume,
|
||||
"source_id": source.id,
|
||||
"target_id": target.id
|
||||
}
|
||||
|
||||
def multi_dispense(
|
||||
self,
|
||||
source: ResourceSlot, # 单个源
|
||||
targets: List[ResourceSlot], # 多个目标
|
||||
volumes: List[float]
|
||||
) -> Dict[str, Any]:
|
||||
"""从一个源分配到多个目标
|
||||
|
||||
前端效果:
|
||||
- source: 单选下拉框
|
||||
- targets: 多选下拉框(可选择多个容器)
|
||||
- volumes: 数组输入(每个目标对应一个体积)
|
||||
"""
|
||||
results = []
|
||||
for target, vol in zip(targets, volumes):
|
||||
print(f"Dispensing {vol}μL to {target.name}")
|
||||
results.append({
|
||||
"target": target.id,
|
||||
"volume": vol
|
||||
})
|
||||
|
||||
return {
|
||||
"success": True,
|
||||
"dispense_results": results
|
||||
}
|
||||
|
||||
def test_with_balance(
|
||||
self,
|
||||
target: ResourceSlot, # 容器
|
||||
balance: DeviceSlot # 天平设备
|
||||
) -> Dict[str, Any]:
|
||||
"""使用天平测量容器
|
||||
|
||||
前端效果:
|
||||
- target: 容器选择下拉框
|
||||
- balance: 设备选择下拉框(仅显示天平类型)
|
||||
"""
|
||||
print(f"Weighing {target.name} on {balance.name}")
|
||||
|
||||
# 可以调用balance的方法
|
||||
# weight = balance.get_weight()
|
||||
|
||||
return {
|
||||
"success": True,
|
||||
"container": target.id,
|
||||
"balance_used": balance.id
|
||||
}
|
||||
```
|
||||
|
||||
### 工作原理
|
||||
|
||||
#### 1. 类型识别
|
||||
|
||||
注册表扫描方法签名时:
|
||||
|
||||
```python
|
||||
def my_method(self, resource: ResourceSlot, device: DeviceSlot):
|
||||
pass
|
||||
```
|
||||
|
||||
系统识别到`ResourceSlot`和`DeviceSlot`类型。
|
||||
|
||||
#### 2. 自动添加 placeholder_keys
|
||||
|
||||
在注册表中自动生成:
|
||||
|
||||
```yaml
|
||||
my_device:
|
||||
class:
|
||||
action_value_mappings:
|
||||
my_method:
|
||||
goal:
|
||||
resource: resource
|
||||
device: device
|
||||
placeholder_keys:
|
||||
resource: unilabos_resources # 自动添加!
|
||||
device: unilabos_devices # 自动添加!
|
||||
```
|
||||
|
||||
#### 3. 前端 UI 生成
|
||||
|
||||
- `unilabos_resources`: 渲染为资源选择下拉框
|
||||
- `unilabos_devices`: 渲染为设备选择下拉框
|
||||
|
||||
#### 4. 运行时解析
|
||||
|
||||
用户选择资源/设备后,实际调用时会传入完整的资源/设备对象:
|
||||
|
||||
```python
|
||||
# 用户在前端选择了 plate_1
|
||||
# 运行时,source参数会收到完整的Resource对象
|
||||
source.id # "plate_1"
|
||||
source.name # "96孔板"
|
||||
source.type # "resource"
|
||||
source.class_ # "corning_96_wellplate_360ul_flat"
|
||||
```
|
||||
|
||||
## 支持的通信方式
|
||||
|
||||
### 1. 串口(Serial)
|
||||
|
||||
```python
|
||||
import serial
|
||||
|
||||
class SerialDevice:
|
||||
def __init__(self, config: Dict[str, Any]):
|
||||
self.port = config['port']
|
||||
self.baudrate = config.get('baudrate', 9600)
|
||||
self.ser = serial.Serial(
|
||||
port=self.port,
|
||||
baudrate=self.baudrate,
|
||||
timeout=1
|
||||
)
|
||||
|
||||
def send_command(self, cmd: str) -> str:
|
||||
"""发送命令并读取响应"""
|
||||
self.ser.write(f"{cmd}\r\n".encode())
|
||||
response = self.ser.readline().decode().strip()
|
||||
return response
|
||||
|
||||
def __del__(self):
|
||||
if hasattr(self, 'ser') and self.ser.is_open:
|
||||
self.ser.close()
|
||||
```
|
||||
|
||||
### 2. TCP/IP Socket
|
||||
|
||||
```python
|
||||
import socket
|
||||
|
||||
class TCPDevice:
|
||||
def __init__(self, config: Dict[str, Any]):
|
||||
self.host = config['host']
|
||||
self.port = config['port']
|
||||
self.sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
|
||||
self.sock.connect((self.host, self.port))
|
||||
|
||||
def send_command(self, cmd: str) -> str:
|
||||
self.sock.sendall(cmd.encode())
|
||||
response = self.sock.recv(1024).decode()
|
||||
return response
|
||||
```
|
||||
|
||||
### 3. Modbus
|
||||
|
||||
```python
|
||||
from pymodbus.client import ModbusTcpClient
|
||||
|
||||
class ModbusDevice:
|
||||
def __init__(self, config: Dict[str, Any]):
|
||||
self.host = config['host']
|
||||
self.port = config.get('port', 502)
|
||||
self.client = ModbusTcpClient(self.host, port=self.port)
|
||||
self.client.connect()
|
||||
|
||||
def read_register(self, address: int) -> int:
|
||||
result = self.client.read_holding_registers(address, 1)
|
||||
return result.registers[0]
|
||||
|
||||
def write_register(self, address: int, value: int):
|
||||
self.client.write_register(address, value)
|
||||
```
|
||||
|
||||
### 4. OPC UA
|
||||
|
||||
```python
|
||||
from opcua import Client
|
||||
|
||||
class OPCUADevice:
|
||||
def __init__(self, config: Dict[str, Any]):
|
||||
self.url = config['url']
|
||||
self.client = Client(self.url)
|
||||
self.client.connect()
|
||||
|
||||
def read_node(self, node_id: str):
|
||||
node = self.client.get_node(node_id)
|
||||
return node.get_value()
|
||||
|
||||
def write_node(self, node_id: str, value):
|
||||
node = self.client.get_node(node_id)
|
||||
node.set_value(value)
|
||||
```
|
||||
|
||||
### 5. HTTP/RPC
|
||||
|
||||
```python
|
||||
import requests
|
||||
|
||||
class HTTPDevice:
|
||||
def __init__(self, config: Dict[str, Any]):
|
||||
self.base_url = config['url']
|
||||
self.auth_token = config.get('token')
|
||||
|
||||
def send_command(self, endpoint: str, data: Dict) -> Dict:
|
||||
url = f"{self.base_url}/{endpoint}"
|
||||
headers = {'Authorization': f'Bearer {self.auth_token}'}
|
||||
response = requests.post(url, json=data, headers=headers)
|
||||
return response.json()
|
||||
```
|
||||
|
||||
## 异步 vs 同步方法
|
||||
|
||||
### 同步方法(适合快速操作)
|
||||
|
||||
```python
|
||||
def quick_operation(self, param: float) -> Dict[str, Any]:
|
||||
"""快速操作,立即返回"""
|
||||
result = self._do_something(param)
|
||||
return {"success": True, "result": result}
|
||||
```
|
||||
|
||||
### 异步方法(适合耗时操作)
|
||||
|
||||
```python
|
||||
async def long_operation(self, duration: float) -> Dict[str, Any]:
|
||||
"""长时间运行的操作"""
|
||||
self._status = "running"
|
||||
|
||||
# 使用 ROS2 提供的 sleep 方法(而不是 asyncio.sleep)
|
||||
await self.sleep(duration)
|
||||
|
||||
# 可以在过程中发送feedback
|
||||
# 需要配合ROS2 Action的feedback机制
|
||||
|
||||
self._status = "idle"
|
||||
return {"success": True, "duration": duration}
|
||||
```
|
||||
|
||||
> **⚠️ 重要提示:ROS2 异步机制 vs Python asyncio**
|
||||
>
|
||||
> Uni-Lab 的设备驱动虽然使用 `async def` 语法,但**底层是 ROS2 的异步机制,而不是 Python 的 asyncio**。
|
||||
>
|
||||
> **不能使用的 asyncio 功能:**
|
||||
>
|
||||
> - ❌ `asyncio.sleep()` - 会导致 ROS2 事件循环阻塞
|
||||
> - ❌ `asyncio.create_task()` - 任务不会被 ROS2 正确调度
|
||||
> - ❌ `asyncio.gather()` - 无法与 ROS2 集成
|
||||
> - ❌ 其他 asyncio 标准库函数
|
||||
>
|
||||
> **应该使用的方法(继承自 BaseROS2DeviceNode):**
|
||||
>
|
||||
> - ✅ `await self.sleep(seconds)` - ROS2 兼容的睡眠
|
||||
> - ✅ `await self.create_task(func, **kwargs)` - ROS2 兼容的任务创建
|
||||
> - ✅ ROS2 的 Action/Service 回调机制
|
||||
>
|
||||
> **示例:**
|
||||
>
|
||||
> ```python
|
||||
> async def complex_operation(self, duration: float) -> Dict[str, Any]:
|
||||
> """正确使用 ROS2 异步方法"""
|
||||
> self._status = "processing"
|
||||
>
|
||||
> # ✅ 正确:使用 self.sleep
|
||||
> await self.sleep(duration)
|
||||
>
|
||||
> # ✅ 正确:创建并发任务
|
||||
> task = await self.create_task(self._background_work)
|
||||
>
|
||||
> # ❌ 错误:不要使用 asyncio
|
||||
> # await asyncio.sleep(duration) # 这会导致问题!
|
||||
> # task = asyncio.create_task(...) # 这也不行!
|
||||
>
|
||||
> self._status = "idle"
|
||||
> return {"success": True}
|
||||
>
|
||||
> async def _background_work(self):
|
||||
> """后台任务"""
|
||||
> await self.sleep(1.0)
|
||||
> self.lab_logger().info("Background work completed")
|
||||
> ```
|
||||
>
|
||||
> **为什么不能混用?**
|
||||
>
|
||||
> ROS2 使用 `rclpy` 的事件循环来管理所有异步操作。如果使用 `asyncio` 的函数,这些操作会在不同的事件循环中运行,导致:
|
||||
>
|
||||
> - ROS2 回调无法正确执行
|
||||
> - 任务可能永远不会完成
|
||||
> - 程序可能死锁或崩溃
|
||||
>
|
||||
> **参考实现:**
|
||||
>
|
||||
> `BaseROS2DeviceNode` 提供的方法定义(`base_device_node.py:563-572`):
|
||||
>
|
||||
> ```python
|
||||
> async def sleep(self, rel_time: float, callback_group=None):
|
||||
> """ROS2 兼容的异步睡眠"""
|
||||
> if callback_group is None:
|
||||
> callback_group = self.callback_group
|
||||
> await ROS2DeviceNode.async_wait_for(self, rel_time, callback_group)
|
||||
>
|
||||
> @classmethod
|
||||
> async def create_task(cls, func, trace_error=True, **kwargs) -> Task:
|
||||
> """ROS2 兼容的任务创建"""
|
||||
> return ROS2DeviceNode.run_async_func(func, trace_error, **kwargs)
|
||||
> ```
|
||||
|
||||
## 错误处理
|
||||
|
||||
### 基本错误处理
|
||||
|
||||
```python
|
||||
def operation_with_error_handling(self, param: float) -> Dict[str, Any]:
|
||||
"""带错误处理的操作"""
|
||||
try:
|
||||
result = self._risky_operation(param)
|
||||
return {
|
||||
"success": True,
|
||||
"result": result
|
||||
}
|
||||
except ValueError as e:
|
||||
return {
|
||||
"success": False,
|
||||
"error": "Invalid parameter",
|
||||
"message": str(e)
|
||||
}
|
||||
except IOError as e:
|
||||
self._status = "error"
|
||||
return {
|
||||
"success": False,
|
||||
"error": "Communication error",
|
||||
"message": str(e)
|
||||
}
|
||||
```
|
||||
|
||||
### 自定义异常
|
||||
|
||||
```python
|
||||
class DeviceError(Exception):
|
||||
"""设备错误基类"""
|
||||
pass
|
||||
|
||||
class DeviceNotReadyError(DeviceError):
|
||||
"""设备未就绪"""
|
||||
pass
|
||||
|
||||
class DeviceTimeoutError(DeviceError):
|
||||
"""设备超时"""
|
||||
pass
|
||||
|
||||
class MyDevice:
|
||||
def operation(self) -> Dict[str, Any]:
|
||||
if self._status != "idle":
|
||||
raise DeviceNotReadyError(f"Device is {self._status}")
|
||||
|
||||
# 执行操作
|
||||
return {"success": True}
|
||||
```
|
||||
|
||||
## 最佳实践
|
||||
|
||||
### 1. 类型注解
|
||||
|
||||
```python
|
||||
from typing import Dict, Any, Optional, List
|
||||
|
||||
def method(
|
||||
self,
|
||||
param1: float,
|
||||
param2: str,
|
||||
optional_param: Optional[int] = None
|
||||
) -> Dict[str, Any]:
|
||||
"""完整的类型注解有助于自动生成注册表"""
|
||||
pass
|
||||
```
|
||||
|
||||
### 2. 文档字符串
|
||||
|
||||
```python
|
||||
def method(self, param: float) -> Dict[str, Any]:
|
||||
"""方法简短描述
|
||||
|
||||
更详细的说明...
|
||||
|
||||
Args:
|
||||
param: 参数说明,包括单位和范围
|
||||
|
||||
Returns:
|
||||
Dict包含:
|
||||
- success (bool): 是否成功
|
||||
- result (Any): 结果数据
|
||||
|
||||
Raises:
|
||||
DeviceError: 错误情况说明
|
||||
"""
|
||||
pass
|
||||
```
|
||||
|
||||
### 3. 配置验证
|
||||
|
||||
```python
|
||||
def __init__(self, config: Dict[str, Any]):
|
||||
# 验证必需参数
|
||||
required = ['port', 'baudrate']
|
||||
for key in required:
|
||||
if key not in config:
|
||||
raise ValueError(f"Missing required config: {key}")
|
||||
|
||||
self.port = config['port']
|
||||
self.baudrate = config['baudrate']
|
||||
```
|
||||
|
||||
### 4. 资源清理
|
||||
|
||||
```python
|
||||
def __del__(self):
|
||||
"""析构函数,清理资源"""
|
||||
if hasattr(self, 'connection') and self.connection:
|
||||
self.connection.close()
|
||||
```
|
||||
|
||||
### 5. 设计前端友好的返回值
|
||||
|
||||
**记住:返回值会直接显示在 Web 界面**
|
||||
|
||||
```python
|
||||
import time
|
||||
|
||||
def measure_temperature(self) -> Dict[str, Any]:
|
||||
"""测量温度
|
||||
|
||||
✅ 好的返回值设计:
|
||||
- 包含 success 状态
|
||||
- 使用描述性键名
|
||||
- 在键名中包含单位
|
||||
- 记录测量时间
|
||||
"""
|
||||
temp = self._read_temperature()
|
||||
|
||||
return {
|
||||
"success": True,
|
||||
"temperature_celsius": temp, # 键名包含单位
|
||||
"timestamp": time.time(), # 记录时间
|
||||
"sensor_status": "normal", # 额外状态信息
|
||||
"message": f"温度测量完成: {temp}°C" # 用户友好的消息
|
||||
}
|
||||
|
||||
def bad_example(self) -> Dict[str, Any]:
|
||||
"""❌ 不好的返回值设计"""
|
||||
return {
|
||||
"s": True, # ❌ 键名不明确
|
||||
"v": 25.5, # ❌ 没有说明单位
|
||||
"t": 1234567890, # ❌ 不清楚是什么时间戳
|
||||
}
|
||||
```
|
||||
|
||||
**参考 `host_node.test_latency` 方法**(第 1216-1340 行),它返回详细的测试结果,在前端清晰显示:
|
||||
|
||||
```python
|
||||
return {
|
||||
"status": "success",
|
||||
"avg_rtt_ms": 25.5, # 有意义的键名 + 单位
|
||||
"avg_time_diff_ms": 10.2,
|
||||
"max_time_error_ms": 5.3,
|
||||
"task_delay_ms": 15.7,
|
||||
"test_count": 5, # 记录重要信息
|
||||
}
|
||||
```
|
||||
|
||||
## 下一步
|
||||
|
||||
看完本文档后,建议继续阅读:
|
||||
|
||||
- {doc}`add_action` - 了解如何添加新的动作指令
|
||||
- {doc}`add_yaml` - 学习如何编写和完善 YAML 注册表
|
||||
|
||||
进阶主题:
|
||||
|
||||
- {doc}`03_add_device_registry` - 了解如何配置注册表
|
||||
- {doc}`04_add_device_testing` - 学习如何测试设备
|
||||
- {doc}`add_old_device` - 没有 SDK 时如何开发设备驱动
|
||||
|
||||
## 参考
|
||||
|
||||
- [Python 类型注解](https://docs.python.org/3/library/typing.html)
|
||||
- [ROS2 rclpy 异步编程](https://docs.ros.org/en/humble/Tutorials/Intermediate/Writing-an-Action-Server-Client/Py.html) - Uni-Lab 使用 ROS2 的异步机制
|
||||
- [串口通信](https://pyserial.readthedocs.io/)
|
||||
|
||||
> **注意:** 虽然设备驱动使用 `async def` 语法,但请**不要参考** Python 标准的 [asyncio 文档](https://docs.python.org/3/library/asyncio.html)。Uni-Lab 使用的是 ROS2 的异步机制,两者不兼容。请使用 `self.sleep()` 和 `self.create_task()` 等 BaseROS2DeviceNode 提供的方法。
|
||||
详细的注册表编写指南和高级配置,请参考{doc}`yaml 注册表编写指南 <add_yaml>`。
|
||||
|
||||
@@ -1,10 +1,8 @@
|
||||
# 设备 Driver 开发(无 SDK 设备)
|
||||
# 设备 Driver 开发
|
||||
|
||||
我们对设备 Driver 的定义,是一个 Python/C++/C# 类,类的方法可以用于获取传感器数据、执行设备动作、更新物料信息。它们经过 Uni-Lab 的通信中间件包装,就能成为高效分布式通信的设备节点。
|
||||
|
||||
因此,若已有设备的 SDK (Driver),可以直接 [添加进 Uni-Lab](add_device.md)。**仅当没有 SDK (Driver) 时,请参考本章进行驱动开发。**
|
||||
|
||||
> **💡 提示:** 本文档介绍如何为没有现成驱动的老设备开发驱动程序。如果您的设备已经有 SDK 或驱动,请直接参考 {doc}`add_device`。
|
||||
因此,若已有设备的 SDK (Driver),可以直接 [添加进 Uni-Lab](add_device.md)。仅当没有 SDK (Driver) 时,请参考本章作开发。
|
||||
|
||||
## 有串口字符串指令集文档的设备:Python 串口通信(常见 RS485, RS232, USB)
|
||||
|
||||
@@ -14,13 +12,13 @@
|
||||
|
||||
Modbus 与 RS485、RS232 不一样的地方在于,会有更多直接寄存器的读写,以及涉及字节序转换(Big Endian, Little Endian)。
|
||||
|
||||
Uni-Lab 开发团队在仓库中提供了 3 个样例:
|
||||
Uni-Lab 开发团队在仓库中提供了3个样例:
|
||||
|
||||
- 单一机械设备**电夹爪**,通讯协议可见 [增广夹爪通讯协议](https://doc.rmaxis.com/docs/communication/fieldbus/),驱动代码位于 `unilabos/devices/gripper/rmaxis_v4.py`
|
||||
- 单一通信设备**IO 板卡**,驱动代码位于 `unilabos/device_comms/gripper/SRND_16_IO.py`
|
||||
- 执行多设备复杂任务逻辑的**PLC**,Uni-Lab 提供了基于地址表的接入方式和点动工作流编写,测试代码位于 `unilabos/device_comms/modbus_plc/test/test_workflow.py`
|
||||
* 单一机械设备**电夹爪**,通讯协议可见 [增广夹爪通讯协议](https://doc.rmaxis.com/docs/communication/fieldbus/),驱动代码位于 `unilabos/devices/gripper/rmaxis_v4.py`
|
||||
* 单一通信设备**IO板卡**,驱动代码位于 `unilabos/device_comms/gripper/SRND_16_IO.py`
|
||||
* 执行多设备复杂任务逻辑的**PLC**,Uni-Lab 提供了基于地址表的接入方式和点动工作流编写,测试代码位于 `unilabos/device_comms/modbus_plc/test/test_workflow.py`
|
||||
|
||||
---
|
||||
****
|
||||
|
||||
## 其他工业通信协议:CANopen, Ethernet, OPCUA...
|
||||
|
||||
@@ -28,32 +26,32 @@ Uni-Lab 开发团队在仓库中提供了 3 个样例:
|
||||
|
||||
## 没有接口的老设备老软件:使用 PyWinAuto
|
||||
|
||||
**pywinauto**是一个 Python 库,用于自动化 Windows GUI 操作。它可以模拟用户的鼠标点击、键盘输入、窗口操作等,广泛应用于自动化测试、GUI 自动化等场景。它支持通过两个后端进行操作:
|
||||
**pywinauto**是一个 Python 库,用于自动化Windows GUI操作。它可以模拟用户的鼠标点击、键盘输入、窗口操作等,广泛应用于自动化测试、GUI自动化等场景。它支持通过两个后端进行操作:
|
||||
|
||||
- **win32**后端:适用于大多数 Windows 应用程序,使用 native Win32 API。(pywinauto_recorder 默认使用 win32 后端)
|
||||
- **uia**后端:基于 Microsoft UI Automation,适用于较新的应用程序,特别是基于 WPF 或 UWP 的应用程序。(在 win10 上,会有更全的目录,有的窗口 win32 会识别不到)
|
||||
* **win32**后端:适用于大多数Windows应用程序,使用native Win32 API。(pywinauto_recorder默认使用win32后端)
|
||||
* **uia**后端:基于Microsoft UI Automation,适用于较新的应用程序,特别是基于WPF或UWP的应用程序。(在win10上,会有更全的目录,有的窗口win32会识别不到)
|
||||
|
||||
### windows 平台安装 pywinauto 和 pywinauto_recorder
|
||||
### windows平台安装pywinauto和pywinauto_recorder
|
||||
|
||||
直接安装会造成环境崩溃,需要下载并解压已经修改好的文件。
|
||||
|
||||
cd 到对应目录,执行安装
|
||||
cd到对应目录,执行安装
|
||||
|
||||
` pip install . -i ``https://pypi.tuna.tsinghua.edu.cn/simple `
|
||||
`pip install . -i ``https://pypi.tuna.tsinghua.edu.cn/simple`
|
||||
|
||||

|
||||
|
||||
windows 平台测试 python pywinauto_recorder.py,退出使用两次 ctrl+alt+r 取消选中,关闭命令提示符。
|
||||
windows平台测试 python pywinauto_recorder.py,退出使用两次ctrl+alt+r取消选中,关闭命令提示符。
|
||||
|
||||
### 计算器例子
|
||||
|
||||
你可以先打开 windows 的计算器,然后在 ilab 的环境中运行下面的代码片段,可观察到得到结果,通过这一案例,你需要掌握的 pywinauto 用法:
|
||||
你可以先打开windows的计算器,然后在ilab的环境中运行下面的代码片段,可观察到得到结果,通过这一案例,你需要掌握的pywinauto用法:
|
||||
|
||||
- 连接到指定进程
|
||||
- 利用 dump_tree 查找需要的窗口
|
||||
- 获取某个位置的信息
|
||||
- 模拟点击
|
||||
- 模拟输入
|
||||
* 连接到指定进程
|
||||
* 利用dump_tree查找需要的窗口
|
||||
* 获取某个位置的信息
|
||||
* 模拟点击
|
||||
* 模拟输入
|
||||
|
||||
#### 代码学习
|
||||
|
||||
@@ -264,13 +262,13 @@ r, g, b = pyautogui.pixel(point_x, point_y)
|
||||
|
||||
### pywinauto_recorder
|
||||
|
||||
pywinauto_recorder 是一个配合 pywinauto 使用的工具,用于录制用户的操作,并生成相应的 pywinauto 脚本。这对于一些暂时无法直接调用 DLL 的函数并且需要模拟用户操作的场景非常有用。同时,可以省去仅用 pywinauto 的一些查找 UI 步骤。
|
||||
pywinauto_recorder是一个配合 pywinauto 使用的工具,用于录制用户的操作,并生成相应的 pywinauto 脚本。这对于一些暂时无法直接调用DLL的函数并且需要模拟用户操作的场景非常有用。同时,可以省去仅用pywinauto的一些查找UI步骤。
|
||||
|
||||
#### 运行尝试
|
||||
|
||||
请参照 上手尝试-环境创建-3 开启 pywinauto_recorder
|
||||
请参照 上手尝试-环境创建-3 开启pywinauto_recorder
|
||||
|
||||
例如我们这里先启动一个 windows 自带的计算器软件
|
||||
例如我们这里先启动一个windows自带的计算器软件
|
||||
|
||||

|
||||
|
||||
@@ -288,7 +286,7 @@ with UIPath(u"计算器||Window"):
|
||||
click(u"九||Button")
|
||||
```
|
||||
|
||||
执行该 python 脚本,可以观察到新开启的计算器被点击了数字 9
|
||||
执行该python脚本,可以观察到新开启的计算器被点击了数字9
|
||||
|
||||

|
||||
|
||||
@@ -317,31 +315,16 @@ child_window(title="数字键盘", auto_id="NumberPad", control_type="Group")
|
||||
"""
|
||||
```
|
||||
|
||||
这里以上面计算器的例子对 dump_tree 进行解读
|
||||
这里以上面计算器的例子对dump_tree进行解读
|
||||
|
||||
2~4 行为当前对象的窗口
|
||||
2~4行为当前对象的窗口
|
||||
|
||||
- 第 2 行分别是窗体的类型 `GroupBox`,窗体的题目 `数字键盘`,窗体的矩形区域坐标,对应的是屏幕上的位置(左、上、右、下)
|
||||
- 第 3 行是 `['GroupBox', '数字键盘', '数字键盘GroupBox']`,为控件的标识符列表,可以选择任意一个,使用 `child_window(best_match="标识符")`来获取该窗口
|
||||
- 第 4 行是获取该控件的方法,请注意该方法不能保证获取唯一,`title`如果是变化的,也需要删除 `title`参数
|
||||
* 第2行分别是窗体的类型 `GroupBox`,窗体的题目 `数字键盘`,窗体的矩形区域坐标,对应的是屏幕上的位置(左、上、右、下)
|
||||
* 第3行是 `['GroupBox', '数字键盘', '数字键盘GroupBox']`,为控件的标识符列表,可以选择任意一个,使用 `child_window(best_match="标识符")`来获取该窗口
|
||||
* 第4行是获取该控件的方法,请注意该方法不能保证获取唯一,`title`如果是变化的,也需要删除 `title`参数
|
||||
|
||||
6~8 行为当前对象窗口所包含的子窗口信息,信息类型对应 2~4 行
|
||||
6~8行为当前对象窗口所包含的子窗口信息,信息类型对应2~4行
|
||||
|
||||
### 窗口获取注意事项
|
||||
|
||||
1. 在 `child_window`的时候,并不会立刻报错,只有在执行窗口的信息获取时才会调用,查询窗口是否存在,因此要想确定 `child_window`是否正确,可以调用子窗口对象的属性 `element_info`,来保证窗口存在
|
||||
|
||||
---
|
||||
|
||||
## 下一步
|
||||
|
||||
完成设备驱动开发后,建议继续阅读:
|
||||
|
||||
- {doc}`add_device` - 了解如何将驱动添加到 Uni-Lab 中
|
||||
- {doc}`add_action` - 学习如何添加新的动作指令
|
||||
- {doc}`add_yaml` - 编写和完善 YAML 注册表
|
||||
|
||||
进阶主题:
|
||||
|
||||
- {doc}`03_add_device_registry` - 详细的注册表配置
|
||||
- {doc}`04_add_device_testing` - 设备测试指南
|
||||
@@ -1,409 +0,0 @@
|
||||
# 实例:物料构建指南
|
||||
|
||||
> **文档类型**:物料系统实战指南
|
||||
> **适用场景**:工作站物料系统构建、Deck/Warehouse/Carrier/Bottle 配置
|
||||
> **前置知识**:PyLabRobot 基础 | 资源管理概念
|
||||
|
||||
## 概述
|
||||
|
||||
在UniLab-OS系统中,任何工作站中所需要用到的物料主要包括四个核心组件:
|
||||
|
||||
1. **桌子(Deck)** - 工作台面,定义整个工作空间的布局
|
||||
2. **堆栈(Warehouse)** - 存储区域,用于放置载具和物料
|
||||
3. **载具(Carriers)** - 承载瓶子等物料的容器架
|
||||
4. **瓶子(Bottles)** - 实际的物料容器
|
||||
|
||||
本文档以BioYond工作站为例,详细说明如何构建这些物料组件。
|
||||
|
||||
## 文件结构
|
||||
|
||||
物料定义文件位于 `unilabos/resources/` 文件夹中:
|
||||
|
||||
```
|
||||
unilabos/resources/bioyond/
|
||||
├── decks.py # 桌子定义
|
||||
├── YB_warehouses.py # 堆栈定义
|
||||
├── YB_bottle_carriers.py # 载具定义
|
||||
└── YB_bottles.py # 瓶子定义
|
||||
```
|
||||
|
||||
对应的注册表文件位于 `unilabos/registry/resources/bioyond/` 文件夹中:
|
||||
|
||||
```
|
||||
unilabos/registry/resources/bioyond/
|
||||
├── deck.yaml # 桌子注册表
|
||||
├── YB_bottle_carriers.yaml # 载具注册表
|
||||
└── YB_bottle.yaml # 瓶子注册表
|
||||
```
|
||||
|
||||
## 1. 桌子(Deck)构建
|
||||
|
||||
桌子是整个工作站的基础,定义了工作空间的尺寸和各个组件的位置。
|
||||
|
||||
### 代码示例 (decks.py)
|
||||
|
||||
```python
|
||||
from pylabrobot.resources import Coordinate, Deck
|
||||
from unilabos.resources.bioyond.YB_warehouses import (
|
||||
bioyond_warehouse_2x2x1,
|
||||
bioyond_warehouse_3x5x1,
|
||||
bioyond_warehouse_20x1x1,
|
||||
bioyond_warehouse_3x3x1,
|
||||
bioyond_warehouse_10x1x1
|
||||
)
|
||||
|
||||
class BIOYOND_YB_Deck(Deck):
|
||||
def __init__(
|
||||
self,
|
||||
name: str = "YB_Deck",
|
||||
size_x: float = 4150, # 桌子X方向尺寸 (mm)
|
||||
size_y: float = 1400.0, # 桌子Y方向尺寸 (mm)
|
||||
size_z: float = 2670.0, # 桌子Z方向尺寸 (mm)
|
||||
category: str = "deck",
|
||||
setup: bool = False
|
||||
) -> None:
|
||||
super().__init__(name=name, size_x=4150.0, size_y=1400.0, size_z=2670.0)
|
||||
if setup:
|
||||
self.setup() # 当在工作站配置中setup为True时,自动创建并放置所有预定义的堆栈
|
||||
|
||||
def setup(self) -> None:
|
||||
# 定义桌子上的各个仓库区域
|
||||
self.warehouses = {
|
||||
"自动堆栈-左": bioyond_warehouse_2x2x1("自动堆栈-左"),
|
||||
"自动堆栈-右": bioyond_warehouse_2x2x1("自动堆栈-右"),
|
||||
"手动堆栈-左": bioyond_warehouse_3x5x1("手动堆栈-左"),
|
||||
"手动堆栈-右": bioyond_warehouse_3x5x1("手动堆栈-右"),
|
||||
"粉末加样头堆栈": bioyond_warehouse_20x1x1("粉末加样头堆栈"),
|
||||
"配液站内试剂仓库": bioyond_warehouse_3x3x1("配液站内试剂仓库"),
|
||||
"试剂替换仓库": bioyond_warehouse_10x1x1("试剂替换仓库"),
|
||||
}
|
||||
|
||||
# 定义各个仓库在桌子上的坐标位置
|
||||
self.warehouse_locations = {
|
||||
"自动堆栈-左": Coordinate(-100.3, 171.5, 0.0),
|
||||
"自动堆栈-右": Coordinate(3960.1, 155.9, 0.0),
|
||||
"手动堆栈-左": Coordinate(-213.3, 804.4, 0.0),
|
||||
"手动堆栈-右": Coordinate(3960.1, 807.6, 0.0),
|
||||
"粉末加样头堆栈": Coordinate(415.0, 1301.0, 0.0),
|
||||
"配液站内试剂仓库": Coordinate(2162.0, 437.0, 0.0),
|
||||
"试剂替换仓库": Coordinate(1173.0, 802.0, 0.0),
|
||||
}
|
||||
|
||||
# 将仓库分配到桌子的指定位置
|
||||
for warehouse_name, warehouse in self.warehouses.items():
|
||||
self.assign_child_resource(warehouse, location=self.warehouse_locations[warehouse_name])
|
||||
```
|
||||
|
||||
### 在工作站配置中的使用
|
||||
|
||||
当在工作站配置文件中定义桌子时,可以通过`setup`参数控制是否自动建立所有堆栈:
|
||||
|
||||
```json
|
||||
{
|
||||
"id": "YB_Bioyond_Deck",
|
||||
"name": "YB_Bioyond_Deck",
|
||||
"children": [],
|
||||
"parent": "bioyond_cell_workstation",
|
||||
"type": "deck",
|
||||
"class": "BIOYOND_YB_Deck",
|
||||
"config": {
|
||||
"type": "BIOYOND_YB_Deck",
|
||||
"setup": true
|
||||
},
|
||||
"data": {}
|
||||
}
|
||||
```
|
||||
|
||||
**重要说明**:
|
||||
- 当 `"setup": true` 时,系统会自动调用桌子的 `setup()` 方法
|
||||
- 这将创建并放置所有预定义的堆栈到桌子上的指定位置
|
||||
- 如果 `"setup": false` 或省略该参数,则只创建空桌子,需要手动添加堆栈
|
||||
|
||||
### 关键要点注释
|
||||
|
||||
- `size_x`, `size_y`, `size_z`: 定义桌子的物理尺寸
|
||||
- `warehouses`: 字典类型,包含桌子上所有的仓库区域
|
||||
- `warehouse_locations`: 定义每个仓库在桌子坐标系中的位置
|
||||
- `assign_child_resource()`: 将仓库资源分配到桌子的指定位置
|
||||
- `setup()`: 可选的自动设置方法,初始化时可调用
|
||||
|
||||
## 2. 堆栈(Warehouse)构建
|
||||
|
||||
堆栈定义了存储区域的规格和布局,用于放置载具。
|
||||
|
||||
### 代码示例 (YB_warehouses.py)
|
||||
|
||||
```python
|
||||
from unilabos.resources.warehouse import WareHouse, YB_warehouse_factory
|
||||
|
||||
def bioyond_warehouse_1x4x4(name: str) -> WareHouse:
|
||||
"""创建BioYond 1x4x4仓库
|
||||
|
||||
Args:
|
||||
name: 仓库名称
|
||||
|
||||
Returns:
|
||||
WareHouse: 仓库对象
|
||||
"""
|
||||
return YB_warehouse_factory(
|
||||
name=name,
|
||||
num_items_x=1, # X方向位置数量
|
||||
num_items_y=4, # Y方向位置数量
|
||||
num_items_z=4, # Z方向位置数量(层数)
|
||||
dx=10.0, # X方向起始偏移
|
||||
dy=10.0, # Y方向起始偏移
|
||||
dz=10.0, # Z方向起始偏移
|
||||
item_dx=137.0, # X方向间距
|
||||
item_dy=96.0, # Y方向间距
|
||||
item_dz=120.0, # Z方向间距(层高)
|
||||
category="warehouse",
|
||||
)
|
||||
|
||||
def bioyond_warehouse_2x2x1(name: str) -> WareHouse:
|
||||
"""创建BioYond 2x2x1仓库(自动堆栈)"""
|
||||
return YB_warehouse_factory(
|
||||
name=name,
|
||||
num_items_x=2,
|
||||
num_items_y=2,
|
||||
num_items_z=1, # 单层
|
||||
dx=10.0,
|
||||
dy=10.0,
|
||||
dz=10.0,
|
||||
item_dx=137.0,
|
||||
item_dy=96.0,
|
||||
item_dz=120.0,
|
||||
category="YB_warehouse",
|
||||
)
|
||||
```
|
||||
|
||||
### 关键要点注释
|
||||
|
||||
- `num_items_x/y/z`: 定义仓库在各个方向的位置数量
|
||||
- `dx/dy/dz`: 第一个位置的起始偏移坐标
|
||||
- `item_dx/dy/dz`: 相邻位置之间的间距
|
||||
- `category`: 仓库类别,用于分类管理
|
||||
- `YB_warehouse_factory`: 统一的仓库创建工厂函数
|
||||
|
||||
## 3. 载具(Carriers)构建
|
||||
|
||||
载具是承载瓶子的容器架,定义了瓶子的排列方式和位置。
|
||||
|
||||
### 代码示例 (YB_bottle_carriers.py)
|
||||
|
||||
```python
|
||||
from pylabrobot.resources import create_homogeneous_resources, Coordinate, ResourceHolder, create_ordered_items_2d
|
||||
from unilabos.resources.itemized_carrier import Bottle, BottleCarrier
|
||||
from unilabos.resources.bioyond.YB_bottles import YB_pei_ye_xiao_Bottle
|
||||
|
||||
def YB_peiyepingxiaoban(name: str) -> BottleCarrier:
|
||||
"""配液瓶(小)板 - 4x2布局,8个位置
|
||||
|
||||
Args:
|
||||
name: 载具名称
|
||||
|
||||
Returns:
|
||||
BottleCarrier: 载具对象,包含8个配液瓶位置
|
||||
"""
|
||||
|
||||
# 载具物理尺寸 (mm)
|
||||
carrier_size_x = 127.8
|
||||
carrier_size_y = 85.5
|
||||
carrier_size_z = 65.0
|
||||
|
||||
# 瓶位参数
|
||||
bottle_diameter = 35.0 # 瓶子直径
|
||||
bottle_spacing_x = 42.0 # X方向瓶子间距
|
||||
bottle_spacing_y = 35.0 # Y方向瓶子间距
|
||||
|
||||
# 计算起始位置 (居中排列)
|
||||
start_x = (carrier_size_x - (4 - 1) * bottle_spacing_x - bottle_diameter) / 2
|
||||
start_y = (carrier_size_y - (2 - 1) * bottle_spacing_y - bottle_diameter) / 2
|
||||
|
||||
# 创建瓶位布局:4列x2行
|
||||
sites = create_ordered_items_2d(
|
||||
klass=ResourceHolder,
|
||||
num_items_x=4, # 4列
|
||||
num_items_y=2, # 2行
|
||||
dx=start_x,
|
||||
dy=start_y,
|
||||
dz=5.0, # 瓶子底部高度
|
||||
item_dx=bottle_spacing_x,
|
||||
item_dy=bottle_spacing_y,
|
||||
size_x=bottle_diameter,
|
||||
size_y=bottle_diameter,
|
||||
size_z=carrier_size_z,
|
||||
)
|
||||
|
||||
# 为每个瓶位设置名称
|
||||
for k, v in sites.items():
|
||||
v.name = f"{name}_{v.name}"
|
||||
|
||||
# 创建载具对象
|
||||
carrier = BottleCarrier(
|
||||
name=name,
|
||||
size_x=carrier_size_x,
|
||||
size_y=carrier_size_y,
|
||||
size_z=carrier_size_z,
|
||||
sites=sites,
|
||||
model="YB_peiyepingxiaoban",
|
||||
)
|
||||
|
||||
# 设置载具布局参数
|
||||
carrier.num_items_x = 4
|
||||
carrier.num_items_y = 2
|
||||
carrier.num_items_z = 1
|
||||
|
||||
# 定义瓶子排列顺序
|
||||
ordering = ["A1", "A2", "A3", "A4", "B1", "B2", "B3", "B4"]
|
||||
|
||||
# 为每个位置创建瓶子实例
|
||||
for i in range(8):
|
||||
carrier[i] = YB_pei_ye_xiao_Bottle(f"{name}_bottle_{ordering[i]}")
|
||||
|
||||
return carrier
|
||||
```
|
||||
|
||||
### 关键要点注释
|
||||
|
||||
- `carrier_size_x/y/z`: 载具的物理尺寸
|
||||
- `bottle_diameter`: 瓶子的直径,用于计算瓶位大小
|
||||
- `bottle_spacing_x/y`: 瓶子之间的间距
|
||||
- `create_ordered_items_2d`: 创建二维排列的瓶位
|
||||
- `sites`: 瓶位字典,存储所有瓶子位置信息
|
||||
- `ordering`: 定义瓶位的命名规则(如A1, A2, B1等)
|
||||
|
||||
## 4. 瓶子(Bottles)构建
|
||||
|
||||
瓶子是最终的物料容器,定义了容器的物理属性。
|
||||
|
||||
### 代码示例 (YB_bottles.py)
|
||||
|
||||
```python
|
||||
from unilabos.resources.itemized_carrier import Bottle
|
||||
|
||||
def YB_pei_ye_xiao_Bottle(
|
||||
name: str,
|
||||
diameter: float = 35.0, # 瓶子直径 (mm)
|
||||
height: float = 60.0, # 瓶子高度 (mm)
|
||||
max_volume: float = 30000.0, # 最大容量 (μL) - 30mL
|
||||
barcode: str = None, # 条码
|
||||
) -> Bottle:
|
||||
"""创建配液瓶(小)
|
||||
|
||||
Args:
|
||||
name: 瓶子名称
|
||||
diameter: 瓶子直径
|
||||
height: 瓶子高度
|
||||
max_volume: 最大容量(微升)
|
||||
barcode: 条码标识
|
||||
|
||||
Returns:
|
||||
Bottle: 瓶子对象
|
||||
"""
|
||||
return Bottle(
|
||||
name=name,
|
||||
diameter=diameter,
|
||||
height=height,
|
||||
max_volume=max_volume,
|
||||
barcode=barcode,
|
||||
model="YB_pei_ye_xiao_Bottle",
|
||||
)
|
||||
|
||||
def YB_ye_Bottle(
|
||||
name: str,
|
||||
diameter: float = 40.0,
|
||||
height: float = 70.0,
|
||||
max_volume: float = 50000.0, # 最大容量
|
||||
barcode: str = None,
|
||||
) -> Bottle:
|
||||
"""创建液体瓶"""
|
||||
return Bottle(
|
||||
name=name,
|
||||
diameter=diameter,
|
||||
height=height,
|
||||
max_volume=max_volume,
|
||||
barcode=barcode,
|
||||
model="YB_ye_Bottle",
|
||||
)
|
||||
```
|
||||
|
||||
### 关键要点注释
|
||||
|
||||
- `diameter`: 瓶子直径,影响瓶位大小计算
|
||||
- `height`: 瓶子高度,用于碰撞检测和移液计算
|
||||
- `max_volume`: 最大容量,单位为微升(μL)
|
||||
- `barcode`: 条码标识,用于瓶子追踪
|
||||
- `model`: 型号标识,用于区分不同类型的瓶子
|
||||
|
||||
## 5. 注册表配置
|
||||
|
||||
创建完物料定义后,需要在注册表中注册这些物料,使系统能够识别和使用它们。
|
||||
|
||||
在 `unilabos/registry/resources/bioyond/` 目录下创建:
|
||||
|
||||
- `deck.yaml` - 桌子注册表
|
||||
- `YB_bottle_carriers.yaml` - 载具注册表
|
||||
- `YB_bottle.yaml` - 瓶子注册表
|
||||
|
||||
### 5.1 桌子注册表 (deck.yaml)
|
||||
|
||||
```yaml
|
||||
BIOYOND_YB_Deck:
|
||||
category:
|
||||
- deck # 前端显示的分类存放
|
||||
class:
|
||||
module: unilabos.resources.bioyond.decks:BIOYOND_YB_Deck # 定义桌子的类的路径
|
||||
type: pylabrobot
|
||||
description: BIOYOND_YB_Deck # 描述信息
|
||||
handles: []
|
||||
icon: 配液站.webp # 图标文件
|
||||
init_param_schema: {}
|
||||
registry_type: resource # 注册类型
|
||||
version: 1.0.0 # 版本号
|
||||
```
|
||||
|
||||
### 5.2 载具注册表 (YB_bottle_carriers.yaml)
|
||||
|
||||
```yaml
|
||||
YB_peiyepingxiaoban:
|
||||
category:
|
||||
- yb3
|
||||
- YB_bottle_carriers
|
||||
class:
|
||||
module: unilabos.resources.bioyond.YB_bottle_carriers:YB_peiyepingxiaoban
|
||||
type: pylabrobot
|
||||
description: YB_peiyepingxiaoban
|
||||
handles: []
|
||||
icon: ''
|
||||
init_param_schema: {}
|
||||
registry_type: resource
|
||||
version: 1.0.0
|
||||
```
|
||||
|
||||
### 5.3 瓶子注册表 (YB_bottle.yaml)
|
||||
|
||||
```yaml
|
||||
YB_pei_ye_xiao_Bottle:
|
||||
category:
|
||||
- yb3
|
||||
- YB_bottle
|
||||
class:
|
||||
module: unilabos.resources.bioyond.YB_bottles:YB_pei_ye_xiao_Bottle
|
||||
type: pylabrobot
|
||||
description: YB_pei_ye_xiao_Bottle
|
||||
handles: []
|
||||
icon: ''
|
||||
init_param_schema: {}
|
||||
registry_type: resource
|
||||
version: 1.0.0
|
||||
```
|
||||
|
||||
### 注册表关键要点注释
|
||||
|
||||
- `category`: 物料分类,用于在云端(网页界面)中的分类中显示
|
||||
- `module`: Python模块路径,格式为 `模块路径:类名`
|
||||
- `type`: 框架类型,通常为 `pylabrobot`(默认即可)
|
||||
- `description`: 描述信息,显示在用户界面中
|
||||
- `icon`: (名称唯一自动匹配后端上传的图标文件名,显示在云端)
|
||||
- `registry_type`: 固定为 `resource`
|
||||
- `version`: 版本号,用于版本管理
|
||||
@@ -1,782 +0,0 @@
|
||||
# 实例:工作站模板架构设计与对接指南
|
||||
|
||||
> **文档类型**:架构设计指南与实战案例
|
||||
> **适用场景**:大型工作站接入、子设备管理、物料系统集成
|
||||
> **前置知识**:{doc}`../add_device` | {doc}`../add_registry`
|
||||
|
||||
## 0. 问题简介
|
||||
|
||||
我们可以从以下几类例子,来理解对接大型工作站需要哪些设计。本文档之后的实战案例也将由这些组成。
|
||||
|
||||
### 0.1 自研常量有机工站:最重要的是子设备管理和通信转发
|
||||
|
||||

|
||||
|
||||

|
||||
|
||||
这类工站由开发者自研,组合所有子设备和实验耗材、希望让他们在工作站这一级协调配合;
|
||||
|
||||
1. 工作站包含大量已经注册的子设备,可能各自通信组态很不相同;部分设备可能会拥有同一个通信设备作为出口,如 2 个泵共用 1 个串口、所有设备共同接入 PLC 等。
|
||||
2. 任务系统是统一实现的 protocols,protocols 中会将高层指令处理成各子设备配合的工作流 json 并管理执行、同时更改物料信息
|
||||
3. 物料系统较为简单直接,如常量有机化学仅为工作站内固定的瓶子,初始化时就已固定;随后在任务执行过程中,记录试剂量更改信息
|
||||
|
||||
### 0.2 移液工作站:物料系统和工作流模板管理
|
||||
|
||||

|
||||
|
||||
1. 绝大多数情况没有子设备,有时候选配恒温震荡等模块时,接口也由工作站提供
|
||||
2. 所有任务系统均由工作站本身实现并下发指令,有统一的抽象函数可实现(pick_up_tips, aspirate, dispense, transfer 等)。有时需要将这些指令组合、转化为工作站的脚本语言,再统一下发。因此会形成大量固定的 protocols。
|
||||
3. 物料系统为固定的板位系统:台面上有多个可摆放位置,摆放标准孔板。
|
||||
|
||||
### 0.3 厂家开发的定制大型工站
|
||||
|
||||

|
||||
|
||||
由厂家开发,具备完善的物料系统、任务系统甚至调度系统;由 PLC 或 OpenAPI TCP 协议统一通信
|
||||
|
||||
1. 在监控状态时,希望展现子设备的状态;但子设备仅为逻辑概念,通信由工作站上位机接口提供;部分情况下,子设备状态是被记录在文件中的,需要读取
|
||||
2. 工作站有自己的工作流系统甚至调度系统;可以通过脚本/PLC 连续读写来配置工作站可用的工作流;
|
||||
3. 部分拥有完善的物料入库、出库、过程记录,需要与 Uni-Lab-OS 物料系统对接
|
||||
|
||||
## 1. 整体架构图
|
||||
|
||||
### 1.1 工作站核心架构
|
||||
|
||||
```{mermaid}
|
||||
graph TB
|
||||
subgraph "工作站模板组成"
|
||||
WB[WorkstationBase<br/>工作流状态管理]
|
||||
RPN[ROS2WorkstationNode<br/>Protocol执行引擎]
|
||||
WB -.post_init关联.-> RPN
|
||||
end
|
||||
|
||||
subgraph "物料管理系统"
|
||||
DECK[Deck<br/>PLR本地物料系统]
|
||||
RS[ResourceSynchronizer<br/>外部物料同步器]
|
||||
WB --> DECK
|
||||
WB --> RS
|
||||
RS --> DECK
|
||||
end
|
||||
|
||||
subgraph "通信与子设备管理"
|
||||
HW[hardware_interface<br/>硬件通信接口]
|
||||
SUBDEV[子设备集合<br/>pumps/grippers/sensors]
|
||||
WB --> HW
|
||||
RPN --> SUBDEV
|
||||
HW -.代理模式.-> RPN
|
||||
end
|
||||
|
||||
subgraph "工作流任务系统"
|
||||
PROTO[Protocol定义<br/>LiquidHandling/PlateHandling]
|
||||
WORKFLOW[Workflow执行器<br/>步骤管理与编排]
|
||||
RPN --> PROTO
|
||||
RPN --> WORKFLOW
|
||||
WORKFLOW --> SUBDEV
|
||||
end
|
||||
```
|
||||
|
||||
### 1.2 外部系统对接关系
|
||||
|
||||
```{mermaid}
|
||||
graph LR
|
||||
subgraph "Uni-Lab-OS工作站"
|
||||
WS[WorkstationBase + ROS2WorkstationNode]
|
||||
DECK2[物料系统<br/>Deck]
|
||||
HW2[通信接口<br/>hardware_interface]
|
||||
HTTP[HTTP服务<br/>WorkstationHTTPService]
|
||||
end
|
||||
|
||||
subgraph "外部物料系统"
|
||||
BIOYOND[Bioyond物料管理]
|
||||
LIMS[LIMS系统]
|
||||
WAREHOUSE[第三方仓储]
|
||||
end
|
||||
|
||||
subgraph "外部硬件系统"
|
||||
PLC[PLC设备]
|
||||
SERIAL[串口设备]
|
||||
ROBOT[机械臂/机器人]
|
||||
end
|
||||
|
||||
subgraph "云端系统"
|
||||
CLOUD[UniLab云端<br/>资源管理]
|
||||
MONITOR[监控与调度]
|
||||
end
|
||||
|
||||
BIOYOND <-->|RPC双向同步| DECK2
|
||||
LIMS -->|HTTP报送| HTTP
|
||||
WAREHOUSE <-->|API对接| DECK2
|
||||
|
||||
PLC <-->|Modbus TCP| HW2
|
||||
SERIAL <-->|串口通信| HW2
|
||||
ROBOT <-->|SDK/API| HW2
|
||||
|
||||
WS -->|ROS消息| CLOUD
|
||||
CLOUD -->|任务下发| WS
|
||||
MONITOR -->|状态查询| WS
|
||||
```
|
||||
|
||||
### 1.3 具体实现示例
|
||||
|
||||
```{mermaid}
|
||||
graph TB
|
||||
subgraph "工作站基类"
|
||||
BASE[WorkstationBase<br/>抽象基类]
|
||||
end
|
||||
|
||||
subgraph "Bioyond集成工作站"
|
||||
BW[BioyondWorkstation]
|
||||
BW_DECK[Deck + Warehouses]
|
||||
BW_SYNC[BioyondResourceSynchronizer]
|
||||
BW_HW[BioyondV1RPC]
|
||||
BW_HTTP[HTTP报送服务]
|
||||
|
||||
BW --> BW_DECK
|
||||
BW --> BW_SYNC
|
||||
BW --> BW_HW
|
||||
BW --> BW_HTTP
|
||||
end
|
||||
|
||||
subgraph "纯协议节点"
|
||||
PN[ProtocolNode]
|
||||
PN_SUB[子设备集合]
|
||||
PN_PROTO[Protocol工作流]
|
||||
|
||||
PN --> PN_SUB
|
||||
PN --> PN_PROTO
|
||||
end
|
||||
|
||||
subgraph "PLC控制工作站"
|
||||
PW[PLCWorkstation]
|
||||
PW_DECK[Deck物料系统]
|
||||
PW_PLC[Modbus PLC客户端]
|
||||
PW_WF[工作流定义]
|
||||
|
||||
PW --> PW_DECK
|
||||
PW --> PW_PLC
|
||||
PW --> PW_WF
|
||||
end
|
||||
|
||||
BASE -.继承.-> BW
|
||||
BASE -.继承.-> PN
|
||||
BASE -.继承.-> PW
|
||||
```
|
||||
|
||||
## 2. 类关系图
|
||||
|
||||
```{mermaid}
|
||||
classDiagram
|
||||
class WorkstationBase {
|
||||
<<abstract>>
|
||||
+_ros_node: ROS2WorkstationNode
|
||||
+deck: Deck
|
||||
+plr_resources: Dict[str, PLRResource]
|
||||
+resource_synchronizer: ResourceSynchronizer
|
||||
+hardware_interface: Union[Any, str]
|
||||
+current_workflow_status: WorkflowStatus
|
||||
+supported_workflows: Dict[str, WorkflowInfo]
|
||||
|
||||
+post_init(ros_node)*
|
||||
+set_hardware_interface(interface)
|
||||
+call_device_method(method, *args, **kwargs)
|
||||
+get_device_status()
|
||||
+is_device_available()
|
||||
|
||||
+get_deck()
|
||||
+get_all_resources()
|
||||
+find_resource_by_name(name)
|
||||
+find_resources_by_type(type)
|
||||
+sync_with_external_system()
|
||||
|
||||
+execute_workflow(name, params)
|
||||
+stop_workflow(emergency)
|
||||
+workflow_status
|
||||
+is_busy
|
||||
}
|
||||
|
||||
class ROS2WorkstationNode {
|
||||
+device_id: str
|
||||
+children: Dict[str, Any]
|
||||
+sub_devices: Dict
|
||||
+protocol_names: List[str]
|
||||
+_action_clients: Dict
|
||||
+_action_servers: Dict
|
||||
+resource_tracker: DeviceNodeResourceTracker
|
||||
|
||||
+initialize_device(device_id, config)
|
||||
+create_ros_action_server(action_name, mapping)
|
||||
+execute_single_action(device_id, action, kwargs)
|
||||
+update_resource(resources)
|
||||
+transfer_resource_to_another(resources, target, sites)
|
||||
+_setup_hardware_proxy(device, comm_device, read, write)
|
||||
}
|
||||
|
||||
%% 物料管理相关类
|
||||
class Deck {
|
||||
+name: str
|
||||
+children: List
|
||||
+assign_child_resource()
|
||||
}
|
||||
|
||||
class ResourceSynchronizer {
|
||||
<<abstract>>
|
||||
+workstation: WorkstationBase
|
||||
+sync_from_external()*
|
||||
+sync_to_external(plr_resource)*
|
||||
+handle_external_change(change_info)*
|
||||
}
|
||||
|
||||
class BioyondResourceSynchronizer {
|
||||
+bioyond_api_client: BioyondV1RPC
|
||||
+sync_interval: int
|
||||
+last_sync_time: float
|
||||
|
||||
+initialize()
|
||||
+sync_from_external()
|
||||
+sync_to_external(resource)
|
||||
+handle_external_change(change_info)
|
||||
}
|
||||
|
||||
%% 硬件接口相关类
|
||||
class HardwareInterface {
|
||||
<<interface>>
|
||||
}
|
||||
|
||||
class BioyondV1RPC {
|
||||
+base_url: str
|
||||
+api_key: str
|
||||
+stock_material()
|
||||
+add_material()
|
||||
+material_inbound()
|
||||
}
|
||||
|
||||
%% 服务类
|
||||
class WorkstationHTTPService {
|
||||
+workstation: WorkstationBase
|
||||
+host: str
|
||||
+port: int
|
||||
+server: HTTPServer
|
||||
+running: bool
|
||||
|
||||
+start()
|
||||
+stop()
|
||||
+_handle_step_finish_report()
|
||||
+_handle_sample_finish_report()
|
||||
+_handle_order_finish_report()
|
||||
+_handle_material_change_report()
|
||||
+_handle_error_handling_report()
|
||||
}
|
||||
|
||||
%% 具体实现类
|
||||
class BioyondWorkstation {
|
||||
+bioyond_config: Dict
|
||||
+workflow_mappings: Dict
|
||||
+workflow_sequence: List
|
||||
|
||||
+post_init(ros_node)
|
||||
+transfer_resource_to_another()
|
||||
+resource_tree_add(resources)
|
||||
+append_to_workflow_sequence(name)
|
||||
+get_all_workflows()
|
||||
+get_bioyond_status()
|
||||
}
|
||||
|
||||
class ProtocolNode {
|
||||
+post_init(ros_node)
|
||||
}
|
||||
|
||||
%% 核心关系
|
||||
WorkstationBase o-- ROS2WorkstationNode : post_init关联
|
||||
WorkstationBase o-- WorkstationHTTPService : 可选服务
|
||||
|
||||
%% 物料管理侧
|
||||
WorkstationBase *-- Deck : deck
|
||||
WorkstationBase *-- ResourceSynchronizer : 可选组合
|
||||
ResourceSynchronizer <|-- BioyondResourceSynchronizer
|
||||
|
||||
%% 硬件接口侧
|
||||
WorkstationBase o-- HardwareInterface : hardware_interface
|
||||
HardwareInterface <|.. BioyondV1RPC : 实现
|
||||
BioyondResourceSynchronizer --> BioyondV1RPC : 使用
|
||||
|
||||
%% 继承关系
|
||||
BioyondWorkstation --|> WorkstationBase
|
||||
ProtocolNode --|> WorkstationBase
|
||||
ROS2WorkstationNode --|> BaseROS2DeviceNode : 继承
|
||||
```
|
||||
|
||||
## 3. 工作站启动时序图
|
||||
|
||||
```{mermaid}
|
||||
sequenceDiagram
|
||||
participant APP as Application
|
||||
participant WS as WorkstationBase
|
||||
participant DECK as PLR Deck
|
||||
participant SYNC as ResourceSynchronizer
|
||||
participant HW as HardwareInterface
|
||||
participant ROS as ROS2WorkstationNode
|
||||
participant HTTP as HTTPService
|
||||
|
||||
APP->>WS: 创建工作站实例(__init__)
|
||||
WS->>DECK: 初始化PLR Deck
|
||||
DECK->>DECK: 创建Warehouse等子资源
|
||||
DECK-->>WS: Deck创建完成
|
||||
|
||||
WS->>HW: 创建硬件接口(如BioyondV1RPC)
|
||||
HW->>HW: 建立连接(PLC/RPC/串口等)
|
||||
HW-->>WS: 硬件接口就绪
|
||||
|
||||
WS->>SYNC: 创建ResourceSynchronizer(可选)
|
||||
SYNC->>HW: 使用hardware_interface
|
||||
SYNC->>SYNC: 初始化同步配置
|
||||
SYNC-->>WS: 同步器创建完成
|
||||
|
||||
WS->>SYNC: sync_from_external()
|
||||
SYNC->>HW: 查询外部物料系统
|
||||
HW-->>SYNC: 返回物料数据
|
||||
SYNC->>DECK: 转换并添加到Deck
|
||||
SYNC-->>WS: 同步完成
|
||||
|
||||
Note over WS: __init__完成,等待ROS节点
|
||||
|
||||
APP->>ROS: 初始化ROS2WorkstationNode
|
||||
ROS->>ROS: 初始化子设备(children)
|
||||
ROS->>ROS: 创建Action客户端
|
||||
ROS->>ROS: 设置硬件接口代理
|
||||
ROS-->>APP: ROS节点就绪
|
||||
|
||||
APP->>WS: post_init(ros_node)
|
||||
WS->>WS: self._ros_node = ros_node
|
||||
WS->>ROS: update_resource([deck])
|
||||
ROS->>ROS: 上传物料到云端
|
||||
ROS-->>WS: 上传完成
|
||||
|
||||
WS->>HTTP: 创建WorkstationHTTPService(可选)
|
||||
HTTP->>HTTP: 启动HTTP服务器线程
|
||||
HTTP-->>WS: HTTP服务启动
|
||||
|
||||
WS-->>APP: 工作站完全就绪
|
||||
```
|
||||
|
||||
## 4. 工作流执行时序图(Protocol 模式)
|
||||
|
||||
```{mermaid}
|
||||
sequenceDiagram
|
||||
participant CLIENT as 客户端
|
||||
participant ROS as ROS2WorkstationNode
|
||||
participant WS as WorkstationBase
|
||||
participant HW as HardwareInterface
|
||||
participant DECK as PLR Deck
|
||||
participant CLOUD as 云端资源管理
|
||||
participant DEV as 子设备
|
||||
|
||||
CLIENT->>ROS: 发送Protocol Action请求
|
||||
ROS->>ROS: execute_protocol回调
|
||||
ROS->>ROS: 从Goal提取参数
|
||||
ROS->>ROS: 调用protocol_steps_generator
|
||||
ROS->>ROS: 生成action步骤列表
|
||||
|
||||
ROS->>WS: 更新workflow_status = RUNNING
|
||||
|
||||
loop 执行每个步骤
|
||||
alt 调用子设备
|
||||
ROS->>ROS: execute_single_action(device_id, action, params)
|
||||
ROS->>DEV: 发送Action Goal(通过Action Client)
|
||||
DEV->>DEV: 执行设备动作
|
||||
DEV-->>ROS: 返回Result
|
||||
else 调用工作站自身
|
||||
ROS->>WS: call_device_method(method, *args)
|
||||
alt 直接模式
|
||||
WS->>HW: 调用hardware_interface方法
|
||||
HW->>HW: 执行硬件操作
|
||||
HW-->>WS: 返回结果
|
||||
else 代理模式
|
||||
WS->>ROS: 转发到子设备
|
||||
ROS->>DEV: 调用子设备方法
|
||||
DEV-->>ROS: 返回结果
|
||||
ROS-->>WS: 返回结果
|
||||
end
|
||||
WS-->>ROS: 返回结果
|
||||
end
|
||||
|
||||
ROS->>DECK: 更新本地物料状态
|
||||
DECK->>DECK: 修改PLR资源属性
|
||||
end
|
||||
|
||||
ROS->>CLOUD: 同步物料到云端(可选)
|
||||
CLOUD-->>ROS: 同步完成
|
||||
|
||||
ROS->>WS: 更新workflow_status = COMPLETED
|
||||
ROS-->>CLIENT: 返回Protocol Result
|
||||
```
|
||||
|
||||
## 5. HTTP 报送处理时序图
|
||||
|
||||
```{mermaid}
|
||||
sequenceDiagram
|
||||
participant EXT as 外部工作站/LIMS
|
||||
participant HTTP as HTTPService
|
||||
participant WS as WorkstationBase
|
||||
participant DECK as PLR Deck
|
||||
participant SYNC as ResourceSynchronizer
|
||||
participant CLOUD as 云端
|
||||
|
||||
EXT->>HTTP: POST /report/step_finish
|
||||
HTTP->>HTTP: 解析请求数据
|
||||
HTTP->>HTTP: 验证LIMS协议字段
|
||||
HTTP->>WS: process_step_finish_report(request)
|
||||
|
||||
WS->>WS: 增加接收计数(_reports_received_count++)
|
||||
WS->>WS: 记录步骤完成事件
|
||||
WS->>DECK: 更新相关物料状态(可选)
|
||||
DECK->>DECK: 修改PLR资源状态
|
||||
|
||||
WS->>WS: 保存报送记录到内存
|
||||
|
||||
WS-->>HTTP: 返回处理结果
|
||||
HTTP->>HTTP: 构造HTTP响应
|
||||
HTTP-->>EXT: 200 OK + acknowledgment_id
|
||||
|
||||
Note over EXT,CLOUD: 类似处理sample_finish, order_finish等报送
|
||||
|
||||
alt 物料变更报送
|
||||
EXT->>HTTP: POST /report/material_change
|
||||
HTTP->>WS: process_material_change_report(data)
|
||||
WS->>DECK: 查找或创建物料
|
||||
WS->>SYNC: sync_to_external(resource)
|
||||
SYNC->>SYNC: 同步到外部系统(如Bioyond)
|
||||
SYNC-->>WS: 同步完成
|
||||
WS->>CLOUD: update_resource(通过ROS节点)
|
||||
CLOUD-->>WS: 上传完成
|
||||
WS-->>HTTP: 返回结果
|
||||
HTTP-->>EXT: 200 OK
|
||||
end
|
||||
```
|
||||
|
||||
## 6. 错误处理时序图
|
||||
|
||||
```{mermaid}
|
||||
sequenceDiagram
|
||||
participant DEV as 子设备/外部系统
|
||||
participant ROS as ROS2WorkstationNode
|
||||
participant WS as WorkstationBase
|
||||
participant HW as HardwareInterface
|
||||
participant HTTP as HTTPService
|
||||
participant LOG as 日志系统
|
||||
|
||||
alt 设备错误(ROS Action失败)
|
||||
DEV->>ROS: Action返回失败结果
|
||||
ROS->>ROS: 记录错误信息
|
||||
ROS->>WS: 更新workflow_status = ERROR
|
||||
ROS->>LOG: 记录错误日志
|
||||
else 外部系统错误报送
|
||||
DEV->>HTTP: POST /report/error_handling
|
||||
HTTP->>WS: handle_external_error(error_data)
|
||||
WS->>WS: 记录错误历史
|
||||
WS->>LOG: 记录错误日志
|
||||
end
|
||||
|
||||
alt 关键错误需要停止
|
||||
WS->>ROS: stop_workflow(emergency=True)
|
||||
ROS->>ROS: 取消所有进行中的Action
|
||||
ROS->>HW: 调用emergency_stop()(如果支持)
|
||||
HW->>HW: 执行紧急停止
|
||||
WS->>WS: 更新workflow_status = ERROR
|
||||
else 可恢复错误
|
||||
WS->>WS: 标记步骤失败
|
||||
WS->>ROS: 触发重试逻辑(可选)
|
||||
ROS->>DEV: 重新发送Action
|
||||
end
|
||||
|
||||
WS-->>HTTP: 返回错误处理结果
|
||||
HTTP-->>DEV: 200 OK + 处理状态
|
||||
```
|
||||
|
||||
## 7. 典型工作站实现示例
|
||||
|
||||
### 7.1 Bioyond 集成工作站实现
|
||||
|
||||
```python
|
||||
class BioyondWorkstation(WorkstationBase):
|
||||
def __init__(self, bioyond_config: Dict, deck: Deck, *args, **kwargs):
|
||||
# 初始化deck
|
||||
super().__init__(deck=deck, *args, **kwargs)
|
||||
|
||||
# 设置硬件接口为Bioyond RPC客户端
|
||||
self.hardware_interface = BioyondV1RPC(bioyond_config)
|
||||
|
||||
# 创建资源同步器
|
||||
self.resource_synchronizer = BioyondResourceSynchronizer(self)
|
||||
|
||||
# 从Bioyond同步物料到本地deck
|
||||
self.resource_synchronizer.sync_from_external()
|
||||
|
||||
# 配置工作流
|
||||
self.workflow_mappings = bioyond_config.get("workflow_mappings", {})
|
||||
|
||||
def post_init(self, ros_node: ROS2WorkstationNode):
|
||||
"""ROS节点就绪后的初始化"""
|
||||
self._ros_node = ros_node
|
||||
|
||||
# 上传deck(包括所有物料)到云端
|
||||
ROS2DeviceNode.run_async_func(
|
||||
self._ros_node.update_resource,
|
||||
True,
|
||||
resources=[self.deck]
|
||||
)
|
||||
|
||||
def resource_tree_add(self, resources: List[ResourcePLR]):
|
||||
"""添加物料并同步到Bioyond"""
|
||||
for resource in resources:
|
||||
self.deck.assign_child_resource(resource, location)
|
||||
self.resource_synchronizer.sync_to_external(resource)
|
||||
```
|
||||
|
||||
### 7.2 纯协议节点实现
|
||||
|
||||
```python
|
||||
class ProtocolNode(WorkstationBase):
|
||||
"""纯协议节点,不需要物料管理和外部通信"""
|
||||
|
||||
def __init__(self, deck: Optional[Deck] = None, *args, **kwargs):
|
||||
super().__init__(deck=deck, *args, **kwargs)
|
||||
# 不设置hardware_interface和resource_synchronizer
|
||||
# 所有功能通过子设备协同完成
|
||||
|
||||
def post_init(self, ros_node: ROS2WorkstationNode):
|
||||
self._ros_node = ros_node
|
||||
# 不需要上传物料或其他初始化
|
||||
```
|
||||
|
||||
### 7.3 PLC 直接控制工作站
|
||||
|
||||
```python
|
||||
class PLCWorkstation(WorkstationBase):
|
||||
def __init__(self, plc_config: Dict, deck: Deck, *args, **kwargs):
|
||||
super().__init__(deck=deck, *args, **kwargs)
|
||||
|
||||
# 设置硬件接口为Modbus客户端
|
||||
from pymodbus.client import ModbusTcpClient
|
||||
self.hardware_interface = ModbusTcpClient(
|
||||
host=plc_config["host"],
|
||||
port=plc_config["port"]
|
||||
)
|
||||
self.hardware_interface.connect()
|
||||
|
||||
# 定义支持的工作流
|
||||
self.supported_workflows = {
|
||||
"battery_assembly": WorkflowInfo(
|
||||
name="电池组装",
|
||||
description="自动化电池组装流程",
|
||||
estimated_duration=300.0,
|
||||
required_materials=["battery_cell", "connector"],
|
||||
output_product="battery_pack",
|
||||
parameters_schema={"quantity": int, "model": str}
|
||||
)
|
||||
}
|
||||
|
||||
def execute_workflow(self, workflow_name: str, parameters: Dict):
|
||||
"""通过PLC执行工作流"""
|
||||
workflow_id = self._get_workflow_id(workflow_name)
|
||||
|
||||
# 写入PLC寄存器启动工作流
|
||||
self.hardware_interface.write_register(100, workflow_id)
|
||||
self.hardware_interface.write_register(101, parameters["quantity"])
|
||||
|
||||
self.current_workflow_status = WorkflowStatus.RUNNING
|
||||
return True
|
||||
```
|
||||
|
||||
## 8. 核心接口说明
|
||||
|
||||
### 8.1 WorkstationBase 核心属性
|
||||
|
||||
| 属性 | 类型 | 说明 |
|
||||
| ------------------------- | ----------------------- | ------------------------------- |
|
||||
| `_ros_node` | ROS2WorkstationNode | ROS 节点引用,由 post_init 设置 |
|
||||
| `deck` | Deck | PyLabRobot Deck,本地物料系统 |
|
||||
| `plr_resources` | Dict[str, PLRResource] | 物料资源映射 |
|
||||
| `resource_synchronizer` | ResourceSynchronizer | 外部物料同步器(可选) |
|
||||
| `hardware_interface` | Union[Any, str] | 硬件接口或代理字符串 |
|
||||
| `current_workflow_status` | WorkflowStatus | 当前工作流状态 |
|
||||
| `supported_workflows` | Dict[str, WorkflowInfo] | 支持的工作流定义 |
|
||||
|
||||
### 8.2 必须实现的方法
|
||||
|
||||
- `post_init(ros_node)`: ROS 节点就绪后的初始化,必须实现
|
||||
|
||||
### 8.3 硬件接口相关方法
|
||||
|
||||
- `set_hardware_interface(interface)`: 设置硬件接口
|
||||
- `call_device_method(method, *args, **kwargs)`: 统一设备方法调用
|
||||
- 支持直接模式: 直接调用 hardware_interface 的方法
|
||||
- 支持代理模式: hardware_interface="proxy:device_id"通过 ROS 转发
|
||||
- `get_device_status()`: 获取设备状态
|
||||
- `is_device_available()`: 检查设备可用性
|
||||
|
||||
### 8.4 物料管理方法
|
||||
|
||||
- `get_deck()`: 获取 PLR Deck
|
||||
- `get_all_resources()`: 获取所有物料
|
||||
- `find_resource_by_name(name)`: 按名称查找物料
|
||||
- `find_resources_by_type(type)`: 按类型查找物料
|
||||
- `sync_with_external_system()`: 触发外部同步
|
||||
|
||||
### 8.5 工作流控制方法
|
||||
|
||||
- `execute_workflow(name, params)`: 执行工作流
|
||||
- `stop_workflow(emergency)`: 停止工作流
|
||||
- `workflow_status`: 获取工作流状态(属性)
|
||||
- `is_busy`: 检查是否忙碌(属性)
|
||||
- `workflow_runtime`: 获取运行时间(属性)
|
||||
|
||||
### 8.6 可选的 HTTP 报送处理方法
|
||||
|
||||
- `process_step_finish_report()`: 步骤完成处理
|
||||
- `process_sample_finish_report()`: 样本完成处理
|
||||
- `process_order_finish_report()`: 订单完成处理
|
||||
- `process_material_change_report()`: 物料变更处理
|
||||
- `handle_external_error()`: 错误处理
|
||||
|
||||
### 8.7 ROS2WorkstationNode 核心方法
|
||||
|
||||
- `initialize_device(device_id, config)`: 初始化子设备
|
||||
- `create_ros_action_server(action_name, mapping)`: 创建 Action 服务器
|
||||
- `execute_single_action(device_id, action, kwargs)`: 执行单个动作
|
||||
- `update_resource(resources)`: 同步物料到云端
|
||||
- `transfer_resource_to_another(...)`: 跨设备物料转移
|
||||
|
||||
## 9. 配置参数说明
|
||||
|
||||
### 9.1 工作站初始化配置
|
||||
|
||||
```python
|
||||
# 示例1: Bioyond集成工作站
|
||||
bioyond_config = {
|
||||
"base_url": "http://192.168.1.100:8080",
|
||||
"api_key": "your_api_key",
|
||||
"sync_interval": 600, # 同步间隔(秒)
|
||||
"workflow_mappings": {
|
||||
"样品制备": "workflow_uuid_1",
|
||||
"质检流程": "workflow_uuid_2"
|
||||
},
|
||||
"material_type_mappings": {
|
||||
"plate": "板",
|
||||
"tube": "试管"
|
||||
},
|
||||
"warehouse_mapping": {
|
||||
"冷藏区": {
|
||||
"uuid": "warehouse_uuid_1",
|
||||
"locations": {...}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# 创建Deck
|
||||
from pylabrobot.resources import Deck
|
||||
deck = Deck(name="main_deck", size_x=1000, size_y=800, size_z=200)
|
||||
|
||||
workstation = BioyondWorkstation(
|
||||
bioyond_config=bioyond_config,
|
||||
deck=deck
|
||||
)
|
||||
```
|
||||
|
||||
### 9.2 子设备配置(children)
|
||||
|
||||
```python
|
||||
# 在devices.json中配置
|
||||
{
|
||||
"bioyond_workstation": {
|
||||
"type": "protocol", # 表示这是工作站节点
|
||||
"protocol_type": ["LiquidHandling", "PlateHandling"],
|
||||
"children": {
|
||||
"pump_1": {
|
||||
"type": "device",
|
||||
"driver": "TricontInnovaDriver",
|
||||
"communication": "serial_1",
|
||||
"config": {...}
|
||||
},
|
||||
"gripper_1": {
|
||||
"type": "device",
|
||||
"driver": "RobotiqGripperDriver",
|
||||
"communication": "io_modbus_1",
|
||||
"config": {...}
|
||||
},
|
||||
"serial_1": {
|
||||
"type": "communication",
|
||||
"protocol": "serial",
|
||||
"port": "/dev/ttyUSB0",
|
||||
"baudrate": 9600
|
||||
},
|
||||
"io_modbus_1": {
|
||||
"type": "communication",
|
||||
"protocol": "modbus_tcp",
|
||||
"host": "192.168.1.101",
|
||||
"port": 502
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### 9.3 HTTP 服务配置
|
||||
|
||||
```python
|
||||
from unilabos.devices.workstation.workstation_http_service import WorkstationHTTPService
|
||||
|
||||
# 创建HTTP服务(可选)
|
||||
http_service = WorkstationHTTPService(
|
||||
workstation_instance=workstation,
|
||||
host="0.0.0.0", # 监听所有网卡
|
||||
port=8081
|
||||
)
|
||||
http_service.start()
|
||||
```
|
||||
|
||||
## 10. 架构设计特点总结
|
||||
|
||||
这个简化后的架构设计具有以下特点:
|
||||
|
||||
### 10.1 清晰的职责分离
|
||||
|
||||
- **WorkstationBase**: 负责物料管理(deck)、硬件接口(hardware_interface)、工作流状态管理
|
||||
- **ROS2WorkstationNode**: 负责子设备管理、Protocol 执行、云端物料同步
|
||||
- **ResourceSynchronizer**: 可选的外部物料系统同步(如 Bioyond)
|
||||
- **WorkstationHTTPService**: 可选的 HTTP 报送接收服务
|
||||
|
||||
### 10.2 灵活的硬件接口模式
|
||||
|
||||
1. **直接模式**: hardware_interface 是具体对象(如 BioyondV1RPC、ModbusClient)
|
||||
2. **代理模式**: hardware_interface="proxy:device_id",通过 ROS 节点转发到子设备
|
||||
3. **混合模式**: 工作站有自己的接口,同时管理多个子设备
|
||||
|
||||
### 10.3 统一的物料系统
|
||||
|
||||
- 基于 PyLabRobot Deck 的标准化物料表示
|
||||
- 通过 ResourceSynchronizer 实现与外部系统(如 Bioyond、LIMS)的双向同步
|
||||
- 通过 ROS2WorkstationNode 实现与云端的物料状态同步
|
||||
|
||||
### 10.4 Protocol 驱动的工作流
|
||||
|
||||
- ROS2WorkstationNode 负责 Protocol 的执行和步骤管理
|
||||
- 支持子设备协同(通过 Action Client 调用)
|
||||
- 支持工作站直接控制(通过 hardware_interface)
|
||||
|
||||
### 10.5 可选的 HTTP 报送服务
|
||||
|
||||
- 基于 LIMS 协议规范的统一报送接口
|
||||
- 支持步骤完成、样本完成、任务完成、物料变更等多种报送类型
|
||||
- 与工作站解耦,可独立启停
|
||||
|
||||
### 10.6 简化的初始化流程
|
||||
|
||||
```
|
||||
1. __init__: 创建deck、设置hardware_interface、创建resource_synchronizer
|
||||
2. 从外部系统同步物料(如果有)
|
||||
3. ROS节点初始化子设备
|
||||
4. post_init: 关联ROS节点、上传物料到云端
|
||||
5. (可选)启动HTTP服务
|
||||
```
|
||||
|
||||
这种设计既保持了灵活性,又避免了过度抽象,更适合实际的工作站对接场景。
|
||||
@@ -1,334 +0,0 @@
|
||||
# HTTP API 指南
|
||||
|
||||
本文档介绍如何通过 HTTP API 与 Uni-Lab-OS 进行交互,包括查询设备、提交任务和获取结果。
|
||||
|
||||
## 概述
|
||||
|
||||
Uni-Lab-OS 提供 RESTful HTTP API,允许外部系统通过标准 HTTP 请求控制实验室设备。API 基于 FastAPI 构建,默认运行在 `http://localhost:8002`。
|
||||
|
||||
### 基础信息
|
||||
|
||||
- **Base URL**: `http://localhost:8002/api/v1`
|
||||
- **Content-Type**: `application/json`
|
||||
- **响应格式**: JSON
|
||||
|
||||
### 通用响应结构
|
||||
|
||||
```json
|
||||
{
|
||||
"code": 0,
|
||||
"data": { ... },
|
||||
"message": "success"
|
||||
}
|
||||
```
|
||||
|
||||
| 字段 | 类型 | 说明 |
|
||||
| --------- | ------ | ------------------ |
|
||||
| `code` | int | 状态码,0 表示成功 |
|
||||
| `data` | object | 响应数据 |
|
||||
| `message` | string | 响应消息 |
|
||||
|
||||
## 快速开始
|
||||
|
||||
以下是一个完整的工作流示例:查询设备 → 获取动作 → 提交任务 → 获取结果。
|
||||
|
||||
### 步骤 1: 获取在线设备
|
||||
|
||||
```bash
|
||||
curl -X GET "http://localhost:8002/api/v1/online-devices"
|
||||
```
|
||||
|
||||
**响应示例**:
|
||||
|
||||
```json
|
||||
{
|
||||
"code": 0,
|
||||
"data": {
|
||||
"online_devices": {
|
||||
"host_node": {
|
||||
"device_key": "/host_node",
|
||||
"namespace": "",
|
||||
"machine_name": "本地",
|
||||
"uuid": "xxx-xxx-xxx",
|
||||
"node_name": "host_node"
|
||||
}
|
||||
},
|
||||
"total_count": 1,
|
||||
"timestamp": 1732612345.123
|
||||
},
|
||||
"message": "success"
|
||||
}
|
||||
```
|
||||
|
||||
### 步骤 2: 获取设备可用动作
|
||||
|
||||
```bash
|
||||
curl -X GET "http://localhost:8002/api/v1/devices/host_node/actions"
|
||||
```
|
||||
|
||||
**响应示例**:
|
||||
|
||||
```json
|
||||
{
|
||||
"code": 0,
|
||||
"data": {
|
||||
"device_id": "host_node",
|
||||
"actions": {
|
||||
"test_latency": {
|
||||
"type_name": "unilabos_msgs.action._empty_in.EmptyIn",
|
||||
"type_name_convert": "unilabos_msgs/action/_empty_in/EmptyIn",
|
||||
"action_path": "/devices/host_node/test_latency",
|
||||
"goal_info": "{}",
|
||||
"is_busy": false,
|
||||
"current_job_id": null
|
||||
},
|
||||
"create_resource": {
|
||||
"type_name": "unilabos_msgs.action._resource_create_from_outer_easy.ResourceCreateFromOuterEasy",
|
||||
"action_path": "/devices/host_node/create_resource",
|
||||
"goal_info": "{res_id: '', device_id: '', class_name: '', ...}",
|
||||
"is_busy": false,
|
||||
"current_job_id": null
|
||||
}
|
||||
},
|
||||
"action_count": 5
|
||||
},
|
||||
"message": "success"
|
||||
}
|
||||
```
|
||||
|
||||
**动作状态字段说明**:
|
||||
|
||||
| 字段 | 说明 |
|
||||
| ---------------- | ----------------------------- |
|
||||
| `type_name` | 动作类型的完整名称 |
|
||||
| `action_path` | ROS2 动作路径 |
|
||||
| `goal_info` | 动作参数模板 |
|
||||
| `is_busy` | 动作是否正在执行 |
|
||||
| `current_job_id` | 当前执行的任务 ID(如果繁忙) |
|
||||
|
||||
### 步骤 3: 提交任务
|
||||
|
||||
```bash
|
||||
curl -X POST "http://localhost:8002/api/v1/job/add" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{"device_id":"host_node","action":"test_latency","action_args":{}}'
|
||||
```
|
||||
|
||||
**请求体**:
|
||||
|
||||
```json
|
||||
{
|
||||
"device_id": "host_node",
|
||||
"action": "test_latency",
|
||||
"action_args": {}
|
||||
}
|
||||
```
|
||||
|
||||
**请求参数说明**:
|
||||
|
||||
| 字段 | 类型 | 必填 | 说明 |
|
||||
| ------------- | ------ | ---- | ---------------------------------- |
|
||||
| `device_id` | string | ✓ | 目标设备 ID |
|
||||
| `action` | string | ✓ | 动作名称 |
|
||||
| `action_args` | object | ✓ | 动作参数(根据动作类型不同而变化) |
|
||||
|
||||
**响应示例**:
|
||||
|
||||
```json
|
||||
{
|
||||
"code": 0,
|
||||
"data": {
|
||||
"jobId": "b6acb586-733a-42ab-9f73-55c9a52aa8bd",
|
||||
"status": 1,
|
||||
"result": {}
|
||||
},
|
||||
"message": "success"
|
||||
}
|
||||
```
|
||||
|
||||
**任务状态码**:
|
||||
|
||||
| 状态码 | 含义 | 说明 |
|
||||
| ------ | --------- | ------------------------------ |
|
||||
| 0 | UNKNOWN | 未知状态 |
|
||||
| 1 | ACCEPTED | 任务已接受,等待执行 |
|
||||
| 2 | EXECUTING | 任务执行中 |
|
||||
| 3 | CANCELING | 任务取消中 |
|
||||
| 4 | SUCCEEDED | 任务成功完成 |
|
||||
| 5 | CANCELED | 任务已取消 |
|
||||
| 6 | ABORTED | 任务中止(设备繁忙或执行失败) |
|
||||
|
||||
### 步骤 4: 查询任务状态和结果
|
||||
|
||||
```bash
|
||||
curl -X GET "http://localhost:8002/api/v1/job/b6acb586-733a-42ab-9f73-55c9a52aa8bd/status"
|
||||
```
|
||||
|
||||
**响应示例(执行中)**:
|
||||
|
||||
```json
|
||||
{
|
||||
"code": 0,
|
||||
"data": {
|
||||
"jobId": "b6acb586-733a-42ab-9f73-55c9a52aa8bd",
|
||||
"status": 2,
|
||||
"result": {}
|
||||
},
|
||||
"message": "success"
|
||||
}
|
||||
```
|
||||
|
||||
**响应示例(执行完成)**:
|
||||
|
||||
```json
|
||||
{
|
||||
"code": 0,
|
||||
"data": {
|
||||
"jobId": "b6acb586-733a-42ab-9f73-55c9a52aa8bd",
|
||||
"status": 4,
|
||||
"result": {
|
||||
"error": "",
|
||||
"suc": true,
|
||||
"return_value": {
|
||||
"avg_rtt_ms": 103.99,
|
||||
"avg_time_diff_ms": 7181.55,
|
||||
"max_time_error_ms": 7210.57,
|
||||
"task_delay_ms": -1,
|
||||
"raw_delay_ms": 33.19,
|
||||
"test_count": 5,
|
||||
"status": "success"
|
||||
}
|
||||
}
|
||||
},
|
||||
"message": "success"
|
||||
}
|
||||
```
|
||||
|
||||
> **注意**: 任务结果在首次查询后会被自动删除,请确保保存返回的结果数据。
|
||||
|
||||
## API 端点列表
|
||||
|
||||
### 设备相关
|
||||
|
||||
| 端点 | 方法 | 说明 |
|
||||
| ---------------------------------------------------------- | ---- | ---------------------- |
|
||||
| `/api/v1/online-devices` | GET | 获取在线设备列表 |
|
||||
| `/api/v1/devices` | GET | 获取设备配置 |
|
||||
| `/api/v1/devices/{device_id}/actions` | GET | 获取指定设备的可用动作 |
|
||||
| `/api/v1/devices/{device_id}/actions/{action_name}/schema` | GET | 获取动作参数 Schema |
|
||||
| `/api/v1/actions` | GET | 获取所有设备的可用动作 |
|
||||
|
||||
### 任务相关
|
||||
|
||||
| 端点 | 方法 | 说明 |
|
||||
| ----------------------------- | ---- | ------------------ |
|
||||
| `/api/v1/job/add` | POST | 提交新任务 |
|
||||
| `/api/v1/job/{job_id}/status` | GET | 查询任务状态和结果 |
|
||||
|
||||
### 资源相关
|
||||
|
||||
| 端点 | 方法 | 说明 |
|
||||
| ------------------- | ---- | ------------ |
|
||||
| `/api/v1/resources` | GET | 获取资源列表 |
|
||||
|
||||
## 常见动作示例
|
||||
|
||||
### test_latency - 延迟测试
|
||||
|
||||
测试系统延迟,无需参数。
|
||||
|
||||
```bash
|
||||
curl -X POST "http://localhost:8002/api/v1/job/add" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{"device_id":"host_node","action":"test_latency","action_args":{}}'
|
||||
```
|
||||
|
||||
### create_resource - 创建资源
|
||||
|
||||
在设备上创建新资源。
|
||||
|
||||
```bash
|
||||
curl -X POST "http://localhost:8002/api/v1/job/add" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"device_id": "host_node",
|
||||
"action": "create_resource",
|
||||
"action_args": {
|
||||
"res_id": "my_plate",
|
||||
"device_id": "host_node",
|
||||
"class_name": "Plate",
|
||||
"parent": "deck",
|
||||
"bind_locations": {"x": 0, "y": 0, "z": 0}
|
||||
}
|
||||
}'
|
||||
```
|
||||
|
||||
## 错误处理
|
||||
|
||||
### 设备繁忙
|
||||
|
||||
当设备正在执行其他任务时,提交新任务会返回 `status: 6`(ABORTED):
|
||||
|
||||
```json
|
||||
{
|
||||
"code": 0,
|
||||
"data": {
|
||||
"jobId": "xxx",
|
||||
"status": 6,
|
||||
"result": {}
|
||||
},
|
||||
"message": "success"
|
||||
}
|
||||
```
|
||||
|
||||
此时应等待当前任务完成后重试,或使用 `/devices/{device_id}/actions` 检查动作的 `is_busy` 状态。
|
||||
|
||||
### 参数错误
|
||||
|
||||
```json
|
||||
{
|
||||
"code": 2002,
|
||||
"data": { ... },
|
||||
"message": "device_id is required"
|
||||
}
|
||||
```
|
||||
|
||||
## 轮询策略
|
||||
|
||||
推荐的任务状态轮询策略:
|
||||
|
||||
```python
|
||||
import requests
|
||||
import time
|
||||
|
||||
def wait_for_job(job_id, timeout=60, interval=0.5):
|
||||
"""等待任务完成并返回结果"""
|
||||
start_time = time.time()
|
||||
|
||||
while time.time() - start_time < timeout:
|
||||
response = requests.get(f"http://localhost:8002/api/v1/job/{job_id}/status")
|
||||
data = response.json()["data"]
|
||||
|
||||
status = data["status"]
|
||||
if status in (4, 5, 6): # SUCCEEDED, CANCELED, ABORTED
|
||||
return data
|
||||
|
||||
time.sleep(interval)
|
||||
|
||||
raise TimeoutError(f"Job {job_id} did not complete within {timeout} seconds")
|
||||
|
||||
# 使用示例
|
||||
response = requests.post(
|
||||
"http://localhost:8002/api/v1/job/add",
|
||||
json={"device_id": "host_node", "action": "test_latency", "action_args": {}}
|
||||
)
|
||||
job_id = response.json()["data"]["jobId"]
|
||||
result = wait_for_job(job_id)
|
||||
print(result)
|
||||
```
|
||||
|
||||
## 相关文档
|
||||
|
||||
- [设备注册指南](add_device.md)
|
||||
- [动作定义指南](add_action.md)
|
||||
- [网络架构概述](networking_overview.md)
|
||||
|
Before Width: | Height: | Size: 1.2 MiB |
|
Before Width: | Height: | Size: 629 KiB |
|
Before Width: | Height: | Size: 1.1 MiB |
|
Before Width: | Height: | Size: 269 KiB |
|
Before Width: | Height: | Size: 428 KiB After Width: | Height: | Size: 428 KiB |
|
Before Width: | Height: | Size: 310 KiB After Width: | Height: | Size: 310 KiB |
|
Before Width: | Height: | Size: 66 KiB After Width: | Height: | Size: 66 KiB |
@@ -1,10 +1,6 @@
|
||||
# 实例:物料教程(Resource)
|
||||
# 物料教程(Resource)
|
||||
|
||||
> **文档类型**:物料系统完整教程
|
||||
> **适用场景**:物料格式转换、多系统物料对接、资源结构理解
|
||||
> **前置知识**:Python 基础 | JSON 数据结构
|
||||
|
||||
本教程面向 Uni-Lab-OS 的开发者,讲解"物料"的核心概念、3种物料格式(UniLab、PyLabRobot、奔耀Bioyond)及其相互转换方法,并说明4种 children 结构表现形式及使用场景。
|
||||
本教程面向 Uni-Lab-OS 的开发者,讲解“物料”的核心概念、3种物料格式(UniLab、PyLabRobot、奔耀Bioyond)及其相互转换方法,并说明4种 children 结构表现形式及使用场景。
|
||||
|
||||
---
|
||||
|
||||
@@ -1,594 +0,0 @@
|
||||
# 组网部署与主从模式配置
|
||||
|
||||
本文档介绍 Uni-Lab-OS 的组网架构、部署方式和主从模式的详细配置。
|
||||
|
||||
## 目录
|
||||
|
||||
- [架构概览](#架构概览)
|
||||
- [节点类型](#节点类型)
|
||||
- [通信机制](#通信机制)
|
||||
- [典型拓扑](#典型拓扑)
|
||||
- [主从模式配置](#主从模式配置)
|
||||
- [网络配置](#网络配置)
|
||||
- [示例:多房间部署](#示例多房间部署)
|
||||
- [故障处理](#故障处理)
|
||||
- [监控和维护](#监控和维护)
|
||||
|
||||
---
|
||||
|
||||
## 架构概览
|
||||
|
||||
Uni-Lab-OS 支持多种部署模式:
|
||||
|
||||
```
|
||||
┌──────────────────────────────────────────────┐
|
||||
│ Cloud Platform/Self-hosted Platform │
|
||||
│ uni-lab.bohrium.com │
|
||||
│ (Resource Management, Task Scheduling, │
|
||||
│ Monitoring) │
|
||||
└────────────────────┬─────────────────────────┘
|
||||
│ WebSocket / HTTP
|
||||
│
|
||||
┌──────────┴──────────┐
|
||||
│ │
|
||||
┌────▼─────┐ ┌────▼─────┐
|
||||
│ Master │◄──ROS2──►│ Slave │
|
||||
│ Node │ │ Node │
|
||||
│ (Host) │ │ (Slave) │
|
||||
└────┬─────┘ └────┬─────┘
|
||||
│ │
|
||||
┌────┴────┐ ┌────┴────┐
|
||||
│ Device A│ │ Device B│
|
||||
│ Device C│ │ Device D│
|
||||
└─────────┘ └─────────┘
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 节点类型
|
||||
|
||||
### 主节点(Host Node)
|
||||
|
||||
**功能**:
|
||||
|
||||
- 创建和管理全局资源
|
||||
- 提供 host_node 服务
|
||||
- 连接云端平台
|
||||
- 协调多个从节点
|
||||
- 提供 Web 管理界面
|
||||
|
||||
**启动命令**:
|
||||
|
||||
```bash
|
||||
unilab --ak your_ak --sk your_sk -g host_devices.json
|
||||
```
|
||||
|
||||
### 从节点(Slave Node)
|
||||
|
||||
**功能**:
|
||||
|
||||
- 管理本地设备
|
||||
- 不连接云端(可选)
|
||||
- 向主节点注册
|
||||
- 执行分配的任务
|
||||
|
||||
**启动命令**:
|
||||
|
||||
```bash
|
||||
unilab --ak your_ak --sk your_sk -g slave_devices.json --is_slave
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 通信机制
|
||||
|
||||
### ROS2 通信
|
||||
|
||||
**用途**: 节点间实时通信
|
||||
|
||||
**通信方式**:
|
||||
|
||||
- **Topic**: 状态广播(设备状态、传感器数据)
|
||||
- **Service**: 同步请求(资源查询、配置获取)
|
||||
- **Action**: 异步任务(设备操作、长时间运行)
|
||||
|
||||
**示例**:
|
||||
|
||||
```bash
|
||||
# 查看ROS2节点
|
||||
ros2 node list
|
||||
|
||||
# 查看topic
|
||||
ros2 topic list
|
||||
|
||||
# 查看action
|
||||
ros2 action list
|
||||
```
|
||||
|
||||
### WebSocket 通信
|
||||
|
||||
**用途**: 主节点与云端通信
|
||||
|
||||
**特点**:
|
||||
|
||||
- 实时双向通信
|
||||
- 自动重连
|
||||
- 心跳保持
|
||||
|
||||
**配置**:
|
||||
|
||||
```python
|
||||
# local_config.py
|
||||
BasicConfig.ak = "your_ak"
|
||||
BasicConfig.sk = "your_sk"
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 典型拓扑
|
||||
|
||||
### 单节点模式
|
||||
|
||||
**适用场景**: 小型实验室、开发测试
|
||||
|
||||
```
|
||||
┌──────────────────┐
|
||||
│ Uni-Lab Node │
|
||||
│ ┌────────────┐ │
|
||||
│ │ Device A │ │
|
||||
│ │ Device B │ │
|
||||
│ │ Device C │ │
|
||||
│ └────────────┘ │
|
||||
└──────────────────┘
|
||||
```
|
||||
|
||||
**优点**:
|
||||
|
||||
- 配置简单
|
||||
- 无网络延迟
|
||||
- 适合快速原型
|
||||
|
||||
**启动**:
|
||||
|
||||
```bash
|
||||
unilab --ak your_ak --sk your_sk -g all_devices.json
|
||||
```
|
||||
|
||||
### 主从模式
|
||||
|
||||
**适用场景**: 多房间、分布式设备
|
||||
|
||||
```
|
||||
┌─────────────┐ ┌──────────────┐
|
||||
│ Master Node │◄────►│ Slave Node 1 │
|
||||
│ Coordinator │ │ Liquid │
|
||||
│ Web UI │ │ Handling │
|
||||
└──────┬──────┘ └──────────────┘
|
||||
│
|
||||
│ ┌──────────────┐
|
||||
└────────────►│ Slave Node 2 │
|
||||
│ Analytical │
|
||||
│ (NMR/GC) │
|
||||
└──────────────┘
|
||||
```
|
||||
|
||||
**优点**:
|
||||
|
||||
- 物理分隔
|
||||
- 独立故障域
|
||||
- 易于扩展
|
||||
|
||||
**适用场景**:
|
||||
|
||||
- 设备物理位置分散
|
||||
- 不同房间的设备
|
||||
- 需要独立故障域
|
||||
- 分阶段扩展系统
|
||||
|
||||
**主节点**:
|
||||
|
||||
```bash
|
||||
unilab --ak your_ak --sk your_sk -g host.json
|
||||
```
|
||||
|
||||
**从节点**:
|
||||
|
||||
```bash
|
||||
unilab --ak your_ak --sk your_sk -g slave1.json --is_slave
|
||||
unilab --ak your_ak --sk your_sk -g slave2.json --is_slave --port 8003
|
||||
```
|
||||
|
||||
### 云端集成模式
|
||||
|
||||
**适用场景**: 远程监控、多实验室协作
|
||||
|
||||
```
|
||||
Cloud Platform
|
||||
│
|
||||
┌───────┴────────┐
|
||||
│ │
|
||||
Laboratory A Laboratory B
|
||||
(Master Node) (Master Node)
|
||||
```
|
||||
|
||||
**优点**:
|
||||
|
||||
- 远程访问
|
||||
- 数据同步
|
||||
- 任务调度
|
||||
|
||||
**启动**:
|
||||
|
||||
```bash
|
||||
# 实验室A
|
||||
unilab --ak your_ak --sk your_sk --upload_registry --use_remote_resource
|
||||
|
||||
# 实验室B
|
||||
unilab --ak your_ak --sk your_sk --upload_registry --use_remote_resource
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 主从模式配置
|
||||
|
||||
### 主节点配置
|
||||
|
||||
#### 1. 创建主节点设备图
|
||||
|
||||
`host.json`:
|
||||
|
||||
```json
|
||||
{
|
||||
"nodes": [],
|
||||
"links": []
|
||||
}
|
||||
```
|
||||
|
||||
#### 2. 启动主节点
|
||||
|
||||
```bash
|
||||
# 基本启动
|
||||
unilab --ak your_ak --sk your_sk -g host.json
|
||||
|
||||
# 带云端集成
|
||||
unilab --ak your_ak --sk your_sk -g host.json --upload_registry
|
||||
|
||||
# 指定端口
|
||||
unilab --ak your_ak --sk your_sk -g host.json --port 8002
|
||||
```
|
||||
|
||||
#### 3. 验证主节点
|
||||
|
||||
```bash
|
||||
# 检查ROS2节点
|
||||
ros2 node list
|
||||
# 应该看到 /host_node
|
||||
|
||||
# 检查服务
|
||||
ros2 service list | grep host_node
|
||||
|
||||
# Web界面
|
||||
# 访问 http://localhost:8002
|
||||
```
|
||||
|
||||
### 从节点配置
|
||||
|
||||
#### 1. 创建从节点设备图
|
||||
|
||||
`slave1.json`:
|
||||
|
||||
```json
|
||||
{
|
||||
"nodes": [
|
||||
{
|
||||
"id": "liquid_handler_1",
|
||||
"name": "液体处理工作站",
|
||||
"type": "device",
|
||||
"class": "liquid_handler",
|
||||
"config": {
|
||||
"simulation": false
|
||||
}
|
||||
}
|
||||
],
|
||||
"links": []
|
||||
}
|
||||
```
|
||||
|
||||
#### 2. 启动从节点
|
||||
|
||||
```bash
|
||||
# 基本从节点启动
|
||||
unilab --ak your_ak --sk your_sk -g slave1.json --is_slave
|
||||
|
||||
# 指定不同端口(如果多个从节点在同一台机器)
|
||||
unilab --ak your_ak --sk your_sk -g slave1.json --is_slave --port 8003
|
||||
|
||||
# 跳过等待主节点(独立测试)
|
||||
unilab --ak your_ak --sk your_sk -g slave1.json --is_slave --slave_no_host
|
||||
```
|
||||
|
||||
#### 3. 验证从节点
|
||||
|
||||
```bash
|
||||
# 检查节点连接
|
||||
ros2 node list
|
||||
|
||||
# 检查设备状态
|
||||
ros2 topic echo /liquid_handler_1/status
|
||||
```
|
||||
|
||||
### 跨节点通信
|
||||
|
||||
#### 资源访问
|
||||
|
||||
主节点可以访问从节点的资源:
|
||||
|
||||
```bash
|
||||
# 在主节点或其他节点调用从节点设备
|
||||
ros2 action send_goal /liquid_handler_1/transfer_liquid \
|
||||
unilabos_msgs/action/TransferLiquid \
|
||||
"{source: {...}, target: {...}, volume: 100.0}"
|
||||
```
|
||||
|
||||
#### 状态监控
|
||||
|
||||
主节点监控所有从节点状态:
|
||||
|
||||
```bash
|
||||
# 订阅从节点状态
|
||||
ros2 topic echo /liquid_handler_1/status
|
||||
|
||||
# 查看所有设备状态
|
||||
ros2 topic list | grep status
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 网络配置
|
||||
|
||||
### ROS2 DDS 配置
|
||||
|
||||
确保主从节点在同一网络:
|
||||
|
||||
```bash
|
||||
# 检查网络可达性
|
||||
ping <slave_node_ip>
|
||||
|
||||
# 设置ROS_DOMAIN_ID(可选,用于隔离)
|
||||
export ROS_DOMAIN_ID=42
|
||||
```
|
||||
|
||||
### 防火墙配置
|
||||
|
||||
**建议做法**:
|
||||
|
||||
为了确保 ROS2 DDS 通信正常,建议直接关闭防火墙,而不是配置特定端口。ROS2 使用动态端口范围,配置特定端口可能导致通信问题。
|
||||
|
||||
**Linux**:
|
||||
|
||||
```bash
|
||||
# 关闭防火墙
|
||||
sudo ufw disable
|
||||
|
||||
# 或者临时停止防火墙
|
||||
sudo systemctl stop ufw
|
||||
```
|
||||
|
||||
**Windows**:
|
||||
|
||||
```powershell
|
||||
# 在Windows安全中心关闭防火墙
|
||||
# 控制面板 -> 系统和安全 -> Windows Defender 防火墙 -> 启用或关闭Windows Defender防火墙
|
||||
```
|
||||
|
||||
### 验证网络连通性
|
||||
|
||||
在配置完成后,使用 ROS2 自带的 demo 节点来验证跨节点通信是否正常:
|
||||
|
||||
**在主节点机器上**(激活 unilab 环境后):
|
||||
|
||||
```bash
|
||||
# 启动talker
|
||||
ros2 run demo_nodes_cpp talker
|
||||
|
||||
# 同时在另一个终端启动listener
|
||||
ros2 run demo_nodes_cpp listener
|
||||
```
|
||||
|
||||
**在从节点机器上**(激活 unilab 环境后):
|
||||
|
||||
```bash
|
||||
# 启动talker
|
||||
ros2 run demo_nodes_cpp talker
|
||||
|
||||
# 同时在另一个终端启动listener
|
||||
ros2 run demo_nodes_cpp listener
|
||||
```
|
||||
|
||||
**注意**:必须在两台机器上**互相启动** talker 和 listener,否则可能出现只能收不能发的单向通信问题。
|
||||
|
||||
**预期结果**:
|
||||
|
||||
- 每台机器的 listener 应该能同时接收到本地和远程 talker 发送的消息
|
||||
- 如果只能看到本地消息,说明网络配置有问题
|
||||
- 如果两台机器都能互相收发消息,则组网配置正确
|
||||
|
||||
### 本地网络要求
|
||||
|
||||
**ROS2 通信**:
|
||||
|
||||
- 同一局域网或 VPN
|
||||
- 端口:默认 DDS 端口(7400-7500)
|
||||
- 组播支持(或配置 unicast)
|
||||
|
||||
**检查连通性**:
|
||||
|
||||
```bash
|
||||
# Ping测试
|
||||
ping <target_ip>
|
||||
|
||||
# ROS2节点发现
|
||||
ros2 node list
|
||||
ros2 daemon stop && ros2 daemon start
|
||||
```
|
||||
|
||||
### 云端连接
|
||||
|
||||
**要求**:
|
||||
|
||||
- HTTPS (443)
|
||||
- WebSocket 支持
|
||||
- 稳定的互联网连接
|
||||
|
||||
**测试连接**:
|
||||
|
||||
```bash
|
||||
# 测试云端连接
|
||||
curl https://uni-lab.bohrium.com/api/v1/health
|
||||
|
||||
# 测试WebSocket
|
||||
# 启动Uni-Lab后查看日志
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 示例:多房间部署
|
||||
|
||||
### 场景描述
|
||||
|
||||
- **房间 A**: 主控室,有 Web 界面
|
||||
- **房间 B**: 液体处理室
|
||||
- **房间 C**: 分析仪器室
|
||||
|
||||
### 房间 A - 主节点
|
||||
|
||||
```bash
|
||||
# host.json
|
||||
unilab --ak your_ak --sk your_sk -g host.json --port 8002
|
||||
```
|
||||
|
||||
### 房间 B - 从节点 1
|
||||
|
||||
```bash
|
||||
# liquid_handler.json
|
||||
unilab --ak your_ak --sk your_sk -g liquid_handler.json --is_slave --port 8003
|
||||
```
|
||||
|
||||
### 房间 C - 从节点 2
|
||||
|
||||
```bash
|
||||
# analytical.json
|
||||
unilab --ak your_ak --sk your_sk -g analytical.json --is_slave --port 8004
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 故障处理
|
||||
|
||||
### 节点离线
|
||||
|
||||
**检测**:
|
||||
|
||||
```bash
|
||||
ros2 node list # 查看在线节点
|
||||
```
|
||||
|
||||
**处理**:
|
||||
|
||||
1. 检查网络连接
|
||||
2. 重启节点
|
||||
3. 检查日志
|
||||
|
||||
### 从节点无法连接主节点
|
||||
|
||||
1. 检查网络:
|
||||
|
||||
```bash
|
||||
ping <host_ip>
|
||||
```
|
||||
|
||||
2. 检查 ROS_DOMAIN_ID:
|
||||
|
||||
```bash
|
||||
echo $ROS_DOMAIN_ID
|
||||
```
|
||||
|
||||
3. 使用`--slave_no_host`测试:
|
||||
```bash
|
||||
unilab --ak your_ak --sk your_sk -g slave.json --is_slave --slave_no_host
|
||||
```
|
||||
|
||||
### 通信延迟
|
||||
|
||||
**排查**:
|
||||
|
||||
```bash
|
||||
# 网络延迟
|
||||
ping <node_ip>
|
||||
|
||||
# ROS2话题延迟
|
||||
ros2 topic hz /device_status
|
||||
ros2 topic bw /device_status
|
||||
```
|
||||
|
||||
**优化**:
|
||||
|
||||
- 减少发布频率
|
||||
- 使用 QoS 配置
|
||||
- 优化网络带宽
|
||||
|
||||
### 数据同步失败
|
||||
|
||||
**检查**:
|
||||
|
||||
```bash
|
||||
# 查看日志
|
||||
tail -f unilabos_data/logs/unilab.log | grep sync
|
||||
```
|
||||
|
||||
**解决**:
|
||||
|
||||
- 检查云端连接
|
||||
- 验证 AK/SK
|
||||
- 手动触发同步
|
||||
|
||||
### 资源不可见
|
||||
|
||||
检查资源注册:
|
||||
|
||||
```bash
|
||||
ros2 service call /host_node/resource_list \
|
||||
unilabos_msgs/srv/ResourceList
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 监控和维护
|
||||
|
||||
### 节点状态监控
|
||||
|
||||
```bash
|
||||
# 查看所有节点
|
||||
ros2 node list
|
||||
|
||||
# 查看话题
|
||||
ros2 topic list
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 相关文档
|
||||
|
||||
- [最佳实践指南](../user_guide/best_practice.md) - 完整的实验室搭建流程
|
||||
- [安装指南](../user_guide/installation.md) - 环境安装步骤
|
||||
- [启动参数详解](../user_guide/launch.md) - 启动参数说明
|
||||
- [添加设备驱动](add_device.md) - 自定义设备开发
|
||||
- [工作站架构](workstation_architecture.md) - 复杂工作站搭建
|
||||
|
||||
---
|
||||
|
||||
## 参考资料
|
||||
|
||||
- [ROS2 网络配置](https://docs.ros.org/en/humble/Tutorials/Advanced/Networking.html)
|
||||
- [DDS 配置](https://fast-dds.docs.eprosima.com/)
|
||||
- Uni-Lab 云平台文档
|
||||
378
docs/developer_guide/workstation_architecture.md
Normal file
@@ -0,0 +1,378 @@
|
||||
# 工作站基础架构设计文档
|
||||
|
||||
## 1. 整体架构图
|
||||
|
||||
```mermaid
|
||||
graph TB
|
||||
subgraph "工作站基础架构"
|
||||
WB[WorkstationBase]
|
||||
WB --> |继承| RPN[ROS2WorkstationNode]
|
||||
WB --> |组合| WCB[WorkstationCommunicationBase]
|
||||
WB --> |组合| MMB[MaterialManagementBase]
|
||||
WB --> |组合| WHS[WorkstationHTTPService]
|
||||
end
|
||||
|
||||
subgraph "通信层实现"
|
||||
WCB --> |实现| PLC[PLCCommunication]
|
||||
WCB --> |实现| SER[SerialCommunication]
|
||||
WCB --> |实现| ETH[EthernetCommunication]
|
||||
end
|
||||
|
||||
subgraph "物料管理实现"
|
||||
MMB --> |实现| PLR[PyLabRobotMaterialManager]
|
||||
MMB --> |实现| BIO[BioyondMaterialManager]
|
||||
MMB --> |实现| SIM[SimpleMaterialManager]
|
||||
end
|
||||
|
||||
subgraph "HTTP服务"
|
||||
WHS --> |处理| LIMS[LIMS协议报送]
|
||||
WHS --> |处理| MAT[物料变更报送]
|
||||
WHS --> |处理| ERR[错误处理报送]
|
||||
end
|
||||
|
||||
subgraph "具体工作站实现"
|
||||
WB --> |继承| WS1[PLCWorkstation]
|
||||
WB --> |继承| WS2[ReportingWorkstation]
|
||||
WB --> |继承| WS3[HybridWorkstation]
|
||||
end
|
||||
|
||||
subgraph "外部系统"
|
||||
EXT1[PLC设备] --> |通信| PLC
|
||||
EXT2[外部工作站] --> |HTTP报送| WHS
|
||||
EXT3[LIMS系统] --> |HTTP报送| WHS
|
||||
EXT4[Bioyond物料系统] --> |查询| BIO
|
||||
end
|
||||
```
|
||||
|
||||
## 2. 类关系图
|
||||
|
||||
```mermaid
|
||||
classDiagram
|
||||
class WorkstationBase {
|
||||
<<abstract>>
|
||||
+device_id: str
|
||||
+communication: WorkstationCommunicationBase
|
||||
+material_management: MaterialManagementBase
|
||||
+http_service: WorkstationHTTPService
|
||||
+workflow_status: WorkflowStatus
|
||||
+supported_workflows: Dict
|
||||
|
||||
+_create_communication_module()*
|
||||
+_create_material_management_module()*
|
||||
+_register_supported_workflows()*
|
||||
|
||||
+process_step_finish_report()
|
||||
+process_sample_finish_report()
|
||||
+process_order_finish_report()
|
||||
+process_material_change_report()
|
||||
+handle_external_error()
|
||||
|
||||
+start_workflow()
|
||||
+stop_workflow()
|
||||
+get_workflow_status()
|
||||
+get_device_status()
|
||||
}
|
||||
|
||||
class ROS2WorkstationNode {
|
||||
+sub_devices: Dict
|
||||
+protocol_names: List
|
||||
+execute_single_action()
|
||||
+create_ros_action_server()
|
||||
+initialize_device()
|
||||
}
|
||||
|
||||
class WorkstationCommunicationBase {
|
||||
<<abstract>>
|
||||
+config: CommunicationConfig
|
||||
+is_connected: bool
|
||||
+connect()
|
||||
+disconnect()
|
||||
+start_workflow()*
|
||||
+stop_workflow()*
|
||||
+get_device_status()*
|
||||
+write_register()
|
||||
+read_register()
|
||||
}
|
||||
|
||||
class MaterialManagementBase {
|
||||
<<abstract>>
|
||||
+device_id: str
|
||||
+deck_config: Dict
|
||||
+resource_tracker: DeviceNodeResourceTracker
|
||||
+plr_deck: Deck
|
||||
+find_materials_by_type()
|
||||
+update_material_location()
|
||||
+convert_to_unilab_format()
|
||||
+_create_resource_by_type()*
|
||||
}
|
||||
|
||||
class WorkstationHTTPService {
|
||||
+workstation_instance: WorkstationBase
|
||||
+host: str
|
||||
+port: int
|
||||
+start()
|
||||
+stop()
|
||||
+_handle_step_finish_report()
|
||||
+_handle_material_change_report()
|
||||
}
|
||||
|
||||
class PLCWorkstation {
|
||||
+plc_config: Dict
|
||||
+modbus_client: ModbusTCPClient
|
||||
+_create_communication_module()
|
||||
+_create_material_management_module()
|
||||
+_register_supported_workflows()
|
||||
}
|
||||
|
||||
class ReportingWorkstation {
|
||||
+report_handlers: Dict
|
||||
+_create_communication_module()
|
||||
+_create_material_management_module()
|
||||
+_register_supported_workflows()
|
||||
}
|
||||
|
||||
WorkstationBase --|> ROS2WorkstationNode
|
||||
WorkstationBase *-- WorkstationCommunicationBase
|
||||
WorkstationBase *-- MaterialManagementBase
|
||||
WorkstationBase *-- WorkstationHTTPService
|
||||
|
||||
PLCWorkstation --|> WorkstationBase
|
||||
ReportingWorkstation --|> WorkstationBase
|
||||
|
||||
WorkstationCommunicationBase <|-- PLCCommunication
|
||||
WorkstationCommunicationBase <|-- DummyCommunication
|
||||
|
||||
MaterialManagementBase <|-- PyLabRobotMaterialManager
|
||||
MaterialManagementBase <|-- SimpleMaterialManager
|
||||
```
|
||||
|
||||
## 3. 工作站启动时序图
|
||||
|
||||
```mermaid
|
||||
sequenceDiagram
|
||||
participant APP as Application
|
||||
participant WS as WorkstationBase
|
||||
participant COMM as CommunicationModule
|
||||
participant MAT as MaterialManager
|
||||
participant HTTP as HTTPService
|
||||
participant ROS as ROS2WorkstationNode
|
||||
|
||||
APP->>WS: 创建工作站实例
|
||||
WS->>ROS: 初始化ROS2WorkstationNode
|
||||
ROS->>ROS: 初始化子设备
|
||||
ROS->>ROS: 设置硬件接口代理
|
||||
|
||||
WS->>COMM: _create_communication_module()
|
||||
COMM->>COMM: 初始化通信配置
|
||||
COMM->>COMM: 建立PLC/串口连接
|
||||
COMM-->>WS: 返回通信模块实例
|
||||
|
||||
WS->>MAT: _create_material_management_module()
|
||||
MAT->>MAT: 创建PyLabRobot Deck
|
||||
MAT->>MAT: 初始化物料资源
|
||||
MAT->>MAT: 注册到ResourceTracker
|
||||
MAT-->>WS: 返回物料管理实例
|
||||
|
||||
WS->>WS: _register_supported_workflows()
|
||||
WS->>WS: _create_workstation_services()
|
||||
WS->>HTTP: _start_http_service()
|
||||
HTTP->>HTTP: 创建HTTP服务器
|
||||
HTTP->>HTTP: 启动监听线程
|
||||
HTTP-->>WS: HTTP服务启动完成
|
||||
|
||||
WS-->>APP: 工作站初始化完成
|
||||
```
|
||||
|
||||
## 4. 工作流执行时序图
|
||||
|
||||
```mermaid
|
||||
sequenceDiagram
|
||||
participant EXT as ExternalSystem
|
||||
participant WS as WorkstationBase
|
||||
participant COMM as CommunicationModule
|
||||
participant MAT as MaterialManager
|
||||
participant ROS as ROS2WorkstationNode
|
||||
participant DEV as SubDevice
|
||||
|
||||
EXT->>WS: start_workflow(type, params)
|
||||
WS->>WS: 验证工作流类型
|
||||
WS->>COMM: start_workflow(type, params)
|
||||
COMM->>COMM: 发送启动命令到PLC
|
||||
COMM-->>WS: 启动成功
|
||||
|
||||
WS->>WS: 更新workflow_status = RUNNING
|
||||
|
||||
loop 工作流步骤执行
|
||||
WS->>ROS: execute_single_action(device_id, action, params)
|
||||
ROS->>DEV: 发送ROS Action请求
|
||||
DEV->>DEV: 执行设备动作
|
||||
DEV-->>ROS: 返回执行结果
|
||||
ROS-->>WS: 返回动作结果
|
||||
|
||||
WS->>MAT: update_material_location(material_id, location)
|
||||
MAT->>MAT: 更新PyLabRobot资源状态
|
||||
MAT-->>WS: 更新完成
|
||||
end
|
||||
|
||||
WS->>COMM: get_workflow_status()
|
||||
COMM->>COMM: 查询PLC状态寄存器
|
||||
COMM-->>WS: 返回状态信息
|
||||
|
||||
WS->>WS: 更新workflow_status = COMPLETED
|
||||
WS-->>EXT: 工作流执行完成
|
||||
```
|
||||
|
||||
## 5. HTTP报送处理时序图
|
||||
|
||||
```mermaid
|
||||
sequenceDiagram
|
||||
participant EXT as ExternalWorkstation
|
||||
participant HTTP as HTTPService
|
||||
participant WS as WorkstationBase
|
||||
participant MAT as MaterialManager
|
||||
participant DB as DataStorage
|
||||
|
||||
EXT->>HTTP: POST /report/step_finish
|
||||
HTTP->>HTTP: 解析请求数据
|
||||
HTTP->>HTTP: 验证LIMS协议字段
|
||||
HTTP->>WS: process_step_finish_report(request)
|
||||
|
||||
WS->>WS: 增加接收计数
|
||||
WS->>WS: 记录步骤完成事件
|
||||
WS->>MAT: 更新相关物料状态
|
||||
MAT->>MAT: 更新PyLabRobot资源
|
||||
MAT-->>WS: 更新完成
|
||||
|
||||
WS->>DB: 保存报送记录
|
||||
DB-->>WS: 保存完成
|
||||
|
||||
WS-->>HTTP: 返回处理结果
|
||||
HTTP->>HTTP: 构造HTTP响应
|
||||
HTTP-->>EXT: 200 OK + acknowledgment_id
|
||||
|
||||
Note over EXT,DB: 类似处理sample_finish, order_finish, material_change等报送
|
||||
```
|
||||
|
||||
## 6. 错误处理时序图
|
||||
|
||||
```mermaid
|
||||
sequenceDiagram
|
||||
participant DEV as Device
|
||||
participant WS as WorkstationBase
|
||||
participant COMM as CommunicationModule
|
||||
participant HTTP as HTTPService
|
||||
participant EXT as ExternalSystem
|
||||
|
||||
DEV->>WS: 设备错误事件
|
||||
WS->>WS: handle_external_error(error_data)
|
||||
WS->>WS: 记录错误历史
|
||||
|
||||
alt 关键错误
|
||||
WS->>COMM: emergency_stop()
|
||||
COMM->>COMM: 发送紧急停止命令
|
||||
WS->>WS: 更新workflow_status = ERROR
|
||||
else 普通错误
|
||||
WS->>WS: 标记动作失败
|
||||
WS->>WS: 触发重试逻辑
|
||||
end
|
||||
|
||||
WS->>HTTP: 记录错误报送
|
||||
HTTP->>EXT: 主动通知错误状态
|
||||
|
||||
WS-->>DEV: 错误处理完成
|
||||
```
|
||||
|
||||
## 7. 典型工作站实现示例
|
||||
|
||||
### 7.1 PLC工作站实现
|
||||
|
||||
```python
|
||||
class PLCWorkstation(WorkstationBase):
|
||||
def _create_communication_module(self):
|
||||
return PLCCommunication(self.communication_config)
|
||||
|
||||
def _create_material_management_module(self):
|
||||
return PyLabRobotMaterialManager(
|
||||
self.device_id,
|
||||
self.deck_config,
|
||||
self.resource_tracker
|
||||
)
|
||||
|
||||
def _register_supported_workflows(self):
|
||||
self.supported_workflows = {
|
||||
"battery_assembly": WorkflowInfo(...),
|
||||
"quality_check": WorkflowInfo(...)
|
||||
}
|
||||
```
|
||||
|
||||
### 7.2 报送接收工作站实现
|
||||
|
||||
```python
|
||||
class ReportingWorkstation(WorkstationBase):
|
||||
def _create_communication_module(self):
|
||||
return DummyCommunication(self.communication_config)
|
||||
|
||||
def _create_material_management_module(self):
|
||||
return SimpleMaterialManager(
|
||||
self.device_id,
|
||||
self.deck_config,
|
||||
self.resource_tracker
|
||||
)
|
||||
|
||||
def _register_supported_workflows(self):
|
||||
self.supported_workflows = {
|
||||
"data_collection": WorkflowInfo(...),
|
||||
"report_processing": WorkflowInfo(...)
|
||||
}
|
||||
```
|
||||
|
||||
## 8. 核心接口说明
|
||||
|
||||
### 8.1 必须实现的抽象方法
|
||||
- `_create_communication_module()`: 创建通信模块
|
||||
- `_create_material_management_module()`: 创建物料管理模块
|
||||
- `_register_supported_workflows()`: 注册支持的工作流
|
||||
|
||||
### 8.2 可重写的报送处理方法
|
||||
- `process_step_finish_report()`: 步骤完成处理
|
||||
- `process_sample_finish_report()`: 样本完成处理
|
||||
- `process_order_finish_report()`: 订单完成处理
|
||||
- `process_material_change_report()`: 物料变更处理
|
||||
- `handle_external_error()`: 错误处理
|
||||
|
||||
### 8.3 工作流控制接口
|
||||
- `start_workflow()`: 启动工作流
|
||||
- `stop_workflow()`: 停止工作流
|
||||
- `get_workflow_status()`: 获取状态
|
||||
|
||||
## 9. 配置参数说明
|
||||
|
||||
```python
|
||||
workstation_config = {
|
||||
"communication_config": {
|
||||
"protocol": "modbus_tcp",
|
||||
"host": "192.168.1.100",
|
||||
"port": 502
|
||||
},
|
||||
"deck_config": {
|
||||
"size_x": 1000.0,
|
||||
"size_y": 1000.0,
|
||||
"size_z": 500.0
|
||||
},
|
||||
"http_service_config": {
|
||||
"enabled": True,
|
||||
"host": "127.0.0.1",
|
||||
"port": 8081
|
||||
},
|
||||
"communication_interfaces": {
|
||||
"logical_device_1": CommunicationInterface(...)
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
这个架构设计支持:
|
||||
1. **灵活的通信方式**: 通过CommunicationBase支持PLC、串口、以太网等
|
||||
2. **多样的物料管理**: 支持PyLabRobot、Bioyond、简单物料系统
|
||||
3. **统一的HTTP报送**: 基于LIMS协议的标准化报送接口
|
||||
4. **完整的工作流控制**: 支持动态和静态工作流
|
||||
5. **强大的错误处理**: 多层次的错误处理和恢复机制
|
||||
@@ -1,23 +1,9 @@
|
||||
# Uni-Lab-OS 项目文档
|
||||
# Uni-Lab 项目文档
|
||||
|
||||
Uni-Lab-OS 是一个开源的实验室自动化操作系统,提供统一的设备接口、工作流管理和分布式部署能力。
|
||||
欢迎来到项目文档的首页!
|
||||
|
||||
```{toctree}
|
||||
:maxdepth: 3
|
||||
|
||||
intro.md
|
||||
```
|
||||
|
||||
## 开发者指南
|
||||
|
||||
```{toctree}
|
||||
:maxdepth: 2
|
||||
|
||||
developer_guide/http_api.md
|
||||
developer_guide/networking_overview.md
|
||||
developer_guide/add_device.md
|
||||
developer_guide/add_action.md
|
||||
developer_guide/add_registry.md
|
||||
developer_guide/add_yaml.md
|
||||
developer_guide/action_includes.md
|
||||
```
|
||||
|
||||
@@ -10,51 +10,31 @@ concepts/01-communication-instruction.md
|
||||
concepts/02-topology-and-chemputer-compile.md
|
||||
```
|
||||
|
||||
## 用户指南
|
||||
## **用户指南**
|
||||
|
||||
快速上手、系统配置与使用说明。
|
||||
本指南将带你了解如何使用项目的功能。
|
||||
|
||||
```{toctree}
|
||||
:maxdepth: 2
|
||||
|
||||
user_guide/best_practice.md
|
||||
user_guide/installation.md
|
||||
user_guide/configuration.md
|
||||
user_guide/launch.md
|
||||
user_guide/graph_files.md
|
||||
boot_examples/index.md
|
||||
```
|
||||
|
||||
## 进阶配置
|
||||
|
||||
高级配置和系统管理。
|
||||
|
||||
```{toctree}
|
||||
:maxdepth: 2
|
||||
|
||||
advanced_usage/configuration.md
|
||||
advanced_usage/working_directory.md
|
||||
```
|
||||
|
||||
## 开发者指南
|
||||
|
||||
设备开发、系统扩展与架构说明。
|
||||
|
||||
```{toctree}
|
||||
:maxdepth: 2
|
||||
|
||||
developer_guide/networking_overview.md
|
||||
developer_guide/add_device.md
|
||||
developer_guide/add_old_device.md
|
||||
developer_guide/add_registry.md
|
||||
developer_guide/add_yaml.md
|
||||
developer_guide/add_action.md
|
||||
developer_guide/actions.md
|
||||
developer_guide/action_includes.md
|
||||
developer_guide/add_protocol.md
|
||||
developer_guide/examples/workstation_architecture.md
|
||||
developer_guide/examples/materials_construction_guide.md
|
||||
developer_guide/examples/materials_tutorial.md
|
||||
developer_guide/examples/battery_plc_workstation.md
|
||||
developer_guide/device_driver
|
||||
developer_guide/add_device
|
||||
developer_guide/add_action
|
||||
developer_guide/actions
|
||||
developer_guide/add_protocol
|
||||
developer_guide/add_batteryPLC
|
||||
developer_guide/materials_tutorial.md
|
||||
```
|
||||
|
||||
## 接口文档
|
||||
|
||||
BIN
docs/logo.png
|
Before Width: | Height: | Size: 262 KiB After Width: | Height: | Size: 326 KiB |
@@ -2,7 +2,6 @@
|
||||
sphinx>=7.0.0
|
||||
sphinx-rtd-theme>=2.0.0
|
||||
myst-parser>=2.0.0
|
||||
sphinxcontrib-mermaid
|
||||
|
||||
# 用于支持Jupyter notebook文档
|
||||
myst-nb>=1.0.0
|
||||
|
||||
442
docs/user_guide/configuration.md
Normal file
@@ -0,0 +1,442 @@
|
||||
# Uni-Lab 配置指南
|
||||
|
||||
Uni-Lab 支持通过 Python 配置文件进行灵活的系统配置。本指南将帮助您理解配置选项并设置您的 Uni-Lab 环境。
|
||||
|
||||
## 配置文件格式
|
||||
|
||||
Uni-Lab 支持 Python 格式的配置文件,它比 YAML 或 JSON 提供更多的灵活性,包括支持注释、条件逻辑和复杂数据结构。
|
||||
|
||||
### 默认配置示例
|
||||
|
||||
首次使用时,系统会自动创建一个基础配置文件 `local_config.py`:
|
||||
|
||||
```python
|
||||
# unilabos的配置文件
|
||||
|
||||
class BasicConfig:
|
||||
ak = "" # 实验室网页给您提供的ak代码,您可以在配置文件中指定,也可以通过运行unilabos时以 --ak 传入,优先按照传入参数解析
|
||||
sk = "" # 实验室网页给您提供的sk代码,您可以在配置文件中指定,也可以通过运行unilabos时以 --sk 传入,优先按照传入参数解析
|
||||
|
||||
|
||||
# WebSocket配置,一般无需调整
|
||||
class WSConfig:
|
||||
reconnect_interval = 5 # 重连间隔(秒)
|
||||
max_reconnect_attempts = 999 # 最大重连次数
|
||||
ping_interval = 30 # ping间隔(秒)
|
||||
```
|
||||
您可以进入实验室,点击左下角的头像在实验室详情中获取所在实验室的ak sk
|
||||

|
||||
|
||||
### 完整配置示例
|
||||
|
||||
您可以根据需要添加更多配置选项:
|
||||
|
||||
```python
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
"""Uni-Lab 配置文件"""
|
||||
|
||||
# 基础配置
|
||||
class BasicConfig:
|
||||
ak = "your_access_key" # 实验室访问密钥
|
||||
sk = "your_secret_key" # 实验室私钥
|
||||
working_dir = "" # 工作目录(通常自动设置)
|
||||
config_path = "" # 配置文件路径(自动设置)
|
||||
is_host_mode = True # 是否为主站模式
|
||||
slave_no_host = False # 从站模式下是否跳过等待主机服务
|
||||
upload_registry = False # 是否上传注册表
|
||||
machine_name = "undefined" # 机器名称(自动获取)
|
||||
vis_2d_enable = False # 是否启用2D可视化
|
||||
enable_resource_load = True # 是否启用资源加载
|
||||
communication_protocol = "websocket" # 通信协议
|
||||
|
||||
# WebSocket配置
|
||||
class WSConfig:
|
||||
reconnect_interval = 5 # 重连间隔(秒)
|
||||
max_reconnect_attempts = 999 # 最大重连次数
|
||||
ping_interval = 30 # ping间隔(秒)
|
||||
|
||||
# OSS上传配置
|
||||
class OSSUploadConfig:
|
||||
api_host = "" # API主机地址
|
||||
authorization = "" # 授权信息
|
||||
init_endpoint = "" # 初始化端点
|
||||
complete_endpoint = "" # 完成端点
|
||||
max_retries = 3 # 最大重试次数
|
||||
|
||||
# HTTP配置
|
||||
class HTTPConfig:
|
||||
remote_addr = "http://127.0.0.1:48197/api/v1" # 远程地址
|
||||
|
||||
# ROS配置
|
||||
class ROSConfig:
|
||||
modules = [
|
||||
"std_msgs.msg",
|
||||
"geometry_msgs.msg",
|
||||
"control_msgs.msg",
|
||||
"control_msgs.action",
|
||||
"nav2_msgs.action",
|
||||
"unilabos_msgs.msg",
|
||||
"unilabos_msgs.action",
|
||||
] # 需要加载的ROS模块
|
||||
```
|
||||
|
||||
## 命令行参数覆盖配置
|
||||
|
||||
Uni-Lab 允许通过命令行参数覆盖配置文件中的设置,提供更灵活的配置方式。命令行参数的优先级高于配置文件。
|
||||
|
||||
### 支持命令行覆盖的配置项
|
||||
|
||||
以下配置项可以通过命令行参数进行覆盖:
|
||||
|
||||
| 配置类 | 配置字段 | 命令行参数 | 说明 |
|
||||
| ------------- | ----------------- | ------------------- | -------------------------------- |
|
||||
| `BasicConfig` | `ak` | `--ak` | 实验室访问密钥 |
|
||||
| `BasicConfig` | `sk` | `--sk` | 实验室私钥 |
|
||||
| `BasicConfig` | `working_dir` | `--working_dir` | 工作目录路径 |
|
||||
| `BasicConfig` | `is_host_mode` | `--is_slave` | 主站模式(参数为从站模式,取反) |
|
||||
| `BasicConfig` | `slave_no_host` | `--slave_no_host` | 从站模式下跳过等待主机服务 |
|
||||
| `BasicConfig` | `upload_registry` | `--upload_registry` | 启动时上传注册表信息 |
|
||||
| `BasicConfig` | `vis_2d_enable` | `--2d_vis` | 启用 2D 可视化 |
|
||||
| `HTTPConfig` | `remote_addr` | `--addr` | 远程服务地址 |
|
||||
|
||||
### 特殊命令行参数
|
||||
|
||||
除了直接覆盖配置项的参数外,还有一些特殊的命令行参数:
|
||||
|
||||
| 参数 | 说明 |
|
||||
| ------------------- | ------------------------------------ |
|
||||
| `--config` | 指定配置文件路径 |
|
||||
| `--port` | Web 服务端口(不影响配置文件) |
|
||||
| `--disable_browser` | 禁用自动打开浏览器(不影响配置文件) |
|
||||
| `--visual` | 可视化工具选择(不影响配置文件) |
|
||||
| `--skip_env_check` | 跳过环境检查(不影响配置文件) |
|
||||
|
||||
### 配置优先级
|
||||
|
||||
配置项的生效优先级从高到低为:
|
||||
|
||||
1. **命令行参数**:最高优先级
|
||||
2. **环境变量**:中等优先级
|
||||
3. **配置文件**:基础优先级
|
||||
|
||||
### 使用示例
|
||||
|
||||
```bash
|
||||
# 通过命令行覆盖认证信息
|
||||
unilab --ak "new_access_key" --sk "new_secret_key"
|
||||
|
||||
# 覆盖服务器地址
|
||||
unilab --addr "https://custom.server.com/api/v1"
|
||||
|
||||
# 启用从站模式并跳过等待主机
|
||||
unilab --is_slave --slave_no_host
|
||||
|
||||
# 启用上传注册表和2D可视化
|
||||
unilab --upload_registry --2d_vis
|
||||
|
||||
# 组合使用多个覆盖参数
|
||||
unilab --ak "key" --sk "secret" --addr "test" --upload_registry --2d_vis
|
||||
```
|
||||
|
||||
### 预设环境地址
|
||||
|
||||
`--addr` 参数支持以下预设值,会自动转换为对应的完整 URL:
|
||||
|
||||
- `test` → `https://uni-lab.test.bohrium.com/api/v1`
|
||||
- `uat` → `https://uni-lab.uat.bohrium.com/api/v1`
|
||||
- `local` → `http://127.0.0.1:48197/api/v1`
|
||||
- 其他值 → 直接使用作为完整 URL
|
||||
|
||||
## 配置选项详解
|
||||
|
||||
### 基础配置 (BasicConfig)
|
||||
|
||||
基础配置包含了系统运行的核心参数:
|
||||
|
||||
| 参数 | 类型 | 默认值 | 说明 |
|
||||
| ------------------------ | ---- | ------------- | ------------------------------------------ |
|
||||
| `ak` | str | `""` | 实验室访问密钥(必需) |
|
||||
| `sk` | str | `""` | 实验室私钥(必需) |
|
||||
| `working_dir` | str | `""` | 工作目录,通常自动设置 |
|
||||
| `is_host_mode` | bool | `True` | 是否为主站模式 |
|
||||
| `slave_no_host` | bool | `False` | 从站模式下是否跳过等待主机服务 |
|
||||
| `upload_registry` | bool | `False` | 启动时是否上传注册表信息 |
|
||||
| `machine_name` | str | `"undefined"` | 机器名称,自动从 hostname 获取(不可配置) |
|
||||
| `vis_2d_enable` | bool | `False` | 是否启用 2D 可视化 |
|
||||
| `communication_protocol` | str | `"websocket"` | 通信协议,固定为 websocket |
|
||||
|
||||
#### 认证配置
|
||||
|
||||
`ak` 和 `sk` 是必需的认证参数:
|
||||
|
||||
1. **获取方式**:在 [Uni-Lab 官网](https://uni-lab.bohrium.com) 注册实验室后获得
|
||||
2. **配置方式**:
|
||||
- **命令行参数**:`--ak "your_key" --sk "your_secret"`(最高优先级)
|
||||
- **配置文件**:在 `BasicConfig` 类中设置
|
||||
- **环境变量**:`UNILABOS_BASICCONFIG_AK` 和 `UNILABOS_BASICCONFIG_SK`
|
||||
3. **优先级顺序**:命令行参数 > 环境变量 > 配置文件
|
||||
4. **安全注意**:请妥善保管您的密钥信息
|
||||
|
||||
**推荐做法**:
|
||||
|
||||
- 开发环境:使用配置文件
|
||||
- 生产环境:使用环境变量或命令行参数
|
||||
- 临时测试:使用命令行参数
|
||||
|
||||
### WebSocket 配置 (WSConfig)
|
||||
|
||||
WebSocket 是 Uni-Lab 的主要通信方式:
|
||||
|
||||
| 参数 | 类型 | 默认值 | 说明 |
|
||||
| ------------------------ | ---- | ------ | ------------------ |
|
||||
| `reconnect_interval` | int | `5` | 断线重连间隔(秒) |
|
||||
| `max_reconnect_attempts` | int | `999` | 最大重连次数 |
|
||||
| `ping_interval` | int | `30` | 心跳检测间隔(秒) |
|
||||
|
||||
### HTTP 配置 (HTTPConfig)
|
||||
|
||||
HTTP 客户端配置用于与云端服务通信:
|
||||
|
||||
| 参数 | 类型 | 默认值 | 说明 |
|
||||
| ------------- | ---- | --------------------------------- | ------------ |
|
||||
| `remote_addr` | str | `"http://127.0.0.1:48197/api/v1"` | 远程服务地址 |
|
||||
|
||||
**预设环境地址**:
|
||||
|
||||
- 生产环境:`https://uni-lab.bohrium.com/api/v1`
|
||||
- 测试环境:`https://uni-lab.test.bohrium.com/api/v1`
|
||||
- UAT 环境:`https://uni-lab.uat.bohrium.com/api/v1`
|
||||
- 本地环境:`http://127.0.0.1:48197/api/v1`
|
||||
|
||||
### ROS 配置 (ROSConfig)
|
||||
|
||||
配置 ROS 消息转换器需要加载的模块:
|
||||
|
||||
```python
|
||||
class ROSConfig:
|
||||
modules = [
|
||||
"std_msgs.msg", # 标准消息类型
|
||||
"geometry_msgs.msg", # 几何消息类型
|
||||
"control_msgs.msg", # 控制消息类型
|
||||
"control_msgs.action", # 控制动作类型
|
||||
"nav2_msgs.action", # 导航动作类型
|
||||
"unilabos_msgs.msg", # UniLab 自定义消息类型
|
||||
"unilabos_msgs.action", # UniLab 自定义动作类型
|
||||
]
|
||||
```
|
||||
|
||||
您可以根据实际使用的设备和功能添加其他 ROS 模块。
|
||||
|
||||
### OSS 上传配置 (OSSUploadConfig)
|
||||
|
||||
对象存储服务配置,用于文件上传功能:
|
||||
|
||||
| 参数 | 类型 | 默认值 | 说明 |
|
||||
| ------------------- | ---- | ------ | -------------------- |
|
||||
| `api_host` | str | `""` | OSS API 主机地址 |
|
||||
| `authorization` | str | `""` | 授权认证信息 |
|
||||
| `init_endpoint` | str | `""` | 上传初始化端点 |
|
||||
| `complete_endpoint` | str | `""` | 上传完成端点 |
|
||||
| `max_retries` | int | `3` | 上传失败最大重试次数 |
|
||||
|
||||
## 环境变量支持
|
||||
|
||||
Uni-Lab 支持通过环境变量覆盖配置文件中的设置。环境变量格式为:
|
||||
|
||||
```
|
||||
UNILABOS_{配置类名}_{字段名}
|
||||
```
|
||||
|
||||
### 环境变量示例
|
||||
|
||||
```bash
|
||||
# 设置基础配置
|
||||
export UNILABOS_BASICCONFIG_AK="your_access_key"
|
||||
export UNILABOS_BASICCONFIG_SK="your_secret_key"
|
||||
export UNILABOS_BASICCONFIG_IS_HOST_MODE="true"
|
||||
|
||||
# 设置WebSocket配置
|
||||
export UNILABOS_WSCONFIG_RECONNECT_INTERVAL="10"
|
||||
export UNILABOS_WSCONFIG_MAX_RECONNECT_ATTEMPTS="500"
|
||||
|
||||
# 设置HTTP配置
|
||||
export UNILABOS_HTTPCONFIG_REMOTE_ADDR="https://uni-lab.bohrium.com/api/v1"
|
||||
```
|
||||
|
||||
### 环境变量类型转换
|
||||
|
||||
- **布尔值**:`"true"`, `"1"`, `"yes"` → `True`;其他 → `False`
|
||||
- **整数**:自动转换为 `int` 类型
|
||||
- **浮点数**:自动转换为 `float` 类型
|
||||
- **字符串**:保持原值
|
||||
|
||||
## 配置文件使用方法
|
||||
|
||||
### 1. 指定配置文件启动
|
||||
|
||||
```bash
|
||||
# 使用指定配置文件启动
|
||||
unilab --config /path/to/your/config.py
|
||||
```
|
||||
|
||||
### 2. 使用默认配置文件
|
||||
|
||||
如果不指定配置文件,系统会按以下顺序查找:
|
||||
|
||||
1. 环境变量 `UNILABOS_BASICCONFIG_CONFIG_PATH` 指定的路径
|
||||
2. 工作目录下的 `local_config.py`
|
||||
3. 首次使用时会引导创建配置文件
|
||||
|
||||
### 3. 配置文件验证
|
||||
|
||||
系统启动时会自动验证配置文件:
|
||||
|
||||
- **语法检查**:确保 Python 语法正确
|
||||
- **类型检查**:验证配置项类型是否匹配
|
||||
- **必需项检查**:确保 `ak` 和 `sk` 已配置
|
||||
|
||||
## 最佳实践
|
||||
|
||||
### 1. 安全配置
|
||||
|
||||
- 不要将包含密钥的配置文件提交到版本控制系统
|
||||
- 使用环境变量或命令行参数在生产环境中配置敏感信息
|
||||
- 定期更换访问密钥
|
||||
- **推荐配置方式**:
|
||||
|
||||
```bash
|
||||
# 生产环境 - 使用环境变量
|
||||
export UNILABOS_BASICCONFIG_AK="your_access_key"
|
||||
export UNILABOS_BASICCONFIG_SK="your_secret_key"
|
||||
unilab
|
||||
|
||||
# 或使用命令行参数
|
||||
unilab --ak "your_access_key" --sk "your_secret_key"
|
||||
```
|
||||
|
||||
### 2. 多环境配置
|
||||
|
||||
为不同环境创建不同的配置文件并结合命令行参数:
|
||||
|
||||
```
|
||||
configs/
|
||||
├── local_config.py # 本地开发
|
||||
├── test_config.py # 测试环境
|
||||
├── prod_config.py # 生产环境
|
||||
└── example_config.py # 示例配置
|
||||
```
|
||||
|
||||
**环境切换示例**:
|
||||
|
||||
```bash
|
||||
# 本地开发环境
|
||||
unilab --config configs/local_config.py --addr local
|
||||
|
||||
# 测试环境
|
||||
unilab --config configs/test_config.py --addr test --upload_registry
|
||||
|
||||
# 生产环境
|
||||
unilab --config configs/prod_config.py --ak "$PROD_AK" --sk "$PROD_SK"
|
||||
```
|
||||
|
||||
### 3. 配置管理
|
||||
|
||||
- 保持配置文件简洁,只包含需要修改的配置项
|
||||
- 为配置项添加注释说明其作用
|
||||
- 定期检查和更新配置文件
|
||||
- **命令行参数优先使用场景**:
|
||||
- 临时测试不同配置
|
||||
- CI/CD 流水线中的动态配置
|
||||
- 不同环境间快速切换
|
||||
- 敏感信息的安全传递
|
||||
|
||||
### 4. 灵活配置策略
|
||||
|
||||
**基础配置文件 + 命令行覆盖**的推荐方式:
|
||||
|
||||
```python
|
||||
# base_config.py - 基础配置
|
||||
class BasicConfig:
|
||||
# 非敏感配置写在文件中
|
||||
is_host_mode = True
|
||||
upload_registry = False
|
||||
vis_2d_enable = False
|
||||
|
||||
class WSConfig:
|
||||
reconnect_interval = 5
|
||||
max_reconnect_attempts = 999
|
||||
ping_interval = 30
|
||||
```
|
||||
|
||||
```bash
|
||||
# 启动时通过命令行覆盖关键参数
|
||||
unilab --config base_config.py \
|
||||
--ak "$AK" \
|
||||
--sk "$SK" \
|
||||
--addr "test" \
|
||||
--upload_registry \
|
||||
--2d_vis
|
||||
```
|
||||
|
||||
## 故障排除
|
||||
|
||||
### 1. 配置文件加载失败
|
||||
|
||||
**错误信息**:`[ENV] 配置文件 xxx 不存在`
|
||||
|
||||
**解决方法**:
|
||||
|
||||
- 确认配置文件路径正确
|
||||
- 检查文件权限是否可读
|
||||
- 确保配置文件是 `.py` 格式
|
||||
|
||||
### 2. 语法错误
|
||||
|
||||
**错误信息**:`[ENV] 加载配置文件 xxx 失败`
|
||||
|
||||
**解决方法**:
|
||||
|
||||
- 检查 Python 语法是否正确
|
||||
- 确认类名和字段名拼写正确
|
||||
- 验证缩进是否正确(使用空格而非制表符)
|
||||
|
||||
### 3. 认证失败
|
||||
|
||||
**错误信息**:`后续运行必须拥有一个实验室`
|
||||
|
||||
**解决方法**:
|
||||
|
||||
- 确认 `ak` 和 `sk` 已正确配置
|
||||
- 检查密钥是否有效
|
||||
- 确认网络连接正常
|
||||
|
||||
### 4. 环境变量不生效
|
||||
|
||||
**解决方法**:
|
||||
|
||||
- 确认环境变量名格式正确(`UNILABOS_CLASS_FIELD`)
|
||||
- 检查环境变量是否已正确设置
|
||||
- 重启系统或重新加载环境变量
|
||||
|
||||
### 5. 命令行参数不生效
|
||||
|
||||
**错误现象**:设置了命令行参数但配置没有生效
|
||||
|
||||
**解决方法**:
|
||||
|
||||
- 确认参数名拼写正确(如 `--ak` 而不是 `--access_key`)
|
||||
- 检查参数格式是否正确(布尔参数如 `--is_slave` 不需要值)
|
||||
- 确认参数位置正确(所有参数都应在 `unilab` 之后)
|
||||
- 查看启动日志确认参数是否被正确解析
|
||||
|
||||
### 6. 配置优先级混淆
|
||||
|
||||
**错误现象**:不确定哪个配置生效
|
||||
|
||||
**解决方法**:
|
||||
|
||||
- 记住优先级:命令行参数 > 环境变量 > 配置文件
|
||||
- 使用 `--ak` 和 `--sk` 参数时会看到提示信息
|
||||
- 检查启动日志中的配置加载信息
|
||||
- 临时移除低优先级配置来测试高优先级配置是否生效
|
||||
@@ -1,860 +0,0 @@
|
||||
# 设备图文件说明
|
||||
|
||||
设备图文件定义了实验室中所有设备、资源及其连接关系。本文档说明如何创建和使用设备图文件。
|
||||
|
||||
## 概述
|
||||
|
||||
设备图文件采用 JSON 格式,节点定义基于 **`ResourceDict`** 标准模型(定义在 `unilabos.ros.nodes.resource_tracker`)。系统会自动处理旧格式并转换为标准格式,确保向后兼容性。
|
||||
|
||||
**核心概念**:
|
||||
|
||||
- **Nodes(节点)**: 代表设备或资源,通过 `parent` 字段建立层级关系
|
||||
- **Links(连接)**: 可选的连接关系定义,用于展示设备间的物理或通信连接
|
||||
- **UUID**: 全局唯一标识符,用于跨系统的资源追踪
|
||||
- **自动转换**: 旧格式会通过 `ResourceDictInstance.get_resource_instance_from_dict()` 自动转换
|
||||
|
||||
## 文件格式
|
||||
|
||||
Uni-Lab 支持两种格式的设备图文件:
|
||||
|
||||
### JSON 格式(推荐)
|
||||
|
||||
**优点**:
|
||||
|
||||
- 易于编辑和阅读
|
||||
- 支持注释(使用预处理)
|
||||
- 与 Web 界面完全兼容
|
||||
- 便于版本控制
|
||||
|
||||
**示例**: `workshop1.json`
|
||||
|
||||
### GraphML 格式
|
||||
|
||||
**优点**:
|
||||
|
||||
- 可用图形化工具编辑(如 yEd)
|
||||
- 适合复杂拓扑可视化
|
||||
|
||||
**示例**: `setup.graphml`
|
||||
|
||||
## JSON 文件结构
|
||||
|
||||
一个完整的 JSON 设备图文件包含两个主要部分:
|
||||
|
||||
```json
|
||||
{
|
||||
"nodes": [
|
||||
/* 设备和资源节点 */
|
||||
],
|
||||
"links": [
|
||||
/* 连接关系(可选)*/
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
### Nodes(节点)
|
||||
|
||||
每个节点代表一个设备或资源。节点的定义遵循 `ResourceDict` 标准模型:
|
||||
|
||||
```json
|
||||
{
|
||||
"id": "liquid_handler_1",
|
||||
"uuid": "550e8400-e29b-41d4-a716-446655440000",
|
||||
"name": "液体处理工作站",
|
||||
"type": "device",
|
||||
"class": "liquid_handler",
|
||||
"config": {
|
||||
"port": "/dev/ttyUSB0",
|
||||
"baudrate": 9600
|
||||
},
|
||||
"data": {},
|
||||
"position": {
|
||||
"x": 100,
|
||||
"y": 200
|
||||
},
|
||||
"parent": null
|
||||
}
|
||||
```
|
||||
|
||||
**字段说明(基于 ResourceDict 标准定义)**:
|
||||
|
||||
| 字段 | 必需 | 说明 | 示例 | 默认值 |
|
||||
| ------------- | ---- | ------------------------ | ---------------------------------------------------- | -------- |
|
||||
| `id` | ✓ | 唯一标识符 | `"pump_1"` | - |
|
||||
| `uuid` | | 全局唯一标识符 (UUID) | `"550e8400-e29b-41d4-a716-446655440000"` | 自动生成 |
|
||||
| `name` | ✓ | 显示名称 | `"主反应泵"` | - |
|
||||
| `type` | ✓ | 节点类型 | `"device"`, `"resource"`, `"container"`, `"deck"` 等 | - |
|
||||
| `class` | ✓ | 设备/资源类别 | `"liquid_handler"`, `"syringepump.runze"` | `""` |
|
||||
| `config` | | Python 类的初始化参数 | `{"port": "COM3"}` | `{}` |
|
||||
| `data` | | 资源的运行状态数据 | `{"status": "Idle", "position": 0.0}` | `{}` |
|
||||
| `position` | | 在图中的位置 | `{"x": 100, "y": 200}` 或完整的 pose 结构 | - |
|
||||
| `pose` | | 完整的 3D 位置信息 | 参见下文 | - |
|
||||
| `parent` | | 父节点 ID | `"deck_1"` | `null` |
|
||||
| `parent_uuid` | | 父节点 UUID | `"550e8400-..."` | `null` |
|
||||
| `children` | | 子节点 ID 列表(旧格式) | `["child1", "child2"]` | - |
|
||||
| `description` | | 资源描述 | `"用于精确控制试剂A的加料速率"` | `""` |
|
||||
| `schema` | | 资源 schema 定义 | `{}` | `{}` |
|
||||
| `model` | | 资源 3D 模型信息 | `{}` | `{}` |
|
||||
| `icon` | | 资源图标 | `"pump.webp"` | `""` |
|
||||
| `extra` | | 额外的自定义数据 | `{"custom_field": "value"}` | `{}` |
|
||||
|
||||
### Position 和 Pose(位置信息)
|
||||
|
||||
**简单格式(旧格式,兼容)**:
|
||||
|
||||
```json
|
||||
"position": {
|
||||
"x": 100,
|
||||
"y": 200,
|
||||
"z": 0
|
||||
}
|
||||
```
|
||||
|
||||
**完整格式(推荐)**:
|
||||
|
||||
```json
|
||||
"pose": {
|
||||
"size": {
|
||||
"width": 127.76,
|
||||
"height": 85.48,
|
||||
"depth": 10.0
|
||||
},
|
||||
"scale": {
|
||||
"x": 1.0,
|
||||
"y": 1.0,
|
||||
"z": 1.0
|
||||
},
|
||||
"layout": "x-y",
|
||||
"position": {
|
||||
"x": 100,
|
||||
"y": 200,
|
||||
"z": 0
|
||||
},
|
||||
"position3d": {
|
||||
"x": 100,
|
||||
"y": 200,
|
||||
"z": 0
|
||||
},
|
||||
"rotation": {
|
||||
"x": 0,
|
||||
"y": 0,
|
||||
"z": 0
|
||||
},
|
||||
"cross_section_type": "rectangle"
|
||||
}
|
||||
```
|
||||
|
||||
### Links(连接)
|
||||
|
||||
定义节点之间的连接关系(可选,主要用于物理连接或通信关系的可视化):
|
||||
|
||||
```json
|
||||
{
|
||||
"source": "pump_1",
|
||||
"target": "reactor_1",
|
||||
"sourceHandle": "output",
|
||||
"targetHandle": "input",
|
||||
"type": "physical"
|
||||
}
|
||||
```
|
||||
|
||||
**字段说明**:
|
||||
|
||||
| 字段 | 必需 | 说明 | 示例 |
|
||||
| -------------- | ---- | ---------------- | ---------------------------------------- |
|
||||
| `source` | ✓ | 源节点 ID | `"pump_1"` |
|
||||
| `target` | ✓ | 目标节点 ID | `"reactor_1"` |
|
||||
| `sourceHandle` | | 源节点的连接点 | `"output"` |
|
||||
| `targetHandle` | | 目标节点的连接点 | `"input"` |
|
||||
| `type` | | 连接类型 | `"physical"`, `"communication"` |
|
||||
| `port` | | 端口映射信息 | `{"source": "port1", "target": "port2"}` |
|
||||
|
||||
**注意**: Links 主要用于图形化展示和文档说明,父子关系通过 `parent` 字段定义,不依赖 links。
|
||||
|
||||
## 完整示例
|
||||
|
||||
### 示例 1:液体处理工作站(PRCXI9300)
|
||||
|
||||
这是一个真实的液体处理工作站配置,包含设备、工作台和多个板资源。
|
||||
|
||||
**文件位置**: `test/experiments/prcxi_9300.json`
|
||||
|
||||
```json
|
||||
{
|
||||
"nodes": [
|
||||
{
|
||||
"id": "PRCXI9300",
|
||||
"name": "PRCXI9300",
|
||||
"parent": null,
|
||||
"type": "device",
|
||||
"class": "liquid_handler.prcxi",
|
||||
"position": {
|
||||
"x": 0,
|
||||
"y": 0,
|
||||
"z": 0
|
||||
},
|
||||
"config": {
|
||||
"deck": {
|
||||
"_resource_child_name": "PRCXI_Deck_9300",
|
||||
"_resource_type": "unilabos.devices.liquid_handling.prcxi.prcxi:PRCXI9300Deck"
|
||||
},
|
||||
"host": "10.181.214.132",
|
||||
"port": 9999,
|
||||
"timeout": 10.0,
|
||||
"axis": "Left",
|
||||
"channel_num": 8,
|
||||
"setup": false,
|
||||
"debug": true,
|
||||
"simulator": true,
|
||||
"matrix_id": "71593"
|
||||
},
|
||||
"data": {},
|
||||
"children": ["PRCXI_Deck_9300"]
|
||||
},
|
||||
{
|
||||
"id": "PRCXI_Deck_9300",
|
||||
"name": "PRCXI_Deck_9300",
|
||||
"parent": "PRCXI9300",
|
||||
"type": "deck",
|
||||
"class": "",
|
||||
"position": {
|
||||
"x": 0,
|
||||
"y": 0,
|
||||
"z": 0
|
||||
},
|
||||
"config": {
|
||||
"type": "PRCXI9300Deck",
|
||||
"size_x": 100,
|
||||
"size_y": 100,
|
||||
"size_z": 100,
|
||||
"rotation": {
|
||||
"x": 0,
|
||||
"y": 0,
|
||||
"z": 0,
|
||||
"type": "Rotation"
|
||||
},
|
||||
"category": "deck"
|
||||
},
|
||||
"data": {},
|
||||
"children": [
|
||||
"RackT1",
|
||||
"PlateT2",
|
||||
"trash",
|
||||
"PlateT4",
|
||||
"PlateT5",
|
||||
"PlateT6"
|
||||
]
|
||||
},
|
||||
{
|
||||
"id": "RackT1",
|
||||
"name": "RackT1",
|
||||
"parent": "PRCXI_Deck_9300",
|
||||
"type": "tip_rack",
|
||||
"class": "",
|
||||
"position": {
|
||||
"x": 0,
|
||||
"y": 0,
|
||||
"z": 0
|
||||
},
|
||||
"config": {
|
||||
"type": "TipRack",
|
||||
"size_x": 127.76,
|
||||
"size_y": 85.48,
|
||||
"size_z": 100
|
||||
},
|
||||
"data": {},
|
||||
"children": []
|
||||
}
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
**关键点**:
|
||||
|
||||
- 使用 `parent` 字段建立层级关系(PRCXI9300 → Deck → Rack/Plate)
|
||||
- 使用 `children` 字段(旧格式)列出子节点
|
||||
- `config` 中包含设备特定的连接参数
|
||||
- `data` 存储运行时状态
|
||||
- `position` 使用简单的 x/y/z 坐标
|
||||
|
||||
### 示例 2:有机合成工作站(带 Links)
|
||||
|
||||
这是一个格林纳德反应的流动化学工作站配置,展示了完整的设备连接和通信关系。
|
||||
|
||||
**文件位置**: `test/experiments/Grignard_flow_batchreact_single_pumpvalve.json`
|
||||
|
||||
```json
|
||||
{
|
||||
"nodes": [
|
||||
{
|
||||
"id": "YugongStation",
|
||||
"name": "愚公常量合成工作站",
|
||||
"parent": null,
|
||||
"type": "device",
|
||||
"class": "workstation",
|
||||
"position": {
|
||||
"x": 620.6111111111111,
|
||||
"y": 171,
|
||||
"z": 0
|
||||
},
|
||||
"config": {
|
||||
"protocol_type": [
|
||||
"PumpTransferProtocol",
|
||||
"CleanProtocol",
|
||||
"SeparateProtocol",
|
||||
"EvaporateProtocol"
|
||||
]
|
||||
},
|
||||
"data": {},
|
||||
"children": [
|
||||
"serial_pump",
|
||||
"pump_reagents",
|
||||
"flask_CH2Cl2",
|
||||
"reactor",
|
||||
"pump_workup",
|
||||
"separator_controller",
|
||||
"flask_separator",
|
||||
"rotavap",
|
||||
"column"
|
||||
]
|
||||
},
|
||||
{
|
||||
"id": "serial_pump",
|
||||
"name": "serial_pump",
|
||||
"parent": "YugongStation",
|
||||
"type": "device",
|
||||
"class": "serial",
|
||||
"position": {
|
||||
"x": 620.6111111111111,
|
||||
"y": 171,
|
||||
"z": 0
|
||||
},
|
||||
"config": {
|
||||
"port": "COM7",
|
||||
"baudrate": 9600
|
||||
},
|
||||
"data": {},
|
||||
"children": []
|
||||
},
|
||||
{
|
||||
"id": "pump_reagents",
|
||||
"name": "pump_reagents",
|
||||
"parent": "YugongStation",
|
||||
"type": "device",
|
||||
"class": "syringepump.runze",
|
||||
"position": {
|
||||
"x": 620.6111111111111,
|
||||
"y": 171,
|
||||
"z": 0
|
||||
},
|
||||
"config": {
|
||||
"port": "/devices/PumpBackbone/Serial/serialwrite",
|
||||
"address": "1",
|
||||
"max_volume": 25.0
|
||||
},
|
||||
"data": {
|
||||
"max_velocity": 1.0,
|
||||
"position": 0.0,
|
||||
"status": "Idle",
|
||||
"valve_position": "0"
|
||||
},
|
||||
"children": []
|
||||
},
|
||||
{
|
||||
"id": "reactor",
|
||||
"name": "reactor",
|
||||
"parent": "YugongStation",
|
||||
"type": "container",
|
||||
"class": null,
|
||||
"position": {
|
||||
"x": 430.4087301587302,
|
||||
"y": 428,
|
||||
"z": 0
|
||||
},
|
||||
"config": {},
|
||||
"data": {},
|
||||
"children": []
|
||||
}
|
||||
],
|
||||
"links": [
|
||||
{
|
||||
"source": "pump_reagents",
|
||||
"target": "serial_pump",
|
||||
"type": "communication",
|
||||
"port": {
|
||||
"pump_reagents": "port",
|
||||
"serial_pump": "port"
|
||||
}
|
||||
},
|
||||
{
|
||||
"source": "pump_workup",
|
||||
"target": "serial_pump",
|
||||
"type": "communication",
|
||||
"port": {
|
||||
"pump_workup": "port",
|
||||
"serial_pump": "port"
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
**关键点**:
|
||||
|
||||
- 多级设备层次:工作站包含多个子设备和容器
|
||||
- `links` 定义通信关系(泵通过串口连接)
|
||||
- `data` 字段存储设备状态(如泵的位置、速度等)
|
||||
- `class` 可以使用点号分层(如 `"syringepump.runze"`)
|
||||
- 容器的 `class` 可以为 `null`
|
||||
|
||||
## 格式兼容性和转换
|
||||
|
||||
### 旧格式自动转换
|
||||
|
||||
Uni-Lab 使用 `ResourceDictInstance.get_resource_instance_from_dict()` 方法自动处理旧格式的节点数据,确保向后兼容性。
|
||||
|
||||
**自动转换规则**:
|
||||
|
||||
1. **自动生成缺失字段**:
|
||||
|
||||
```python
|
||||
# 如果缺少 id,使用 name 作为 id
|
||||
if "id" not in content:
|
||||
content["id"] = content["name"]
|
||||
|
||||
# 如果缺少 uuid,自动生成
|
||||
if "uuid" not in content:
|
||||
content["uuid"] = str(uuid.uuid4())
|
||||
```
|
||||
|
||||
2. **Position 格式转换**:
|
||||
|
||||
```python
|
||||
# 旧格式:简单的 x/y 坐标
|
||||
"position": {"x": 100, "y": 200}
|
||||
|
||||
# 自动转换为新格式
|
||||
"position": {
|
||||
"position": {"x": 100, "y": 200}
|
||||
}
|
||||
```
|
||||
|
||||
3. **默认值填充**:
|
||||
|
||||
```python
|
||||
# 自动填充空字段
|
||||
if not content.get("class"):
|
||||
content["class"] = ""
|
||||
if not content.get("config"):
|
||||
content["config"] = {}
|
||||
if not content.get("data"):
|
||||
content["data"] = {}
|
||||
if not content.get("extra"):
|
||||
content["extra"] = {}
|
||||
```
|
||||
|
||||
4. **Pose 字段同步**:
|
||||
```python
|
||||
# 如果没有 pose,使用 position
|
||||
if "pose" not in content:
|
||||
content["pose"] = content.get("position", {})
|
||||
```
|
||||
|
||||
### 使用示例
|
||||
|
||||
```python
|
||||
from unilabos.ros.nodes.resource_tracker import ResourceDictInstance
|
||||
|
||||
# 旧格式节点
|
||||
old_format_node = {
|
||||
"name": "pump_1",
|
||||
"type": "device",
|
||||
"class": "syringepump",
|
||||
"position": {"x": 100, "y": 200}
|
||||
}
|
||||
|
||||
# 自动转换为标准格式
|
||||
instance = ResourceDictInstance.get_resource_instance_from_dict(old_format_node)
|
||||
|
||||
# 访问标准化后的数据
|
||||
print(instance.res_content.id) # "pump_1"
|
||||
print(instance.res_content.uuid) # 自动生成的 UUID
|
||||
print(instance.res_content.config) # {}
|
||||
print(instance.res_content.data) # {}
|
||||
```
|
||||
|
||||
### 格式迁移建议
|
||||
|
||||
虽然系统会自动处理旧格式,但建议在新文件中使用完整的标准格式:
|
||||
|
||||
| 字段 | 旧格式(兼容) | 新格式(推荐) |
|
||||
| ------ | ---------------------------------- | ------------------------------------------------ |
|
||||
| 标识符 | 仅 `id` 或仅 `name` | `id` + `uuid` |
|
||||
| 位置 | `"position": {"x": 100, "y": 200}` | 完整的 `pose` 结构 |
|
||||
| 父节点 | `"parent": "parent_id"` | `"parent": "parent_id"` + `"parent_uuid": "..."` |
|
||||
| 配置 | 可省略 | 显式设置为 `{}` |
|
||||
| 数据 | 可省略 | 显式设置为 `{}` |
|
||||
|
||||
## 节点类型详解
|
||||
|
||||
### Device 节点
|
||||
|
||||
设备节点代表实际的硬件设备:
|
||||
|
||||
```json
|
||||
{
|
||||
"id": "device_id",
|
||||
"name": "设备名称",
|
||||
"type": "device",
|
||||
"class": "设备类别",
|
||||
"parent": null,
|
||||
"config": {
|
||||
"port": "COM3"
|
||||
},
|
||||
"data": {},
|
||||
"children": []
|
||||
}
|
||||
```
|
||||
|
||||
**常见设备类别**:
|
||||
|
||||
- `liquid_handler`: 液体处理工作站
|
||||
- `liquid_handler.prcxi`: PRCXI 液体处理工作站
|
||||
- `syringepump`: 注射泵
|
||||
- `syringepump.runze`: 润泽注射泵
|
||||
- `heaterstirrer`: 加热搅拌器
|
||||
- `balance`: 天平
|
||||
- `reactor_vessel`: 反应釜
|
||||
- `serial`: 串口通信设备
|
||||
- `workstation`: 自动化工作站
|
||||
|
||||
### Resource 节点
|
||||
|
||||
资源节点代表物料容器、载具等:
|
||||
|
||||
```json
|
||||
{
|
||||
"id": "resource_id",
|
||||
"name": "资源名称",
|
||||
"type": "resource",
|
||||
"class": "资源类别",
|
||||
"parent": "父节点ID",
|
||||
"config": {
|
||||
"size_x": 127.76,
|
||||
"size_y": 85.48,
|
||||
"size_z": 100
|
||||
},
|
||||
"data": {},
|
||||
"children": []
|
||||
}
|
||||
```
|
||||
|
||||
**常见资源类型**:
|
||||
|
||||
- `deck`: 工作台/甲板
|
||||
- `plate`: 板(96 孔板等)
|
||||
- `tip_rack`: 枪头架
|
||||
- `tube`: 试管
|
||||
- `container`: 容器
|
||||
- `well`: 孔位
|
||||
- `bottle_carrier`: 瓶架
|
||||
|
||||
## Handle(连接点)
|
||||
|
||||
每个设备和资源可以有多个连接点(handles),用于定义可以连接的接口。
|
||||
|
||||
### 查看可用 handles
|
||||
|
||||
设备和资源的可用 handles 定义在注册表中:
|
||||
|
||||
```yaml
|
||||
# 设备注册表示例
|
||||
liquid_handler:
|
||||
handles:
|
||||
- handler_key: pipette
|
||||
io_type: source
|
||||
- handler_key: deck
|
||||
io_type: target
|
||||
```
|
||||
|
||||
### 常见 handles
|
||||
|
||||
| 设备类型 | Source Handles | Target Handles |
|
||||
| ---------- | -------------- | -------------- |
|
||||
| 泵 | output | input |
|
||||
| 反应釜 | output, vessel | input |
|
||||
| 液体处理器 | pipette | deck |
|
||||
| 板 | wells | access |
|
||||
|
||||
## 使用 Web 界面创建图文件
|
||||
|
||||
Uni-Lab 提供 Web 界面来可视化创建和编辑设备图:
|
||||
|
||||
### 1. 启动 Uni-Lab
|
||||
|
||||
```bash
|
||||
unilab
|
||||
```
|
||||
|
||||
### 2. 访问 Web 界面
|
||||
|
||||
打开浏览器访问 `http://localhost:8002`
|
||||
|
||||
### 3. 图形化编辑
|
||||
|
||||
- 拖拽添加设备和资源
|
||||
- 连线建立连接关系
|
||||
- 编辑节点属性
|
||||
- 保存为 JSON 文件
|
||||
|
||||
### 4. 导出图文件
|
||||
|
||||
点击"导出"按钮,下载 JSON 文件到本地。
|
||||
|
||||
## 从云端获取图文件
|
||||
|
||||
如果不指定`-g`参数,Uni-Lab 会自动从云端获取:
|
||||
|
||||
```bash
|
||||
# 使用云端配置
|
||||
unilab
|
||||
|
||||
# 日志会显示:
|
||||
# [INFO] 未指定设备加载文件路径,尝试从HTTP获取...
|
||||
# [INFO] 联网获取设备加载文件成功
|
||||
```
|
||||
|
||||
**云端图文件管理**:
|
||||
|
||||
1. 登录 https://uni-lab.bohrium.com
|
||||
2. 进入"设备配置"
|
||||
3. 创建或编辑配置
|
||||
4. 保存到云端
|
||||
|
||||
本地启动时会自动同步最新配置。
|
||||
|
||||
## 调试图文件
|
||||
|
||||
### 验证 JSON 格式
|
||||
|
||||
```bash
|
||||
# 使用Python验证
|
||||
python -c "import json; json.load(open('workshop1.json'))"
|
||||
|
||||
# 使用在线工具
|
||||
# https://jsonlint.com/
|
||||
```
|
||||
|
||||
### 检查节点引用
|
||||
|
||||
确保:
|
||||
|
||||
- 所有`links`中的`source`和`target`都存在于`nodes`中
|
||||
- `parent`字段指向的节点存在
|
||||
- `class`字段对应的设备/资源在注册表中存在
|
||||
|
||||
### 启动时验证
|
||||
|
||||
```bash
|
||||
# Uni-Lab启动时会验证图文件
|
||||
unilab -g workshop1.json
|
||||
|
||||
# 查看日志中的错误或警告
|
||||
# [ERROR] 节点 xxx 的source端点 yyy 不存在
|
||||
# [WARNING] 节点 zzz missing 'name', defaulting to ...
|
||||
```
|
||||
|
||||
## 最佳实践
|
||||
|
||||
### 1. 命名规范
|
||||
|
||||
```json
|
||||
{
|
||||
"id": "pump_reagent_1", // 小写+下划线,描述性
|
||||
"name": "试剂进料泵A", // 中文显示名称
|
||||
"class": "syringepump" // 使用注册表中的精确名称
|
||||
}
|
||||
```
|
||||
|
||||
### 2. 层级组织
|
||||
|
||||
```
|
||||
host_node (主节点)
|
||||
└── liquid_handler_1 (设备)
|
||||
└── deck_1 (资源)
|
||||
├── tiprack_1 (资源)
|
||||
├── plate_1 (资源)
|
||||
└── reservoir_1 (资源)
|
||||
```
|
||||
|
||||
### 3. 配置分离
|
||||
|
||||
将设备特定配置放在`config`中:
|
||||
|
||||
```json
|
||||
{
|
||||
"id": "pump_1",
|
||||
"class": "syringepump",
|
||||
"config": {
|
||||
"port": "COM3", // 设备特定
|
||||
"max_flow_rate": 10, // 设备特定
|
||||
"volume": 50 // 设备特定
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### 4. 版本控制
|
||||
|
||||
```bash
|
||||
# 使用Git管理图文件
|
||||
git add workshop1.json
|
||||
git commit -m "Add new liquid handler configuration"
|
||||
|
||||
# 使用有意义的文件名
|
||||
workshop_v1.json
|
||||
workshop_production.json
|
||||
workshop_test.json
|
||||
```
|
||||
|
||||
### 5. 注释(通过描述字段)
|
||||
|
||||
虽然 JSON 不支持注释,但可以使用`description`字段:
|
||||
|
||||
```json
|
||||
{
|
||||
"id": "pump_1",
|
||||
"name": "进料泵",
|
||||
"description": "用于精确控制试剂A的加料速率,最大流速10mL/min",
|
||||
"class": "syringepump"
|
||||
}
|
||||
```
|
||||
|
||||
## 示例文件位置
|
||||
|
||||
Uni-Lab 在安装时已预置了 **40+ 个真实的设备图文件示例**,位于 `unilabos/test/experiments/` 目录。这些都是真实项目中使用的配置文件,可以直接使用或作为参考。
|
||||
|
||||
### 📁 主要示例文件
|
||||
|
||||
```
|
||||
test/experiments/
|
||||
├── workshop.json # 综合工作台(推荐新手)
|
||||
├── empty_devices.json # 空设备配置(最小化)
|
||||
├── prcxi_9300.json # PRCXI液体处理工作站(本文示例1)
|
||||
├── prcxi_9320.json # PRCXI 9320工作站
|
||||
├── biomek.json # Biomek液体处理工作站
|
||||
├── Grignard_flow_batchreact_single_pumpvalve.json # 格林纳德反应工作站(本文示例2)
|
||||
├── dispensing_station_bioyond.json # Bioyond配液站
|
||||
├── reaction_station_bioyond.json # Bioyond反应站
|
||||
├── HPLC.json # HPLC分析系统
|
||||
├── plr_test.json # PyLabRobot测试配置
|
||||
├── lidocaine-graph.json # 利多卡因合成工作站
|
||||
├── opcua_example.json # OPC UA设备集成示例
|
||||
│
|
||||
├── mock_devices/ # 虚拟设备(用于离线测试)
|
||||
│ ├── mock_all.json # 完整虚拟设备集
|
||||
│ ├── mock_pump.json # 虚拟泵
|
||||
│ ├── mock_stirrer.json # 虚拟搅拌器
|
||||
│ ├── mock_heater.json # 虚拟加热器
|
||||
│ └── ... # 更多虚拟设备
|
||||
│
|
||||
├── Protocol_Test_Station/ # 协议测试工作站
|
||||
│ ├── pumptransfer_test_station.json # 泵转移协议测试
|
||||
│ ├── heatchill_protocol_test_station.json # 加热冷却协议测试
|
||||
│ ├── filter_protocol_test_station.json # 过滤协议测试
|
||||
│ └── ... # 更多协议测试
|
||||
│
|
||||
└── comprehensive_protocol/ # 综合协议示例
|
||||
├── comprehensive_station.json # 综合工作站
|
||||
└── comprehensive_slim.json # 精简版综合工作站
|
||||
```
|
||||
|
||||
### 🚀 快速使用
|
||||
|
||||
无需下载或创建,直接使用 `-g` 参数指定路径:
|
||||
|
||||
```bash
|
||||
# 使用简单工作台(推荐新手)
|
||||
unilab --ak your_ak --sk your_sk -g test/experiments/workshop.json
|
||||
|
||||
# 使用虚拟设备(无需真实硬件)
|
||||
unilab --ak your_ak --sk your_sk -g test/experiments/mock_devices/mock_all.json
|
||||
|
||||
# 使用 PRCXI 液体处理工作站
|
||||
unilab --ak your_ak --sk your_sk -g test/experiments/prcxi_9300.json
|
||||
|
||||
# 使用格林纳德反应工作站
|
||||
unilab --ak your_ak --sk your_sk -g test/experiments/Grignard_flow_batchreact_single_pumpvalve.json
|
||||
```
|
||||
|
||||
### 📚 文件分类
|
||||
|
||||
| 类别 | 说明 | 文件数量 |
|
||||
| ------------ | ------------------------ | -------- |
|
||||
| **主工作站** | 完整的实验工作站配置 | 15+ |
|
||||
| **虚拟设备** | 用于开发测试的 mock 设备 | 10+ |
|
||||
| **协议测试** | 各种实验协议的测试配置 | 12+ |
|
||||
| **综合示例** | 包含多种协议的综合工作站 | 3+ |
|
||||
|
||||
这些文件展示了不同场景下的设备图配置,涵盖液体处理、有机合成、分析检测等多个领域,是学习和创建自己配置的绝佳参考。
|
||||
|
||||
## 快速参考:ResourceDict 完整字段列表
|
||||
|
||||
基于 `unilabos.ros.nodes.resource_tracker.ResourceDict` 的完整字段定义:
|
||||
|
||||
```python
|
||||
class ResourceDict(BaseModel):
|
||||
# === 基础标识 ===
|
||||
id: str # 资源ID(必需)
|
||||
uuid: str # 全局唯一标识符(自动生成)
|
||||
name: str # 显示名称(必需)
|
||||
|
||||
# === 类型和分类 ===
|
||||
type: Union[Literal["device"], str] # 节点类型(必需)
|
||||
klass: str # 资源类别(alias="class",必需)
|
||||
|
||||
# === 层级关系 ===
|
||||
parent: Optional[ResourceDict] # 父资源对象(不序列化)
|
||||
parent_uuid: Optional[str] # 父资源UUID
|
||||
|
||||
# === 位置和姿态 ===
|
||||
position: ResourceDictPosition # 位置信息
|
||||
pose: ResourceDictPosition # 姿态信息(推荐使用)
|
||||
|
||||
# === 配置和数据 ===
|
||||
config: Dict[str, Any] # 设备配置参数
|
||||
data: Dict[str, Any] # 运行时状态数据
|
||||
extra: Dict[str, Any] # 额外自定义数据
|
||||
|
||||
# === 元数据 ===
|
||||
description: str # 资源描述
|
||||
resource_schema: Dict[str, Any] # schema定义(alias="schema")
|
||||
model: Dict[str, Any] # 3D模型信息
|
||||
icon: str # 图标路径
|
||||
```
|
||||
|
||||
**Position/Pose 结构**:
|
||||
|
||||
```python
|
||||
class ResourceDictPosition(BaseModel):
|
||||
size: ResourceDictPositionSize # width, height, depth
|
||||
scale: ResourceDictPositionScale # x, y, z
|
||||
layout: Literal["2d", "x-y", "z-y", "x-z"]
|
||||
position: ResourceDictPositionObject # x, y, z
|
||||
position3d: ResourceDictPositionObject # x, y, z
|
||||
rotation: ResourceDictPositionObject # x, y, z
|
||||
cross_section_type: Literal["rectangle", "circle", "rounded_rectangle"]
|
||||
```
|
||||
|
||||
## 下一步
|
||||
|
||||
- {doc}`../boot_examples/index` - 查看完整启动示例
|
||||
- {doc}`../developer_guide/add_device` - 了解如何添加新设备
|
||||
- {doc}`06_troubleshooting` - 图文件相关问题排查
|
||||
- 源码参考: `unilabos/ros/nodes/resource_tracker.py` - ResourceDict 标准定义
|
||||
|
||||
## 获取帮助
|
||||
|
||||
- 在 Web 界面中使用模板创建
|
||||
- 参考示例文件:`test/experiments/` 目录
|
||||
- 查看 ResourceDict 源码了解完整定义
|
||||
- [GitHub 讨论区](https://github.com/dptech-corp/Uni-Lab-OS/discussions)
|
||||
|
Before Width: | Height: | Size: 24 KiB |
|
Before Width: | Height: | Size: 46 KiB |
|
Before Width: | Height: | Size: 24 KiB |
@@ -1,555 +1,43 @@
|
||||
# Uni-Lab-OS 安装指南
|
||||
# **Uni-Lab 安装**
|
||||
|
||||
本指南提供 Uni-Lab-OS 的完整安装说明,涵盖从快速一键安装到完整开发环境配置的所有方式。
|
||||
## 快速开始
|
||||
|
||||
## 系统要求
|
||||
1. **配置 Conda 环境**
|
||||
|
||||
- **操作系统**: Windows 10/11, Linux (Ubuntu 20.04+), macOS (10.15+)
|
||||
- **内存**: 最小 4GB,推荐 8GB 以上
|
||||
- **磁盘空间**: 至少 10GB 可用空间
|
||||
- **网络**: 稳定的互联网连接(用于下载软件包)
|
||||
- **其他**:
|
||||
- 已安装 Conda/Miniconda/Miniforge/Mamba
|
||||
- 开发者需要 Git 和基本的 Python 开发知识
|
||||
- 自定义 msgs 需要 GitHub 账号
|
||||
Uni-Lab-OS 建议使用 `mamba` 管理环境。创建新的环境:
|
||||
|
||||
## 安装方式选择
|
||||
|
||||
根据您的使用场景,选择合适的安装方式:
|
||||
|
||||
| 安装方式 | 适用人群 | 特点 | 安装时间 |
|
||||
| ---------------------- | -------------------- | ------------------------------ | ---------------------------- |
|
||||
| **方式一:一键安装** | 实验室用户、快速体验 | 预打包环境,离线可用,无需配置 | 5-10 分钟 (网络良好的情况下) |
|
||||
| **方式二:手动安装** | 标准用户、生产环境 | 灵活配置,版本可控 | 10-20 分钟 |
|
||||
| **方式三:开发者安装** | 开发者、需要修改源码 | 可编辑模式,支持自定义 msgs | 20-30 分钟 |
|
||||
|
||||
---
|
||||
|
||||
## 方式一:一键安装(推荐新用户)
|
||||
|
||||
使用预打包的 conda 环境,最快速的安装方法。
|
||||
|
||||
### 前置条件
|
||||
|
||||
确保已安装 Conda/Miniconda/Miniforge/Mamba。
|
||||
|
||||
### 安装步骤
|
||||
|
||||
#### 第一步:下载预打包环境
|
||||
|
||||
1. 访问 [GitHub Actions - Conda Pack Build](https://github.com/dptech-corp/Uni-Lab-OS/actions/workflows/conda-pack-build.yml)
|
||||
|
||||
2. 选择最新的成功构建记录(绿色勾号 ✓)
|
||||
|
||||
3. 在页面底部的 "Artifacts" 部分,下载对应你操作系统的压缩包:
|
||||
- Windows: `unilab-pack-win-64-{branch}.zip`
|
||||
- macOS (Intel): `unilab-pack-osx-64-{branch}.tar.gz`
|
||||
- macOS (Apple Silicon): `unilab-pack-osx-arm64-{branch}.tar.gz`
|
||||
- Linux: `unilab-pack-linux-64-{branch}.tar.gz`
|
||||
|
||||
#### 第二步:解压并运行安装脚本
|
||||
|
||||
**Windows**:
|
||||
|
||||
```batch
|
||||
REM 使用 Windows 资源管理器解压下载的 zip 文件
|
||||
REM 或使用命令行:
|
||||
tar -xzf unilab-pack-win-64-dev.zip
|
||||
|
||||
REM 进入解压后的目录
|
||||
cd unilab-pack-win-64-dev
|
||||
|
||||
REM 双击运行 install_unilab.bat
|
||||
REM 或在命令行中执行:
|
||||
install_unilab.bat
|
||||
```
|
||||
|
||||
**macOS**:
|
||||
|
||||
```bash
|
||||
# 解压下载的压缩包
|
||||
tar -xzf unilab-pack-osx-arm64-dev.tar.gz
|
||||
|
||||
# 进入解压后的目录
|
||||
cd unilab-pack-osx-arm64-dev
|
||||
|
||||
# 运行安装脚本
|
||||
bash install_unilab.sh
|
||||
```
|
||||
|
||||
**Linux**:
|
||||
|
||||
```bash
|
||||
# 解压下载的压缩包
|
||||
tar -xzf unilab-pack-linux-64-dev.tar.gz
|
||||
|
||||
# 进入解压后的目录
|
||||
cd unilab-pack-linux-64-dev
|
||||
|
||||
# 添加执行权限(如果需要)
|
||||
chmod +x install_unilab.sh
|
||||
|
||||
# 运行安装脚本
|
||||
./install_unilab.sh
|
||||
```
|
||||
|
||||
#### 第三步:激活环境
|
||||
|
||||
```bash
|
||||
conda activate unilab
|
||||
```
|
||||
|
||||
激活后,您的命令行提示符应该会显示 `(unilab)` 前缀。
|
||||
|
||||
---
|
||||
|
||||
## 方式二:手动安装(标准用户)
|
||||
|
||||
适合生产环境和需要灵活配置的用户。
|
||||
|
||||
### 第一步:安装 Mamba 环境管理器
|
||||
|
||||
Mamba 是 Conda 的快速替代品,我们强烈推荐使用 Mamba 来管理 Uni-Lab 环境。
|
||||
|
||||
#### Windows
|
||||
|
||||
下载并安装 Miniforge(包含 Mamba):
|
||||
|
||||
```powershell
|
||||
# 访问 https://github.com/conda-forge/miniforge/releases
|
||||
# 下载 Miniforge3-Windows-x86_64.exe
|
||||
# 运行安装程序
|
||||
|
||||
# 也可以使用镜像站 https://mirrors.tuna.tsinghua.edu.cn/github-release/conda-forge/miniforge/LatestRelease/
|
||||
# 下载 Miniforge3-Windows-x86_64.exe
|
||||
# 运行安装程序
|
||||
```
|
||||
|
||||
#### Linux/macOS
|
||||
|
||||
```bash
|
||||
# 下载 Miniforge 安装脚本
|
||||
curl -L -O "https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-$(uname)-$(uname -m).sh"
|
||||
|
||||
# 运行安装
|
||||
bash Miniforge3-$(uname)-$(uname -m).sh
|
||||
|
||||
# 按照提示完成安装,建议选择 yes 来初始化
|
||||
```
|
||||
|
||||
安装完成后,重新打开终端使 Mamba 生效。
|
||||
|
||||
### 第二步:创建 Uni-Lab 环境
|
||||
|
||||
使用以下命令创建 Uni-Lab 专用环境:
|
||||
|
||||
```bash
|
||||
mamba create -n unilab python=3.11.11 # 目前ros2组件依赖版本大多为3.11.11
|
||||
mamba activate unilab
|
||||
mamba install -n unilab uni-lab::unilabos -c robostack-staging -c conda-forge
|
||||
```
|
||||
|
||||
**参数说明**:
|
||||
|
||||
- `-n unilab`: 创建名为 "unilab" 的环境
|
||||
- `uni-lab::unilabos`: 从 uni-lab channel 安装 unilabos 包
|
||||
- `-c robostack-staging -c conda-forge`: 添加额外的软件源
|
||||
|
||||
**如果遇到网络问题**,可以使用清华镜像源加速下载:
|
||||
|
||||
```bash
|
||||
# 配置清华镜像源
|
||||
mamba config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
|
||||
mamba config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
|
||||
mamba config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
|
||||
|
||||
# 然后重新执行安装命令
|
||||
mamba create -n unilab uni-lab::unilabos -c robostack-staging
|
||||
```
|
||||
|
||||
### 第三步:激活环境
|
||||
|
||||
```bash
|
||||
conda activate unilab
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 方式三:开发者安装
|
||||
|
||||
适用于需要修改 Uni-Lab 源代码或开发新设备驱动的开发者。
|
||||
|
||||
### 前置条件
|
||||
|
||||
- 已安装 Git
|
||||
- 已安装 Mamba/Conda
|
||||
- 有 GitHub 账号(如需自定义 msgs)
|
||||
- 基本的 Python 开发知识
|
||||
|
||||
### 第一步:克隆仓库
|
||||
|
||||
```bash
|
||||
git clone https://github.com/dptech-corp/Uni-Lab-OS.git
|
||||
cd Uni-Lab-OS
|
||||
```
|
||||
|
||||
如果您需要贡献代码,建议先 Fork 仓库:
|
||||
|
||||
1. 访问 https://github.com/dptech-corp/Uni-Lab-OS
|
||||
2. 点击右上角的 "Fork" 按钮
|
||||
3. Clone 您的 Fork 版本:
|
||||
```bash
|
||||
git clone https://github.com/YOUR_USERNAME/Uni-Lab-OS.git
|
||||
cd Uni-Lab-OS
|
||||
```
|
||||
|
||||
### 第二步:安装基础环境
|
||||
|
||||
**推荐方式**:先通过**方式一(一键安装)**或**方式二(手动安装)**完成基础环境的安装,这将包含所有必需的依赖项(ROS2、msgs 等)。
|
||||
|
||||
#### 选项 A:通过一键安装(推荐)
|
||||
|
||||
参考上文"方式一:一键安装",完成基础环境的安装后,激活环境:
|
||||
|
||||
```bash
|
||||
conda activate unilab
|
||||
```
|
||||
|
||||
#### 选项 B:通过手动安装
|
||||
|
||||
参考上文"方式二:手动安装",创建并安装环境:
|
||||
|
||||
```bash
|
||||
mamba create -n unilab python=3.11.11
|
||||
conda activate unilab
|
||||
mamba install -n unilab uni-lab::unilabos -c robostack-staging -c conda-forge
|
||||
```
|
||||
|
||||
**说明**:这会安装包括 Python 3.11.11、ROS2 Humble、ros-humble-unilabos-msgs 和所有必需依赖
|
||||
|
||||
### 第三步:切换到开发版本
|
||||
|
||||
现在你已经有了一个完整可用的 Uni-Lab 环境,接下来将 unilabos 包切换为开发版本:
|
||||
|
||||
```bash
|
||||
# 确保环境已激活
|
||||
conda activate unilab
|
||||
|
||||
# 卸载 pip 安装的 unilabos(保留所有 conda 依赖)
|
||||
pip uninstall unilabos -y
|
||||
|
||||
# 克隆 dev 分支(如果还未克隆)
|
||||
cd /path/to/your/workspace
|
||||
git clone -b dev https://github.com/dptech-corp/Uni-Lab-OS.git
|
||||
# 或者如果已经克隆,切换到 dev 分支
|
||||
cd Uni-Lab-OS
|
||||
git checkout dev
|
||||
git pull
|
||||
|
||||
# 以可编辑模式安装开发版 unilabos
|
||||
pip install -e . -i https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple
|
||||
```
|
||||
|
||||
**参数说明**:
|
||||
|
||||
- `-e`: editable mode(可编辑模式),代码修改立即生效,无需重新安装
|
||||
- `-i`: 使用清华镜像源加速下载
|
||||
- `pip uninstall unilabos`: 只卸载 pip 安装的 unilabos 包,不影响 conda 安装的其他依赖(如 ROS2、msgs 等)
|
||||
|
||||
### 第四步:安装或自定义 ros-humble-unilabos-msgs(可选)
|
||||
|
||||
Uni-Lab 使用 ROS2 消息系统进行设备间通信。如果你使用方式一或方式二安装,msgs 包已经自动安装。
|
||||
|
||||
#### 使用已安装的 msgs(大多数用户)
|
||||
|
||||
如果你不需要修改 msgs,可以跳过此步骤,直接使用已安装的 msgs 包。验证安装:
|
||||
|
||||
```bash
|
||||
# 列出所有 unilabos_msgs 接口
|
||||
ros2 interface list | grep unilabos_msgs
|
||||
|
||||
# 查看特定 action 定义
|
||||
ros2 interface show unilabos_msgs/action/DeviceCmd
|
||||
```
|
||||
|
||||
#### 自定义 msgs(高级用户)
|
||||
|
||||
如果你需要:
|
||||
|
||||
- 添加新的 ROS2 action 定义
|
||||
- 修改现有 msg/srv/action 接口
|
||||
- 为特定设备定制通信协议
|
||||
|
||||
请参考 **[添加新动作指令(Action)指南](../developer_guide/add_action.md)**,该指南详细介绍了如何:
|
||||
|
||||
- 编写新的 Action 定义
|
||||
- 在线构建 Action(通过 GitHub Actions)
|
||||
- 下载并安装自定义的 msgs 包
|
||||
- 测试和验证新的 Action
|
||||
|
||||
```bash
|
||||
# 安装自定义构建的 msgs 包
|
||||
mamba remove --force ros-humble-unilabos-msgs
|
||||
mamba config set safety_checks disabled # 关闭 md5 检查
|
||||
mamba install /path/to/ros-humble-unilabos-msgs-*.conda --offline
|
||||
```
|
||||
|
||||
### 第五步:验证开发环境
|
||||
|
||||
完成上述步骤后,验证开发环境是否正确配置:
|
||||
|
||||
```bash
|
||||
# 确保环境已激活
|
||||
conda activate unilab
|
||||
|
||||
# 检查 ROS2 环境
|
||||
ros2 --version
|
||||
|
||||
# 检查 msgs 包
|
||||
ros2 interface list | grep unilabos_msgs
|
||||
|
||||
# 检查 Python 可以导入 unilabos
|
||||
python -c "import unilabos; print(f'Uni-Lab版本: {unilabos.__version__}')"
|
||||
|
||||
# 检查 unilab 命令
|
||||
unilab --help
|
||||
```
|
||||
|
||||
如果所有命令都正常输出,说明开发环境配置成功!
|
||||
|
||||
### 开发工具推荐
|
||||
|
||||
#### IDE
|
||||
|
||||
- **PyCharm Professional**: 强大的 Python IDE,支持远程调试
|
||||
- **VS Code**: 轻量级,配合 Python 扩展使用
|
||||
- **Vim/Emacs**: 适合终端开发
|
||||
|
||||
#### 推荐的 VS Code 扩展
|
||||
|
||||
- Python
|
||||
- Pylance
|
||||
- ROS
|
||||
- URDF
|
||||
- YAML
|
||||
|
||||
#### 调试工具
|
||||
|
||||
```bash
|
||||
# 安装调试工具
|
||||
pip install ipdb pytest pytest-cov -i https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple
|
||||
|
||||
# 代码质量检查
|
||||
pip install black flake8 mypy -i https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple
|
||||
```
|
||||
|
||||
### 设置 pre-commit 钩子(可选)
|
||||
|
||||
```bash
|
||||
# 安装 pre-commit
|
||||
pip install pre-commit -i https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple
|
||||
|
||||
# 设置钩子
|
||||
pre-commit install
|
||||
|
||||
# 手动运行检查
|
||||
pre-commit run --all-files
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 验证安装
|
||||
|
||||
无论使用哪种安装方式,都应该验证安装是否成功。
|
||||
|
||||
### 基本验证
|
||||
|
||||
```bash
|
||||
# 确保已激活环境
|
||||
conda activate unilab # 或 unilab-dev
|
||||
|
||||
# 检查 unilab 命令
|
||||
unilab --help
|
||||
```
|
||||
|
||||
您应该看到类似以下的输出:
|
||||
|
||||
```
|
||||
usage: unilab [-h] [-g GRAPH] [-c CONTROLLERS] [--registry_path REGISTRY_PATH]
|
||||
[--working_dir WORKING_DIR] [--backend {ros,simple,automancer}]
|
||||
...
|
||||
```
|
||||
|
||||
### 检查版本
|
||||
|
||||
```bash
|
||||
python -c "import unilabos; print(f'Uni-Lab版本: {unilabos.__version__}')"
|
||||
```
|
||||
|
||||
### 使用验证脚本(方式一)
|
||||
|
||||
如果使用一键安装,可以运行预打包的验证脚本:
|
||||
|
||||
```bash
|
||||
# 确保已激活环境
|
||||
conda activate unilab
|
||||
|
||||
# 运行验证脚本
|
||||
python verify_installation.py
|
||||
```
|
||||
|
||||
如果看到 "✓ All checks passed!",说明安装成功!
|
||||
|
||||
---
|
||||
|
||||
## 常见问题
|
||||
|
||||
### 问题 1: 找不到 unilab 命令
|
||||
|
||||
**原因**: 环境未正确激活或 PATH 未设置
|
||||
|
||||
**解决方案**:
|
||||
|
||||
```bash
|
||||
# 确保激活了正确的环境
|
||||
conda activate unilab
|
||||
|
||||
# 检查 unilab 是否在 PATH 中
|
||||
which unilab # Linux/macOS
|
||||
where unilab # Windows
|
||||
```
|
||||
|
||||
### 问题 2: 包冲突或依赖错误
|
||||
|
||||
**解决方案**:
|
||||
|
||||
```bash
|
||||
# 删除旧环境重新创建
|
||||
conda deactivate
|
||||
conda env remove -n unilab
|
||||
```shell
|
||||
mamba create -n unilab uni-lab::unilabos -c robostack-staging -c conda-forge
|
||||
```
|
||||
|
||||
### 问题 3: 下载速度慢
|
||||
2. **安装开发版 Uni-Lab-OS**
|
||||
|
||||
**解决方案**: 使用国内镜像源(清华、中科大等)
|
||||
```shell
|
||||
# 配置好conda环境后,克隆仓库
|
||||
git clone https://github.com/dptech-corp/Uni-Lab-OS.git -b dev
|
||||
cd Uni-Lab-OS
|
||||
|
||||
```bash
|
||||
# 查看当前 channel 配置
|
||||
conda config --show channels
|
||||
|
||||
# 添加清华镜像
|
||||
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
|
||||
# 安装 Uni-Lab-OS
|
||||
pip install -e .
|
||||
```
|
||||
|
||||
### 问题 4: 权限错误
|
||||
3. **安装开发版 ros-humble-unilabos-msgs**
|
||||
|
||||
**Windows 解决方案**: 以管理员身份运行命令提示符
|
||||
|
||||
**Linux/macOS 解决方案**:
|
||||
|
||||
```bash
|
||||
# 不要使用 sudo 安装 conda 包
|
||||
# 如果 conda 安装在需要权限的位置,考虑重新安装 conda 到用户目录
|
||||
```
|
||||
|
||||
### 问题 5: 安装脚本找不到 conda(方式一)
|
||||
|
||||
**解决方案**: 确保你已经安装了 conda/miniconda/miniforge,并且安装在标准位置:
|
||||
|
||||
- **Windows**:
|
||||
|
||||
- `%USERPROFILE%\miniforge3`
|
||||
- `%USERPROFILE%\miniconda3`
|
||||
- `%USERPROFILE%\anaconda3`
|
||||
- `C:\ProgramData\miniforge3`
|
||||
|
||||
- **macOS/Linux**:
|
||||
- `~/miniforge3`
|
||||
- `~/miniconda3`
|
||||
- `~/anaconda3`
|
||||
- `/opt/conda`
|
||||
|
||||
如果安装在其他位置,可以先激活 conda base 环境,然后手动运行安装脚本。
|
||||
|
||||
### 问题 6: 安装后激活环境提示找不到?
|
||||
|
||||
**解决方案**: 尝试以下方法:
|
||||
|
||||
```bash
|
||||
# 方法 1: 使用 conda activate
|
||||
**卸载老版本:**
|
||||
```shell
|
||||
conda activate unilab
|
||||
conda remove --force ros-humble-unilabos-msgs
|
||||
```
|
||||
有时相同的安装包版本会由于dev构建得到的md5不一样,触发安全检查,可输入 `config set safety_checks disabled` 来关闭安全检查。
|
||||
|
||||
# 方法 2: 使用完整路径激活(Windows)
|
||||
call C:\Users\{YourUsername}\miniforge3\envs\unilab\Scripts\activate.bat
|
||||
**安装新版本:**
|
||||
|
||||
# 方法 2: 使用完整路径激活(Unix)
|
||||
source ~/miniforge3/envs/unilab/bin/activate
|
||||
访问 https://github.com/dptech-corp/Uni-Lab-OS/actions/workflows/multi-platform-build.yml 选择最新的构建,下载对应平台的压缩包(仅解压一次,得到.conda文件)使用如下指令:
|
||||
```shell
|
||||
conda activate base
|
||||
conda install ros-humble-unilabos-msgs-<version>-<platform>.conda --offline -n <环境名>
|
||||
```
|
||||
|
||||
### 问题 7: conda-unpack 失败怎么办?(方式一)
|
||||
4. **启动 Uni-Lab 系统**
|
||||
|
||||
**解决方案**: 尝试手动运行:
|
||||
|
||||
```bash
|
||||
# Windows
|
||||
cd %CONDA_PREFIX%\envs\unilab
|
||||
.\Scripts\conda-unpack.exe
|
||||
|
||||
# macOS/Linux
|
||||
cd $CONDA_PREFIX/envs/unilab
|
||||
./bin/conda-unpack
|
||||
```
|
||||
|
||||
### 问题 8: 环境很大,有办法减小吗?
|
||||
|
||||
**解决方案**: 预打包的环境包含所有依赖,通常较大(压缩后 2-5GB)。这是为了确保离线安装和完整功能。如果空间有限,考虑使用方式二手动安装,只安装需要的组件。
|
||||
|
||||
### 问题 9: 如何更新到最新版本?
|
||||
|
||||
**解决方案**:
|
||||
|
||||
**方式一用户**: 重新下载最新的预打包环境,运行安装脚本时选择覆盖现有环境。
|
||||
|
||||
**方式二/三用户**: 在现有环境中更新:
|
||||
|
||||
```bash
|
||||
conda activate unilab
|
||||
|
||||
# 更新 unilabos
|
||||
cd /path/to/Uni-Lab-OS
|
||||
git pull
|
||||
pip install -e . --upgrade -i https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple
|
||||
|
||||
# 更新 ros-humble-unilabos-msgs
|
||||
mamba update ros-humble-unilabos-msgs -c uni-lab -c robostack-staging -c conda-forge
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 下一步
|
||||
|
||||
安装完成后,请继续:
|
||||
|
||||
- **快速启动**: 学习如何首次启动 Uni-Lab
|
||||
- **配置指南**: 配置您的实验室环境和设备
|
||||
- **运行示例**: 查看启动示例和最佳实践
|
||||
- **开发指南**:
|
||||
- 添加新设备驱动
|
||||
- 添加新物料资源
|
||||
- 了解工作站架构
|
||||
|
||||
## 需要帮助?
|
||||
|
||||
- **故障排查**: 查看更详细的故障排查信息
|
||||
- **GitHub Issues**: [报告问题](https://github.com/dptech-corp/Uni-Lab-OS/issues)
|
||||
- **开发者文档**: 查看开发者指南获取更多技术细节
|
||||
- **社区讨论**: [GitHub Discussions](https://github.com/dptech-corp/Uni-Lab-OS/discussions)
|
||||
|
||||
---
|
||||
|
||||
**提示**:
|
||||
|
||||
- 生产环境推荐使用方式二(手动安装)的稳定版本
|
||||
- 开发和测试推荐使用方式三(开发者安装)
|
||||
- 快速体验和演示推荐使用方式一(一键安装)
|
||||
请参见{doc}`启动样例 <../boot_examples/index>`或{doc}`启动指南 <launch>`了解详细的启动方法。
|
||||
|
||||
@@ -132,14 +132,15 @@ unilab --config path/to/your/config.py
|
||||
|
||||
使用 `-c` 传入控制逻辑配置。
|
||||
|
||||
不管使用哪一种初始化方式,设备/物料字典均需包含 `class` 属性,用于查找注册表信息。默认查找范围都是 Uni-Lab 内部注册表 `unilabos/registry/{devices,device_comms,resources}`。要添加额外的注册表路径,可以使用 `--registry_path` 加入 `<your-registry-path>/{devices,device_comms,resources}`,只输入<your-registry-path>即可,支持多次--registry_path指定多个目录。
|
||||
不管使用哪一种初始化方式,设备/物料字典均需包含 `class` 属性,用于查找注册表信息。默认查找范围都是 Uni-Lab 内部注册表 `unilabos/registry/{devices,device_comms,resources}`。要添加额外的注册表路径,可以使用 `--registry_path` 加入 `<your-registry-path>/{devices,device_comms,resources}`。
|
||||
|
||||
## 通信中间件 `--backend`
|
||||
|
||||
目前 Uni-Lab 支持以下通信中间件:
|
||||
|
||||
- **ros** (默认):基于 ROS2 的通信
|
||||
- **automancer**:Automancer 兼容模式 (实验性)
|
||||
- **simple**:简化通信模式
|
||||
- **automancer**:Automancer 兼容模式
|
||||
|
||||
## 端云桥接 `--app_bridges`
|
||||
|
||||
@@ -168,7 +169,7 @@ unilab --config path/to/your/config.py
|
||||
通过 `--visual` 参数选择:
|
||||
|
||||
- **rviz**:使用 RViz 进行 3D 可视化
|
||||
- **web**:使用 Web 界面进行可视化 (基于Pylabrobot)
|
||||
- **web**:使用 Web 界面进行可视化
|
||||
- **disable** (默认):禁用可视化
|
||||
|
||||
## 实验室管理
|
||||
@@ -244,3 +245,78 @@ unilab --ak your_ak --sk your_sk --port 8080 --disable_browser
|
||||
- 检查图谱文件格式是否正确
|
||||
- 验证设备连接和端点配置
|
||||
- 确保注册表路径正确
|
||||
|
||||
## 页面操作
|
||||
|
||||
### 1. 启动成功
|
||||
当您启动成功后,可以看到物料列表,节点模版和组态图如图展示
|
||||

|
||||
|
||||
### 2. 根据需求创建设备和物料
|
||||
我们可以做一个简单的案例
|
||||
* 在容器1中加入水
|
||||
* 通过传输泵将容器1中的水转移到容器2中
|
||||
#### 2.1 添加所需的设备和物料
|
||||
仪器设备work_station中的workstation 数量x1
|
||||
仪器设备virtual_device中的virtual_transfer_pump 数量x1
|
||||
物料耗材container中的container 数量x2
|
||||
|
||||
#### 2.2 将设备和物料根据父子关系进行关联
|
||||
当我们添加设备时,仪器耗材模块的物料列表也会实时更新
|
||||
我们需要将设备和物料拖拽到workstation中并在画布上将它们连接起来,就像真实的设备操作一样
|
||||

|
||||
|
||||
### 3. 创建工作流
|
||||
进入工作流模块 → 点击"我创建的" → 新建工作流
|
||||

|
||||
|
||||
#### 3.1 新增工作流节点
|
||||
我们可以进入指定工作流,在空白处右键
|
||||
* 选择Laboratory→host_node中的creat_resource
|
||||
* 选择Laboratory→workstation中的PumpTransferProtocol
|
||||
|
||||

|
||||
|
||||
#### 3.2 配置节点参数
|
||||
根据案例,工作流包含两个步骤:
|
||||
1. 使用creat_resource在容器中创建水
|
||||
2. 通过泵传输协议将水传输到另一个容器
|
||||
|
||||
我们点击creat_resource卡片上的编辑按钮来配置参数⭐️
|
||||
class_name :container
|
||||
device_id : workstation
|
||||
liquid_input_slot : 0或-1均可
|
||||
liquid_type : water
|
||||
liquid_volume : 根据需求填写即可,默认单位ml,这里举例50
|
||||
parent : workstation
|
||||
res_id : containe
|
||||
关联设备名称(原unilabos_device_id) : 这里就填写host_node
|
||||
**配置完成后点击底部保存按钮**
|
||||
|
||||
我们点击PumpTransferProtocol卡片上的编辑按钮来配置参数⭐️
|
||||
event : transfer_liquid
|
||||
from_vessel : water
|
||||
to_vessel : container1
|
||||
volume : 根据需求填写即可,默认单位ml,这里举例50
|
||||
关联设备名称(原unilabos_device_id) : 这里就填写workstation
|
||||
**配置完成后点击底部保存按钮**
|
||||
|
||||
#### 3.3 运行工作流
|
||||
1. 连接两个节点卡片
|
||||
2. 点击底部保存按钮
|
||||
3. 点击运行按钮执行工作流
|
||||
|
||||

|
||||
|
||||
### 运行监控
|
||||
* 运行状态和消息实时显示在底部控制台
|
||||
* 如有报错,可点击查看详细信息
|
||||
|
||||
### 结果验证
|
||||
工作流完成后,返回仪器耗材模块:
|
||||
* 点击 container1卡片查看详情
|
||||
* 确认其中包含参数指定的水和容量
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
197
docs/user_guide/quick_install_guide.md
Normal file
@@ -0,0 +1,197 @@
|
||||
# Uni-Lab-OS 一键安装快速指南
|
||||
|
||||
## 概述
|
||||
|
||||
本指南提供最快速的 Uni-Lab-OS 安装方法,使用预打包的 conda 环境,无需手动配置依赖。
|
||||
|
||||
## 前置要求
|
||||
|
||||
- 已安装 Conda/Miniconda/Miniforge/Mamba
|
||||
- 至少 10GB 可用磁盘空间
|
||||
- Windows 10+, macOS 10.14+, 或 Linux (Ubuntu 20.04+)
|
||||
|
||||
## 安装步骤
|
||||
|
||||
### 第一步:下载预打包环境
|
||||
|
||||
1. 访问 [GitHub Actions - Conda Pack Build](https://github.com/dptech-corp/Uni-Lab-OS/actions/workflows/conda-pack-build.yml)
|
||||
|
||||
2. 选择最新的成功构建记录(绿色勾号 ✓)
|
||||
|
||||
3. 在页面底部的 "Artifacts" 部分,下载对应你操作系统的压缩包:
|
||||
- Windows: `unilab-pack-win-64-{branch}.zip`
|
||||
- macOS (Intel): `unilab-pack-osx-64-{branch}.tar.gz`
|
||||
- macOS (Apple Silicon): `unilab-pack-osx-arm64-{branch}.tar.gz`
|
||||
- Linux: `unilab-pack-linux-64-{branch}.tar.gz`
|
||||
|
||||
### 第二步:解压并运行安装脚本
|
||||
|
||||
#### Windows
|
||||
|
||||
```batch
|
||||
REM 使用 Windows 资源管理器解压下载的 zip 文件
|
||||
REM 或使用命令行:
|
||||
tar -xzf unilab-pack-win-64-dev.zip
|
||||
|
||||
REM 进入解压后的目录
|
||||
cd unilab-pack-win-64-dev
|
||||
|
||||
REM 双击运行 install_unilab.bat
|
||||
REM 或在命令行中执行:
|
||||
install_unilab.bat
|
||||
```
|
||||
|
||||
#### macOS
|
||||
|
||||
```bash
|
||||
# 解压下载的压缩包
|
||||
tar -xzf unilab-pack-osx-arm64-dev.tar.gz
|
||||
|
||||
# 进入解压后的目录
|
||||
cd unilab-pack-osx-arm64-dev
|
||||
|
||||
# 运行安装脚本
|
||||
bash install_unilab.sh
|
||||
```
|
||||
|
||||
#### Linux
|
||||
|
||||
```bash
|
||||
# 解压下载的压缩包
|
||||
tar -xzf unilab-pack-linux-64-dev.tar.gz
|
||||
|
||||
# 进入解压后的目录
|
||||
cd unilab-pack-linux-64-dev
|
||||
|
||||
# 添加执行权限(如果需要)
|
||||
chmod +x install_unilab.sh
|
||||
|
||||
# 运行安装脚本
|
||||
./install_unilab.sh
|
||||
```
|
||||
|
||||
### 第三步:激活环境
|
||||
|
||||
```bash
|
||||
conda activate unilab
|
||||
```
|
||||
|
||||
### 第四步:验证安装(推荐)
|
||||
|
||||
```bash
|
||||
# 确保已激活环境
|
||||
conda activate unilab
|
||||
|
||||
# 运行验证脚本
|
||||
python verify_installation.py
|
||||
```
|
||||
|
||||
如果看到 "✓ All checks passed!",说明安装成功!
|
||||
|
||||
## 常见问题
|
||||
|
||||
### Q: 安装脚本找不到 conda?
|
||||
|
||||
**A:** 确保你已经安装了 conda/miniconda/miniforge,并且安装在标准位置:
|
||||
|
||||
- **Windows**:
|
||||
|
||||
- `%USERPROFILE%\miniforge3`
|
||||
- `%USERPROFILE%\miniconda3`
|
||||
- `%USERPROFILE%\anaconda3`
|
||||
- `C:\ProgramData\miniforge3`
|
||||
|
||||
- **macOS/Linux**:
|
||||
- `~/miniforge3`
|
||||
- `~/miniconda3`
|
||||
- `~/anaconda3`
|
||||
- `/opt/conda`
|
||||
|
||||
如果安装在其他位置,可以先激活 conda base 环境,然后手动运行安装脚本。
|
||||
|
||||
### Q: 安装后激活环境提示找不到?
|
||||
|
||||
**A:** 尝试以下方法:
|
||||
|
||||
```bash
|
||||
# 方法 1: 使用 conda activate
|
||||
conda activate unilab
|
||||
|
||||
# 方法 2: 使用完整路径激活(Windows)
|
||||
call C:\Users\{YourUsername}\miniforge3\envs\unilab\Scripts\activate.bat
|
||||
|
||||
# 方法 2: 使用完整路径激活(Unix)
|
||||
source ~/miniforge3/envs/unilab/bin/activate
|
||||
```
|
||||
|
||||
### Q: conda-unpack 失败怎么办?
|
||||
|
||||
**A:** 尝试手动运行:
|
||||
|
||||
```bash
|
||||
# Windows
|
||||
cd %CONDA_PREFIX%\envs\unilab
|
||||
.\Scripts\conda-unpack.exe
|
||||
|
||||
# macOS/Linux
|
||||
cd $CONDA_PREFIX/envs/unilab
|
||||
./bin/conda-unpack
|
||||
```
|
||||
|
||||
### Q: 验证脚本报错?
|
||||
|
||||
**A:** 首先确认环境已激活:
|
||||
|
||||
```bash
|
||||
# 检查当前环境
|
||||
conda env list
|
||||
|
||||
# 应该看到 unilab 前面有 * 标记
|
||||
```
|
||||
|
||||
如果仍有问题,查看具体报错信息,可能需要:
|
||||
|
||||
- 重新运行安装脚本
|
||||
- 检查磁盘空间
|
||||
- 查看详细文档
|
||||
|
||||
### Q: 环境很大,有办法减小吗?
|
||||
|
||||
**A:** 预打包的环境包含所有依赖,通常较大(压缩后 2-5GB)。这是为了确保离线安装和完整功能。如果空间有限,考虑使用手动安装方式,只安装需要的组件。
|
||||
|
||||
### Q: 如何更新到最新版本?
|
||||
|
||||
**A:** 重新下载最新的预打包环境,运行安装脚本时选择覆盖现有环境。
|
||||
|
||||
或者在现有环境中更新:
|
||||
|
||||
```bash
|
||||
conda activate unilab
|
||||
|
||||
# 更新 unilabos
|
||||
cd /path/to/Uni-Lab-OS
|
||||
git pull
|
||||
pip install -e . --upgrade
|
||||
|
||||
# 更新 ros-humble-unilabos-msgs
|
||||
mamba update ros-humble-unilabos-msgs -c uni-lab -c robostack-staging -c conda-forge
|
||||
```
|
||||
|
||||
## 下一步
|
||||
|
||||
安装完成后,你可以:
|
||||
|
||||
1. **查看启动指南**: {doc}`launch`
|
||||
2. **运行示例**: {doc}`../boot_examples/index`
|
||||
3. **配置设备**: 编辑 `unilabos_data/startup_config.json`
|
||||
4. **阅读开发文档**: {doc}`../developer_guide/workstation_architecture`
|
||||
|
||||
## 需要帮助?
|
||||
|
||||
- **文档**: [docs/user_guide/installation.md](installation.md)
|
||||
- **问题反馈**: [GitHub Issues](https://github.com/dptech-corp/Uni-Lab-OS/issues)
|
||||
- **开发版安装**: 参考 {doc}`installation` 的方式二
|
||||
|
||||
---
|
||||
|
||||
**提示**: 这个预打包环境包含了从指定分支(通常是 `dev`)构建的最新代码。如果需要稳定版本,请使用方式二手动安装 release 版本。
|
||||
54
new_cellconfig.json
Normal file
@@ -0,0 +1,54 @@
|
||||
{
|
||||
"nodes": [
|
||||
{
|
||||
"id": "BatteryStation",
|
||||
"name": "扣电工作站",
|
||||
"parent": null,
|
||||
"children": [
|
||||
"coin_cell_deck"
|
||||
],
|
||||
"type": "device",
|
||||
"class":"coincellassemblyworkstation_device",
|
||||
"position": {
|
||||
"x": 0,
|
||||
"y": 0,
|
||||
"z": 0
|
||||
},
|
||||
"config": {
|
||||
"deck": {
|
||||
"data": {
|
||||
"_resource_child_name": "YB_YH_Deck",
|
||||
"_resource_type": "unilabos.devices.workstation.coin_cell_assembly.YB_YH_materials:CoincellDeck"
|
||||
}
|
||||
},
|
||||
"debug_mode": true,
|
||||
"protocol_type": []
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "YB_YH_Deck",
|
||||
"name": "YB_YH_Deck",
|
||||
"children": [],
|
||||
"parent": "BatteryStation",
|
||||
"type": "deck",
|
||||
"class": "CoincellDeck",
|
||||
"position": {
|
||||
"x": 0,
|
||||
"y": 0,
|
||||
"z": 0
|
||||
},
|
||||
"config": {
|
||||
"type": "CoincellDeck",
|
||||
"setup": true,
|
||||
"rotation": {
|
||||
"x": 0,
|
||||
"y": 0,
|
||||
"z": 0,
|
||||
"type": "Rotation"
|
||||
}
|
||||
},
|
||||
"data": {}
|
||||
}
|
||||
],
|
||||
"links": []
|
||||
}
|
||||
98
new_cellconfig3c.json
Normal file
@@ -0,0 +1,98 @@
|
||||
|
||||
{
|
||||
"nodes": [
|
||||
{
|
||||
"id": "bioyond_cell_workstation",
|
||||
"name": "配液分液工站",
|
||||
"parent": null,
|
||||
"children": [
|
||||
"YB_Bioyond_Deck"
|
||||
],
|
||||
"type": "device",
|
||||
"class": "bioyond_cell",
|
||||
"config": {
|
||||
"deck": {
|
||||
"data": {
|
||||
"_resource_child_name": "YB_Bioyond_Deck",
|
||||
"_resource_type": "unilabos.resources.bioyond.decks:BIOYOND_YB_Deck"
|
||||
}
|
||||
},
|
||||
"protocol_type": []
|
||||
},
|
||||
"data": {}
|
||||
},
|
||||
{
|
||||
"id": "YB_Bioyond_Deck",
|
||||
"name": "YB_Bioyond_Deck",
|
||||
"children": [],
|
||||
"parent": "bioyond_cell_workstation",
|
||||
"type": "deck",
|
||||
"class": "BIOYOND_YB_Deck",
|
||||
"position": {
|
||||
"x": 0,
|
||||
"y": 0,
|
||||
"z": 0
|
||||
},
|
||||
"config": {
|
||||
"type": "BIOYOND_YB_Deck",
|
||||
"setup": true,
|
||||
"rotation": {
|
||||
"x": 0,
|
||||
"y": 0,
|
||||
"z": 0,
|
||||
"type": "Rotation"
|
||||
}
|
||||
},
|
||||
"data": {}
|
||||
},
|
||||
{
|
||||
"id": "BatteryStation",
|
||||
"name": "扣电工作站",
|
||||
"parent": null,
|
||||
"children": [
|
||||
"coin_cell_deck"
|
||||
],
|
||||
"type": "device",
|
||||
"class":"coincellassemblyworkstation_device",
|
||||
"config": {
|
||||
"deck": {
|
||||
"data": {
|
||||
"_resource_child_name": "YB_YH_Deck",
|
||||
"_resource_type": "unilabos.devices.workstation.coin_cell_assembly.YB_YH_materials:CoincellDeck"
|
||||
}
|
||||
},
|
||||
"protocol_type": []
|
||||
},
|
||||
"position": {
|
||||
"size": {"height": 1450, "width": 1450, "depth": 2100},
|
||||
"position": {
|
||||
"x": -1500,
|
||||
"y": 0,
|
||||
"z": 0
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "YB_YH_Deck",
|
||||
"name": "YB_YH_Deck",
|
||||
"children": [],
|
||||
"parent": "BatteryStation",
|
||||
"type": "deck",
|
||||
"class": "CoincellDeck",
|
||||
"config": {
|
||||
"type": "CoincellDeck",
|
||||
"setup": true,
|
||||
"rotation": {
|
||||
"x": 0,
|
||||
"y": 0,
|
||||
"z": 0,
|
||||
"type": "Rotation"
|
||||
}
|
||||
},
|
||||
"data": {}
|
||||
}
|
||||
],
|
||||
"links": []
|
||||
}
|
||||
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
package:
|
||||
name: ros-humble-unilabos-msgs
|
||||
version: 0.10.12
|
||||
version: 0.10.7
|
||||
source:
|
||||
path: ../../unilabos_msgs
|
||||
target_directory: src
|
||||
|
||||
@@ -1,41 +0,0 @@
|
||||
:: Generated by vinca http://github.com/RoboStack/vinca.
|
||||
:: DO NOT EDIT!
|
||||
setlocal EnableDelayedExpansion
|
||||
|
||||
set "PYTHONPATH=%LIBRARY_PREFIX%\lib\site-packages;%SP_DIR%"
|
||||
|
||||
:: MSVC is preferred.
|
||||
set CC=cl.exe
|
||||
set CXX=cl.exe
|
||||
|
||||
rd /s /q build
|
||||
mkdir build
|
||||
pushd build
|
||||
|
||||
:: set "CMAKE_GENERATOR=Ninja"
|
||||
|
||||
:: try to fix long paths issues by using default generator
|
||||
set "CMAKE_GENERATOR=Visual Studio %VS_MAJOR% %VS_YEAR%"
|
||||
set "SP_DIR_FORWARDSLASHES=%SP_DIR:\=/%"
|
||||
|
||||
set PYTHON="%PREFIX%\python.exe"
|
||||
|
||||
cmake ^
|
||||
-G "%CMAKE_GENERATOR%" ^
|
||||
-DCMAKE_INSTALL_PREFIX=%LIBRARY_PREFIX% ^
|
||||
-DCMAKE_BUILD_TYPE=Release ^
|
||||
-DCMAKE_INSTALL_SYSTEM_RUNTIME_LIBS_SKIP=True ^
|
||||
-DPYTHON_EXECUTABLE=%PYTHON% ^
|
||||
-DPython_EXECUTABLE=%PYTHON% ^
|
||||
-DPython3_EXECUTABLE=%PYTHON% ^
|
||||
-DSETUPTOOLS_DEB_LAYOUT=OFF ^
|
||||
-DBUILD_SHARED_LIBS=ON ^
|
||||
-DBUILD_TESTING=OFF ^
|
||||
-DCMAKE_OBJECT_PATH_MAX=255 ^
|
||||
-DPYTHON_INSTALL_DIR=%SP_DIR_FORWARDSLASHES% ^
|
||||
--compile-no-warning-as-error ^
|
||||
%SRC_DIR%\%PKG_NAME%\src\work
|
||||
if errorlevel 1 exit 1
|
||||
|
||||
cmake --build . --config Release --target install
|
||||
if errorlevel 1 exit 1
|
||||
@@ -1,71 +0,0 @@
|
||||
# Generated by vinca http://github.com/RoboStack/vinca.
|
||||
# DO NOT EDIT!
|
||||
|
||||
rm -rf build
|
||||
mkdir build
|
||||
cd build
|
||||
|
||||
# necessary for correctly linking SIP files (from python_qt_bindings)
|
||||
export LINK=$CXX
|
||||
|
||||
if [[ "$CONDA_BUILD_CROSS_COMPILATION" != "1" ]]; then
|
||||
PYTHON_EXECUTABLE=$PREFIX/bin/python
|
||||
PKG_CONFIG_EXECUTABLE=$PREFIX/bin/pkg-config
|
||||
OSX_DEPLOYMENT_TARGET="10.15"
|
||||
else
|
||||
PYTHON_EXECUTABLE=$BUILD_PREFIX/bin/python
|
||||
PKG_CONFIG_EXECUTABLE=$BUILD_PREFIX/bin/pkg-config
|
||||
OSX_DEPLOYMENT_TARGET="11.0"
|
||||
fi
|
||||
|
||||
echo "USING PYTHON_EXECUTABLE=${PYTHON_EXECUTABLE}"
|
||||
echo "USING PKG_CONFIG_EXECUTABLE=${PKG_CONFIG_EXECUTABLE}"
|
||||
|
||||
export ROS_PYTHON_VERSION=`$PYTHON_EXECUTABLE -c "import sys; print('%i.%i' % (sys.version_info[0:2]))"`
|
||||
echo "Using Python ${ROS_PYTHON_VERSION}"
|
||||
# Fix up SP_DIR which for some reason might contain a path to a wrong Python version
|
||||
FIXED_SP_DIR=$(echo $SP_DIR | sed -E "s/python[0-9]+\.[0-9]+/python$ROS_PYTHON_VERSION/")
|
||||
echo "Using site-package dir ${FIXED_SP_DIR}"
|
||||
|
||||
# see https://github.com/conda-forge/cross-python-feedstock/issues/24
|
||||
if [[ "$CONDA_BUILD_CROSS_COMPILATION" == "1" ]]; then
|
||||
find $PREFIX/lib/cmake -type f -exec sed -i "s~\${_IMPORT_PREFIX}/lib/python${ROS_PYTHON_VERSION}/site-packages~${BUILD_PREFIX}/lib/python${ROS_PYTHON_VERSION}/site-packages~g" {} + || true
|
||||
find $PREFIX/share/rosidl* -type f -exec sed -i "s~$PREFIX/lib/python${ROS_PYTHON_VERSION}/site-packages~${BUILD_PREFIX}/lib/python${ROS_PYTHON_VERSION}/site-packages~g" {} + || true
|
||||
find $PREFIX/share/rosidl* -type f -exec sed -i "s~\${_IMPORT_PREFIX}/lib/python${ROS_PYTHON_VERSION}/site-packages~${BUILD_PREFIX}/lib/python${ROS_PYTHON_VERSION}/site-packages~g" {} + || true
|
||||
find $PREFIX/lib/cmake -type f -exec sed -i "s~message(FATAL_ERROR \"The imported target~message(WARNING \"The imported target~g" {} + || true
|
||||
fi
|
||||
|
||||
if [[ $target_platform =~ linux.* ]]; then
|
||||
export CFLAGS="${CFLAGS} -D__STDC_FORMAT_MACROS=1"
|
||||
export CXXFLAGS="${CXXFLAGS} -D__STDC_FORMAT_MACROS=1"
|
||||
fi;
|
||||
|
||||
# Needed for qt-gui-cpp ..
|
||||
if [[ $target_platform =~ linux.* ]]; then
|
||||
ln -s $GCC ${BUILD_PREFIX}/bin/gcc
|
||||
ln -s $GXX ${BUILD_PREFIX}/bin/g++
|
||||
fi;
|
||||
|
||||
cmake \
|
||||
-G "Ninja" \
|
||||
-DCMAKE_INSTALL_PREFIX=$PREFIX \
|
||||
-DCMAKE_PREFIX_PATH=$PREFIX \
|
||||
-DAMENT_PREFIX_PATH=$PREFIX \
|
||||
-DCMAKE_INSTALL_LIBDIR=lib \
|
||||
-DCMAKE_BUILD_TYPE=Release \
|
||||
-DPYTHON_EXECUTABLE=$PYTHON_EXECUTABLE \
|
||||
-DPython_EXECUTABLE=$PYTHON_EXECUTABLE \
|
||||
-DPython3_EXECUTABLE=$PYTHON_EXECUTABLE \
|
||||
-DPython3_FIND_STRATEGY=LOCATION \
|
||||
-DPKG_CONFIG_EXECUTABLE=$PKG_CONFIG_EXECUTABLE \
|
||||
-DPYTHON_INSTALL_DIR=$FIXED_SP_DIR \
|
||||
-DSETUPTOOLS_DEB_LAYOUT=OFF \
|
||||
-DCATKIN_SKIP_TESTING=$SKIP_TESTING \
|
||||
-DCMAKE_INSTALL_SYSTEM_RUNTIME_LIBS_SKIP=True \
|
||||
-DBUILD_SHARED_LIBS=ON \
|
||||
-DBUILD_TESTING=OFF \
|
||||
-DCMAKE_OSX_DEPLOYMENT_TARGET=$OSX_DEPLOYMENT_TARGET \
|
||||
--compile-no-warning-as-error \
|
||||
$SRC_DIR/$PKG_NAME/src/work
|
||||
|
||||
cmake --build . --config Release --target install
|
||||
@@ -1,61 +0,0 @@
|
||||
package:
|
||||
name: ros-humble-unilabos-msgs
|
||||
version: 0.9.7
|
||||
source:
|
||||
path: ../../unilabos_msgs
|
||||
folder: ros-humble-unilabos-msgs/src/work
|
||||
|
||||
build:
|
||||
script:
|
||||
sel(win): bld_ament_cmake.bat
|
||||
sel(unix): build_ament_cmake.sh
|
||||
number: 5
|
||||
about:
|
||||
home: https://www.ros.org/
|
||||
license: BSD-3-Clause
|
||||
summary: |
|
||||
Robot Operating System
|
||||
|
||||
extra:
|
||||
recipe-maintainers:
|
||||
- ros-forge
|
||||
|
||||
requirements:
|
||||
build:
|
||||
- "{{ compiler('cxx') }}"
|
||||
- "{{ compiler('c') }}"
|
||||
- sel(linux64): sysroot_linux-64 2.17
|
||||
- ninja
|
||||
- setuptools
|
||||
- sel(unix): make
|
||||
- sel(unix): coreutils
|
||||
- sel(osx): tapi
|
||||
- sel(build_platform != target_platform): pkg-config
|
||||
- cmake
|
||||
- cython
|
||||
- sel(win): vs2022_win-64
|
||||
- sel(build_platform != target_platform): python
|
||||
- sel(build_platform != target_platform): cross-python_{{ target_platform }}
|
||||
- sel(build_platform != target_platform): numpy
|
||||
host:
|
||||
- numpy
|
||||
- pip
|
||||
- sel(build_platform == target_platform): pkg-config
|
||||
- robostack-staging::ros-humble-action-msgs
|
||||
- robostack-staging::ros-humble-ament-cmake
|
||||
- robostack-staging::ros-humble-ament-lint-auto
|
||||
- robostack-staging::ros-humble-ament-lint-common
|
||||
- robostack-staging::ros-humble-ros-environment
|
||||
- robostack-staging::ros-humble-ros-workspace
|
||||
- robostack-staging::ros-humble-rosidl-default-generators
|
||||
- robostack-staging::ros-humble-std-msgs
|
||||
- robostack-staging::ros-humble-geometry-msgs
|
||||
- robostack-staging::ros2-distro-mutex=0.5.*
|
||||
run:
|
||||
- robostack-staging::ros-humble-action-msgs
|
||||
- robostack-staging::ros-humble-ros-workspace
|
||||
- robostack-staging::ros-humble-rosidl-default-runtime
|
||||
- robostack-staging::ros-humble-std-msgs
|
||||
- robostack-staging::ros-humble-geometry-msgs
|
||||
# - robostack-staging::ros2-distro-mutex=0.6.*
|
||||
- sel(osx and x86_64): __osx >={{ MACOSX_DEPLOYMENT_TARGET|default('10.14') }}
|
||||
@@ -1,6 +1,6 @@
|
||||
package:
|
||||
name: unilabos
|
||||
version: "0.10.12"
|
||||
version: "0.10.7"
|
||||
|
||||
source:
|
||||
path: ../..
|
||||
|
||||
@@ -2,6 +2,7 @@ import json
|
||||
import logging
|
||||
import traceback
|
||||
import uuid
|
||||
import xml.etree.ElementTree as ET
|
||||
from typing import Any, Dict, List
|
||||
|
||||
import networkx as nx
|
||||
@@ -24,15 +25,7 @@ class SimpleGraph:
|
||||
|
||||
def add_edge(self, source, target, **attrs):
|
||||
"""添加边"""
|
||||
# edge = {"source": source, "target": target, **attrs}
|
||||
edge = {
|
||||
"source": source, "target": target,
|
||||
"source_node_uuid": source,
|
||||
"target_node_uuid": target,
|
||||
"source_handle_io": "source",
|
||||
"target_handle_io": "target",
|
||||
**attrs
|
||||
}
|
||||
edge = {"source": source, "target": target, **attrs}
|
||||
self.edges.append(edge)
|
||||
|
||||
def to_dict(self):
|
||||
@@ -49,7 +42,6 @@ class SimpleGraph:
|
||||
"multigraph": False,
|
||||
"graph": {},
|
||||
"nodes": nodes_list,
|
||||
"edges": self.edges,
|
||||
"links": self.edges,
|
||||
}
|
||||
|
||||
@@ -66,8 +58,495 @@ def extract_json_from_markdown(text: str) -> str:
|
||||
return text
|
||||
|
||||
|
||||
def convert_to_type(val: str) -> Any:
|
||||
"""将字符串值转换为适当的数据类型"""
|
||||
if val == "True":
|
||||
return True
|
||||
if val == "False":
|
||||
return False
|
||||
if val == "?":
|
||||
return None
|
||||
if val.endswith(" g"):
|
||||
return float(val.split(" ")[0])
|
||||
if val.endswith("mg"):
|
||||
return float(val.split("mg")[0])
|
||||
elif val.endswith("mmol"):
|
||||
return float(val.split("mmol")[0]) / 1000
|
||||
elif val.endswith("mol"):
|
||||
return float(val.split("mol")[0])
|
||||
elif val.endswith("ml"):
|
||||
return float(val.split("ml")[0])
|
||||
elif val.endswith("RPM"):
|
||||
return float(val.split("RPM")[0])
|
||||
elif val.endswith(" °C"):
|
||||
return float(val.split(" ")[0])
|
||||
elif val.endswith(" %"):
|
||||
return float(val.split(" ")[0])
|
||||
return val
|
||||
|
||||
|
||||
def refactor_data(data: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
|
||||
"""统一的数据重构函数,根据操作类型自动选择模板"""
|
||||
refactored_data = []
|
||||
|
||||
# 定义操作映射,包含生物实验和有机化学的所有操作
|
||||
OPERATION_MAPPING = {
|
||||
# 生物实验操作
|
||||
"transfer_liquid": "SynBioFactory-liquid_handler.prcxi-transfer_liquid",
|
||||
"transfer": "SynBioFactory-liquid_handler.biomek-transfer",
|
||||
"incubation": "SynBioFactory-liquid_handler.biomek-incubation",
|
||||
"move_labware": "SynBioFactory-liquid_handler.biomek-move_labware",
|
||||
"oscillation": "SynBioFactory-liquid_handler.biomek-oscillation",
|
||||
# 有机化学操作
|
||||
"HeatChillToTemp": "SynBioFactory-workstation-HeatChillProtocol",
|
||||
"StopHeatChill": "SynBioFactory-workstation-HeatChillStopProtocol",
|
||||
"StartHeatChill": "SynBioFactory-workstation-HeatChillStartProtocol",
|
||||
"HeatChill": "SynBioFactory-workstation-HeatChillProtocol",
|
||||
"Dissolve": "SynBioFactory-workstation-DissolveProtocol",
|
||||
"Transfer": "SynBioFactory-workstation-TransferProtocol",
|
||||
"Evaporate": "SynBioFactory-workstation-EvaporateProtocol",
|
||||
"Recrystallize": "SynBioFactory-workstation-RecrystallizeProtocol",
|
||||
"Filter": "SynBioFactory-workstation-FilterProtocol",
|
||||
"Dry": "SynBioFactory-workstation-DryProtocol",
|
||||
"Add": "SynBioFactory-workstation-AddProtocol",
|
||||
}
|
||||
|
||||
UNSUPPORTED_OPERATIONS = ["Purge", "Wait", "Stir", "ResetHandling"]
|
||||
|
||||
for step in data:
|
||||
operation = step.get("action")
|
||||
if not operation or operation in UNSUPPORTED_OPERATIONS:
|
||||
continue
|
||||
|
||||
# 处理重复操作
|
||||
if operation == "Repeat":
|
||||
times = step.get("times", step.get("parameters", {}).get("times", 1))
|
||||
sub_steps = step.get("steps", step.get("parameters", {}).get("steps", []))
|
||||
for i in range(int(times)):
|
||||
sub_data = refactor_data(sub_steps)
|
||||
refactored_data.extend(sub_data)
|
||||
continue
|
||||
|
||||
# 获取模板名称
|
||||
template = OPERATION_MAPPING.get(operation)
|
||||
if not template:
|
||||
# 自动推断模板类型
|
||||
if operation.lower() in ["transfer", "incubation", "move_labware", "oscillation"]:
|
||||
template = f"SynBioFactory-liquid_handler.biomek-{operation}"
|
||||
else:
|
||||
template = f"SynBioFactory-workstation-{operation}Protocol"
|
||||
|
||||
# 创建步骤数据
|
||||
step_data = {
|
||||
"template": template,
|
||||
"description": step.get("description", step.get("purpose", f"{operation} operation")),
|
||||
"lab_node_type": "Device",
|
||||
"parameters": step.get("parameters", step.get("action_args", {})),
|
||||
}
|
||||
refactored_data.append(step_data)
|
||||
|
||||
return refactored_data
|
||||
|
||||
|
||||
def build_protocol_graph(
|
||||
labware_info: List[Dict[str, Any]], protocol_steps: List[Dict[str, Any]], workstation_name: str
|
||||
) -> SimpleGraph:
|
||||
"""统一的协议图构建函数,根据设备类型自动选择构建逻辑"""
|
||||
G = SimpleGraph()
|
||||
resource_last_writer = {}
|
||||
LAB_NAME = "SynBioFactory"
|
||||
|
||||
protocol_steps = refactor_data(protocol_steps)
|
||||
|
||||
# 检查协议步骤中的模板来判断协议类型
|
||||
has_biomek_template = any(
|
||||
("biomek" in step.get("template", "")) or ("prcxi" in step.get("template", ""))
|
||||
for step in protocol_steps
|
||||
)
|
||||
|
||||
if has_biomek_template:
|
||||
# 生物实验协议图构建
|
||||
for labware_id, labware in labware_info.items():
|
||||
node_id = str(uuid.uuid4())
|
||||
|
||||
labware_attrs = labware.copy()
|
||||
labware_id = labware_attrs.pop("id", labware_attrs.get("name", f"labware_{uuid.uuid4()}"))
|
||||
labware_attrs["description"] = labware_id
|
||||
labware_attrs["lab_node_type"] = (
|
||||
"Reagent" if "Plate" in str(labware_id) else "Labware" if "Rack" in str(labware_id) else "Sample"
|
||||
)
|
||||
labware_attrs["device_id"] = workstation_name
|
||||
|
||||
G.add_node(node_id, template=f"{LAB_NAME}-host_node-create_resource", **labware_attrs)
|
||||
resource_last_writer[labware_id] = f"{node_id}:labware"
|
||||
|
||||
# 处理协议步骤
|
||||
prev_node = None
|
||||
for i, step in enumerate(protocol_steps):
|
||||
node_id = str(uuid.uuid4())
|
||||
G.add_node(node_id, **step)
|
||||
|
||||
# 添加控制流边
|
||||
if prev_node is not None:
|
||||
G.add_edge(prev_node, node_id, source_port="ready", target_port="ready")
|
||||
prev_node = node_id
|
||||
|
||||
# 处理物料流
|
||||
params = step.get("parameters", {})
|
||||
if "sources" in params and params["sources"] in resource_last_writer:
|
||||
source_node, source_port = resource_last_writer[params["sources"]].split(":")
|
||||
G.add_edge(source_node, node_id, source_port=source_port, target_port="labware")
|
||||
|
||||
if "targets" in params:
|
||||
resource_last_writer[params["targets"]] = f"{node_id}:labware"
|
||||
|
||||
# 添加协议结束节点
|
||||
end_id = str(uuid.uuid4())
|
||||
G.add_node(end_id, template=f"{LAB_NAME}-liquid_handler.biomek-run_protocol")
|
||||
if prev_node is not None:
|
||||
G.add_edge(prev_node, end_id, source_port="ready", target_port="ready")
|
||||
|
||||
else:
|
||||
# 有机化学协议图构建
|
||||
WORKSTATION_ID = workstation_name
|
||||
|
||||
# 为所有labware创建资源节点
|
||||
for item_id, item in labware_info.items():
|
||||
# item_id = item.get("id") or item.get("name", f"item_{uuid.uuid4()}")
|
||||
node_id = str(uuid.uuid4())
|
||||
|
||||
# 判断节点类型
|
||||
if item.get("type") == "hardware" or "reactor" in str(item_id).lower():
|
||||
if "reactor" not in str(item_id).lower():
|
||||
continue
|
||||
lab_node_type = "Sample"
|
||||
description = f"Prepare Reactor: {item_id}"
|
||||
liquid_type = []
|
||||
liquid_volume = []
|
||||
else:
|
||||
lab_node_type = "Reagent"
|
||||
description = f"Add Reagent to Flask: {item_id}"
|
||||
liquid_type = [item_id]
|
||||
liquid_volume = [1e5]
|
||||
|
||||
G.add_node(
|
||||
node_id,
|
||||
template=f"{LAB_NAME}-host_node-create_resource",
|
||||
description=description,
|
||||
lab_node_type=lab_node_type,
|
||||
res_id=item_id,
|
||||
device_id=WORKSTATION_ID,
|
||||
class_name="container",
|
||||
parent=WORKSTATION_ID,
|
||||
bind_locations={"x": 0.0, "y": 0.0, "z": 0.0},
|
||||
liquid_input_slot=[-1],
|
||||
liquid_type=liquid_type,
|
||||
liquid_volume=liquid_volume,
|
||||
slot_on_deck="",
|
||||
role=item.get("role", ""),
|
||||
)
|
||||
resource_last_writer[item_id] = f"{node_id}:labware"
|
||||
|
||||
last_control_node_id = None
|
||||
|
||||
# 处理协议步骤
|
||||
for step in protocol_steps:
|
||||
node_id = str(uuid.uuid4())
|
||||
G.add_node(node_id, **step)
|
||||
|
||||
# 控制流
|
||||
if last_control_node_id is not None:
|
||||
G.add_edge(last_control_node_id, node_id, source_port="ready", target_port="ready")
|
||||
last_control_node_id = node_id
|
||||
|
||||
# 物料流
|
||||
params = step.get("parameters", {})
|
||||
input_resources = {
|
||||
"Vessel": params.get("vessel"),
|
||||
"ToVessel": params.get("to_vessel"),
|
||||
"FromVessel": params.get("from_vessel"),
|
||||
"reagent": params.get("reagent"),
|
||||
"solvent": params.get("solvent"),
|
||||
"compound": params.get("compound"),
|
||||
"sources": params.get("sources"),
|
||||
"targets": params.get("targets"),
|
||||
}
|
||||
|
||||
for target_port, resource_name in input_resources.items():
|
||||
if resource_name and resource_name in resource_last_writer:
|
||||
source_node, source_port = resource_last_writer[resource_name].split(":")
|
||||
G.add_edge(source_node, node_id, source_port=source_port, target_port=target_port)
|
||||
|
||||
output_resources = {
|
||||
"VesselOut": params.get("vessel"),
|
||||
"FromVesselOut": params.get("from_vessel"),
|
||||
"ToVesselOut": params.get("to_vessel"),
|
||||
"FiltrateOut": params.get("filtrate_vessel"),
|
||||
"reagent": params.get("reagent"),
|
||||
"solvent": params.get("solvent"),
|
||||
"compound": params.get("compound"),
|
||||
"sources_out": params.get("sources"),
|
||||
"targets_out": params.get("targets"),
|
||||
}
|
||||
|
||||
for source_port, resource_name in output_resources.items():
|
||||
if resource_name:
|
||||
resource_last_writer[resource_name] = f"{node_id}:{source_port}"
|
||||
|
||||
return G
|
||||
|
||||
|
||||
def draw_protocol_graph(protocol_graph: SimpleGraph, output_path: str):
|
||||
"""
|
||||
(辅助功能) 使用 networkx 和 matplotlib 绘制协议工作流图,用于可视化。
|
||||
"""
|
||||
if not protocol_graph:
|
||||
print("Cannot draw graph: Graph object is empty.")
|
||||
return
|
||||
|
||||
G = nx.DiGraph()
|
||||
|
||||
for node_id, attrs in protocol_graph.nodes.items():
|
||||
label = attrs.get("description", attrs.get("template", node_id[:8]))
|
||||
G.add_node(node_id, label=label, **attrs)
|
||||
|
||||
for edge in protocol_graph.edges:
|
||||
G.add_edge(edge["source"], edge["target"])
|
||||
|
||||
plt.figure(figsize=(20, 15))
|
||||
try:
|
||||
pos = nx.nx_agraph.graphviz_layout(G, prog="dot")
|
||||
except Exception:
|
||||
pos = nx.shell_layout(G) # Fallback layout
|
||||
|
||||
node_labels = {node: data["label"] for node, data in G.nodes(data=True)}
|
||||
nx.draw(
|
||||
G,
|
||||
pos,
|
||||
with_labels=False,
|
||||
node_size=2500,
|
||||
node_color="skyblue",
|
||||
node_shape="o",
|
||||
edge_color="gray",
|
||||
width=1.5,
|
||||
arrowsize=15,
|
||||
)
|
||||
nx.draw_networkx_labels(G, pos, labels=node_labels, font_size=8, font_weight="bold")
|
||||
|
||||
plt.title("Chemical Protocol Workflow Graph", size=15)
|
||||
plt.savefig(output_path, dpi=300, bbox_inches="tight")
|
||||
plt.close()
|
||||
print(f" - Visualization saved to '{output_path}'")
|
||||
|
||||
|
||||
from networkx.drawing.nx_agraph import to_agraph
|
||||
import re
|
||||
|
||||
COMPASS = {"n","e","s","w","ne","nw","se","sw","c"}
|
||||
|
||||
def _is_compass(port: str) -> bool:
|
||||
return isinstance(port, str) and port.lower() in COMPASS
|
||||
|
||||
def draw_protocol_graph_with_ports(protocol_graph, output_path: str, rankdir: str = "LR"):
|
||||
"""
|
||||
使用 Graphviz 端口语法绘制协议工作流图。
|
||||
- 若边上的 source_port/target_port 是 compass(n/e/s/w/...),直接用 compass。
|
||||
- 否则自动为节点创建 record 形状并定义命名端口 <portname>。
|
||||
最终由 PyGraphviz 渲染并输出到 output_path(后缀决定格式,如 .png/.svg/.pdf)。
|
||||
"""
|
||||
if not protocol_graph:
|
||||
print("Cannot draw graph: Graph object is empty.")
|
||||
return
|
||||
|
||||
# 1) 先用 networkx 搭建有向图,保留端口属性
|
||||
G = nx.DiGraph()
|
||||
for node_id, attrs in protocol_graph.nodes.items():
|
||||
label = attrs.get("description", attrs.get("template", node_id[:8]))
|
||||
# 保留一个干净的“中心标签”,用于放在 record 的中间槽
|
||||
G.add_node(node_id, _core_label=str(label), **{k:v for k,v in attrs.items() if k not in ("label",)})
|
||||
|
||||
edges_data = []
|
||||
in_ports_by_node = {} # 收集命名输入端口
|
||||
out_ports_by_node = {} # 收集命名输出端口
|
||||
|
||||
for edge in protocol_graph.edges:
|
||||
u = edge["source"]
|
||||
v = edge["target"]
|
||||
sp = edge.get("source_port")
|
||||
tp = edge.get("target_port")
|
||||
|
||||
# 记录到图里(保留原始端口信息)
|
||||
G.add_edge(u, v, source_port=sp, target_port=tp)
|
||||
edges_data.append((u, v, sp, tp))
|
||||
|
||||
# 如果不是 compass,就按“命名端口”先归类,等会儿给节点造 record
|
||||
if sp and not _is_compass(sp):
|
||||
out_ports_by_node.setdefault(u, set()).add(str(sp))
|
||||
if tp and not _is_compass(tp):
|
||||
in_ports_by_node.setdefault(v, set()).add(str(tp))
|
||||
|
||||
# 2) 转为 AGraph,使用 Graphviz 渲染
|
||||
A = to_agraph(G)
|
||||
A.graph_attr.update(rankdir=rankdir, splines="true", concentrate="false", fontsize="10")
|
||||
A.node_attr.update(shape="box", style="rounded,filled", fillcolor="lightyellow", color="#999999", fontname="Helvetica")
|
||||
A.edge_attr.update(arrowsize="0.8", color="#666666")
|
||||
|
||||
# 3) 为需要命名端口的节点设置 record 形状与 label
|
||||
# 左列 = 输入端口;中间 = 核心标签;右列 = 输出端口
|
||||
for n in A.nodes():
|
||||
node = A.get_node(n)
|
||||
core = G.nodes[n].get("_core_label", n)
|
||||
|
||||
in_ports = sorted(in_ports_by_node.get(n, []))
|
||||
out_ports = sorted(out_ports_by_node.get(n, []))
|
||||
|
||||
# 如果该节点涉及命名端口,则用 record;否则保留原 box
|
||||
if in_ports or out_ports:
|
||||
def port_fields(ports):
|
||||
if not ports:
|
||||
return " " # 必须留一个空槽占位
|
||||
# 每个端口一个小格子,<p> name
|
||||
return "|".join(f"<{re.sub(r'[^A-Za-z0-9_:.|-]', '_', p)}> {p}" for p in ports)
|
||||
|
||||
left = port_fields(in_ports)
|
||||
right = port_fields(out_ports)
|
||||
|
||||
# 三栏:左(入) | 中(节点名) | 右(出)
|
||||
record_label = f"{{ {left} | {core} | {right} }}"
|
||||
node.attr.update(shape="record", label=record_label)
|
||||
else:
|
||||
# 没有命名端口:普通盒子,显示核心标签
|
||||
node.attr.update(label=str(core))
|
||||
|
||||
# 4) 给边设置 headport / tailport
|
||||
# - 若端口为 compass:直接用 compass(e.g., headport="e")
|
||||
# - 若端口为命名端口:使用在 record 中定义的 <port> 名(同名即可)
|
||||
for (u, v, sp, tp) in edges_data:
|
||||
e = A.get_edge(u, v)
|
||||
|
||||
# Graphviz 属性:tail 是源,head 是目标
|
||||
if sp:
|
||||
if _is_compass(sp):
|
||||
e.attr["tailport"] = sp.lower()
|
||||
else:
|
||||
# 与 record label 中 <port> 名一致;特殊字符已在 label 中做了清洗
|
||||
e.attr["tailport"] = re.sub(r'[^A-Za-z0-9_:.|-]', '_', str(sp))
|
||||
|
||||
if tp:
|
||||
if _is_compass(tp):
|
||||
e.attr["headport"] = tp.lower()
|
||||
else:
|
||||
e.attr["headport"] = re.sub(r'[^A-Za-z0-9_:.|-]', '_', str(tp))
|
||||
|
||||
# 可选:若想让边更贴边缘,可设置 constraint/spline 等
|
||||
# e.attr["arrowhead"] = "vee"
|
||||
|
||||
# 5) 输出
|
||||
A.draw(output_path, prog="dot")
|
||||
print(f" - Port-aware workflow rendered to '{output_path}'")
|
||||
|
||||
|
||||
def flatten_xdl_procedure(procedure_elem: ET.Element) -> List[ET.Element]:
|
||||
"""展平嵌套的XDL程序结构"""
|
||||
flattened_operations = []
|
||||
TEMP_UNSUPPORTED_PROTOCOL = ["Purge", "Wait", "Stir", "ResetHandling"]
|
||||
|
||||
def extract_operations(element: ET.Element):
|
||||
if element.tag not in ["Prep", "Reaction", "Workup", "Purification", "Procedure"]:
|
||||
if element.tag not in TEMP_UNSUPPORTED_PROTOCOL:
|
||||
flattened_operations.append(element)
|
||||
|
||||
for child in element:
|
||||
extract_operations(child)
|
||||
|
||||
for child in procedure_elem:
|
||||
extract_operations(child)
|
||||
|
||||
return flattened_operations
|
||||
|
||||
|
||||
def parse_xdl_content(xdl_content: str) -> tuple:
|
||||
"""解析XDL内容"""
|
||||
try:
|
||||
xdl_content_cleaned = "".join(c for c in xdl_content if c.isprintable())
|
||||
root = ET.fromstring(xdl_content_cleaned)
|
||||
|
||||
synthesis_elem = root.find("Synthesis")
|
||||
if synthesis_elem is None:
|
||||
return None, None, None
|
||||
|
||||
# 解析硬件组件
|
||||
hardware_elem = synthesis_elem.find("Hardware")
|
||||
hardware = []
|
||||
if hardware_elem is not None:
|
||||
hardware = [{"id": c.get("id"), "type": c.get("type")} for c in hardware_elem.findall("Component")]
|
||||
|
||||
# 解析试剂
|
||||
reagents_elem = synthesis_elem.find("Reagents")
|
||||
reagents = []
|
||||
if reagents_elem is not None:
|
||||
reagents = [{"name": r.get("name"), "role": r.get("role", "")} for r in reagents_elem.findall("Reagent")]
|
||||
|
||||
# 解析程序
|
||||
procedure_elem = synthesis_elem.find("Procedure")
|
||||
if procedure_elem is None:
|
||||
return None, None, None
|
||||
|
||||
flattened_operations = flatten_xdl_procedure(procedure_elem)
|
||||
return hardware, reagents, flattened_operations
|
||||
|
||||
except ET.ParseError as e:
|
||||
raise ValueError(f"Invalid XDL format: {e}")
|
||||
|
||||
|
||||
def convert_xdl_to_dict(xdl_content: str) -> Dict[str, Any]:
|
||||
"""
|
||||
将XDL XML格式转换为标准的字典格式
|
||||
|
||||
Args:
|
||||
xdl_content: XDL XML内容
|
||||
|
||||
Returns:
|
||||
转换结果,包含步骤和器材信息
|
||||
"""
|
||||
try:
|
||||
hardware, reagents, flattened_operations = parse_xdl_content(xdl_content)
|
||||
if hardware is None:
|
||||
return {"error": "Failed to parse XDL content", "success": False}
|
||||
|
||||
# 将XDL元素转换为字典格式
|
||||
steps_data = []
|
||||
for elem in flattened_operations:
|
||||
# 转换参数类型
|
||||
parameters = {}
|
||||
for key, val in elem.attrib.items():
|
||||
converted_val = convert_to_type(val)
|
||||
if converted_val is not None:
|
||||
parameters[key] = converted_val
|
||||
|
||||
step_dict = {
|
||||
"operation": elem.tag,
|
||||
"parameters": parameters,
|
||||
"description": elem.get("purpose", f"Operation: {elem.tag}"),
|
||||
}
|
||||
steps_data.append(step_dict)
|
||||
|
||||
# 合并硬件和试剂为统一的labware_info格式
|
||||
labware_data = []
|
||||
labware_data.extend({"id": hw["id"], "type": "hardware", **hw} for hw in hardware)
|
||||
labware_data.extend({"name": reagent["name"], "type": "reagent", **reagent} for reagent in reagents)
|
||||
|
||||
return {
|
||||
"success": True,
|
||||
"steps": steps_data,
|
||||
"labware": labware_data,
|
||||
"message": f"Successfully converted XDL to dict format. Found {len(steps_data)} steps and {len(labware_data)} labware items.",
|
||||
}
|
||||
|
||||
except Exception as e:
|
||||
error_msg = f"XDL conversion failed: {str(e)}"
|
||||
logger.error(error_msg)
|
||||
return {"error": error_msg, "success": False}
|
||||
|
||||
|
||||
def create_workflow(
|
||||
|
||||
2
setup.py
@@ -4,7 +4,7 @@ package_name = 'unilabos'
|
||||
|
||||
setup(
|
||||
name=package_name,
|
||||
version='0.10.12',
|
||||
version='0.10.7',
|
||||
packages=find_packages(),
|
||||
include_package_data=True,
|
||||
install_requires=['setuptools'],
|
||||
|
||||
@@ -12,37 +12,7 @@
|
||||
"config": {
|
||||
"config": {
|
||||
"api_key": "DE9BDDA0",
|
||||
"api_host": "http://192.168.1.200:44388",
|
||||
"material_type_mappings": {
|
||||
"BIOYOND_PolymerStation_1FlaskCarrier": [
|
||||
"烧杯",
|
||||
"3a14196b-24f2-ca49-9081-0cab8021bf1a"
|
||||
],
|
||||
"BIOYOND_PolymerStation_1BottleCarrier": [
|
||||
"试剂瓶",
|
||||
"3a14196b-8bcf-a460-4f74-23f21ca79e72"
|
||||
],
|
||||
"BIOYOND_PolymerStation_6StockCarrier": [
|
||||
"分装板",
|
||||
"3a14196e-5dfe-6e21-0c79-fe2036d052c4"
|
||||
],
|
||||
"BIOYOND_PolymerStation_Liquid_Vial": [
|
||||
"10%分装小瓶",
|
||||
"3a14196c-76be-2279-4e22-7310d69aed68"
|
||||
],
|
||||
"BIOYOND_PolymerStation_Solid_Vial": [
|
||||
"90%分装小瓶",
|
||||
"3a14196c-cdcf-088d-dc7d-5cf38f0ad9ea"
|
||||
],
|
||||
"BIOYOND_PolymerStation_8StockCarrier": [
|
||||
"样品板",
|
||||
"3a14196e-b7a0-a5da-1931-35f3000281e9"
|
||||
],
|
||||
"BIOYOND_PolymerStation_Solid_Stock": [
|
||||
"样品瓶",
|
||||
"3a14196a-cf7d-8aea-48d8-b9662c7dba94"
|
||||
]
|
||||
}
|
||||
"api_host": "http://192.168.1.200:44388"
|
||||
},
|
||||
"deck": {
|
||||
"data": {
|
||||